open import Algebra
module Algebra.Operations.Semiring {s₁ s₂} (S : Semiring s₁ s₂) where
import Algebra.Operations.CommutativeMonoid as MonoidOperations
open import Data.Nat.Base
using (zero; suc; ℕ) renaming (_+_ to _ℕ+_; _*_ to _ℕ*_)
open import Data.Product using (module Σ)
open import Function using (_$_)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as P using (_≡_)
open Semiring S renaming (zero to *-zero)
open import Relation.Binary.EqReasoning setoid
open MonoidOperations +-commutativeMonoid public
infixr 9 _^_
_^_ : Carrier → ℕ → Carrier
x ^ zero = 1#
x ^ suc n = x * x ^ n
×1-homo-* : ∀ m n → (m ℕ* n) × 1# ≈ (m × 1#) * (n × 1#)
×1-homo-* 0 n = begin
0# ≈⟨ sym (Σ.proj₁ *-zero (n × 1#)) ⟩
0# * (n × 1#) ∎
×1-homo-* (suc m) n = begin
(n ℕ+ m ℕ* n) × 1# ≈⟨ ×-homo-+ 1# n (m ℕ* n) ⟩
n × 1# + (m ℕ* n) × 1# ≈⟨ +-cong refl (×1-homo-* m n) ⟩
n × 1# + (m × 1#) * (n × 1#) ≈⟨ sym (+-cong (*-identityˡ _) refl) ⟩
1# * (n × 1#) + (m × 1#) * (n × 1#) ≈⟨ sym (distribʳ (n × 1#) 1# (m × 1#)) ⟩
(1# + m × 1#) * (n × 1#) ∎
×′1-homo-* : ∀ m n → (m ℕ* n) ×′ 1# ≈ (m ×′ 1#) * (n ×′ 1#)
×′1-homo-* m n = begin
(m ℕ* n) ×′ 1# ≈⟨ sym $ ×≈×′ (m ℕ* n) 1# ⟩
(m ℕ* n) × 1# ≈⟨ ×1-homo-* m n ⟩
(m × 1#) * (n × 1#) ≈⟨ *-cong (×≈×′ m 1#) (×≈×′ n 1#) ⟩
(m ×′ 1#) * (n ×′ 1#) ∎
^-congˡ : ∀ n → (_^ n) Preserves _≈_ ⟶ _≈_
^-congˡ zero x≈y = refl
^-congˡ (suc n) x≈y = *-cong x≈y (^-congˡ n x≈y)
^-cong : _^_ Preserves₂ _≈_ ⟶ _≡_ ⟶ _≈_
^-cong {v = n} x≈y P.refl = ^-congˡ n x≈y