open import Algebra
module Algebra.Operations.CommutativeMonoid
{s₁ s₂} (CM : CommutativeMonoid s₁ s₂)
where
open import Data.Nat.Base using (ℕ; zero; suc)
renaming (_+_ to _ℕ+_; _*_ to _ℕ*_)
open import Data.List as List using (List; []; _∷_; _++_)
open import Data.Fin using (Fin; zero)
open import Data.Product using (proj₁; proj₂)
open import Data.Table.Base as Table using (Table)
open import Function using (_∘_; _⟨_⟩_)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as P using (_≡_)
open CommutativeMonoid CM
renaming
( _∙_ to _+_
; ∙-cong to +-cong
; identityˡ to +-identityˡ
; identityʳ to +-identityʳ
; assoc to +-assoc
; comm to +-comm
; ε to 0#
)
open import Relation.Binary.EqReasoning setoid
infixr 8 _×_ _×′_
_×_ : ℕ → Carrier → Carrier
0 × x = 0#
suc n × x = x + n × x
_×′_ : ℕ → Carrier → Carrier
0 ×′ x = 0#
1 ×′ x = x
suc n ×′ x = x + n ×′ x
sumₗ : List Carrier → Carrier
sumₗ = List.foldr _+_ 0#
sumₜ : ∀ {n} → Table Carrier n → Carrier
sumₜ = Table.foldr _+_ 0#
infixl 10 sumₜ-syntax
sumₜ-syntax : ∀ n → (Fin n → Carrier) → Carrier
sumₜ-syntax _ = sumₜ ∘ Table.tabulate
syntax sumₜ-syntax n (λ i → x) = ∑[ i < n ] x
×-congʳ : ∀ n → (n ×_) Preserves _≈_ ⟶ _≈_
×-congʳ 0 x≈x′ = refl
×-congʳ (suc n) x≈x′ = x≈x′ ⟨ +-cong ⟩ ×-congʳ n x≈x′
×-cong : _×_ Preserves₂ _≡_ ⟶ _≈_ ⟶ _≈_
×-cong {u} P.refl x≈x′ = ×-congʳ u x≈x′
×-homo-+ : ∀ c m n → (m ℕ+ n) × c ≈ m × c + n × c
×-homo-+ c 0 n = sym (+-identityˡ (n × c))
×-homo-+ c (suc m) n = begin
c + (m ℕ+ n) × c ≈⟨ +-cong refl (×-homo-+ c m n) ⟩
c + (m × c + n × c) ≈⟨ sym (+-assoc c (m × c) (n × c)) ⟩
c + m × c + n × c ∎
1+×′ : ∀ n x → suc n ×′ x ≈ x + n ×′ x
1+×′ 0 x = sym (+-identityʳ x)
1+×′ (suc n) x = refl
×≈×′ : ∀ n x → n × x ≈ n ×′ x
×≈×′ 0 x = begin 0# ∎
×≈×′ (suc n) x = begin
x + n × x ≈⟨ +-cong refl (×≈×′ n x) ⟩
x + n ×′ x ≈⟨ sym (1+×′ n x) ⟩
suc n ×′ x ∎
×′-homo-+ : ∀ c m n → (m ℕ+ n) ×′ c ≈ m ×′ c + n ×′ c
×′-homo-+ c m n = begin
(m ℕ+ n) ×′ c ≈⟨ sym (×≈×′ (m ℕ+ n) c) ⟩
(m ℕ+ n) × c ≈⟨ ×-homo-+ c m n ⟩
m × c + n × c ≈⟨ +-cong (×≈×′ m c) (×≈×′ n c) ⟩
m ×′ c + n ×′ c ∎
×′-cong : _×′_ Preserves₂ _≡_ ⟶ _≈_ ⟶ _≈_
×′-cong {n} {_} {x} {y} P.refl x≈y = begin
n ×′ x ≈⟨ sym (×≈×′ n x) ⟩
n × x ≈⟨ ×-congʳ n x≈y ⟩
n × y ≈⟨ ×≈×′ n y ⟩
n ×′ y ∎