------------------------------------------------------------------------
-- The Agda standard library
--
-- Products
------------------------------------------------------------------------

module Data.Product where

open import Function
open import Level
open import Relation.Nullary
open import Agda.Builtin.Equality

infixr 4 _,_ _,′_
infix  4 ,_
infixr 2 _×_ _-×-_ _-,-_

------------------------------------------------------------------------
-- Definition

record Σ {a b} (A : Set a) (B : A  Set b) : Set (a  b) where
  constructor _,_
  field
    proj₁ : A
    proj₂ : B proj₁

open Σ public

-- The syntax declaration below is attached to Σ-syntax, to make it
-- easy to import Σ without the special syntax.

infix 2 Σ-syntax

Σ-syntax :  {a b} (A : Set a)  (A  Set b)  Set (a  b)
Σ-syntax = Σ

syntax Σ-syntax A  x  B) = Σ[ x ∈ A ] B

 :  {a b} {A : Set a}  (A  Set b)  Set (a  b)
 = Σ _

∃-syntax :  {a b} {A : Set a}  (A  Set b)  Set (a  b)
∃-syntax = 

syntax ∃-syntax  x  B) = ∃[ x ] B

 :  {a b} {A : Set a}  (A  Set b)  Set (a  b)
 P = ¬  P

∄-syntax :  {a b} {A : Set a}  (A  Set b)  Set (a  b)
∄-syntax = 

syntax ∄-syntax  x  B) = ∄[ x ] B

∃₂ :  {a b c} {A : Set a} {B : A  Set b}
     (C : (x : A)  B x  Set c)  Set (a  b  c)
∃₂ C =  λ a   λ b  C a b

_×_ :  {a b} (A : Set a) (B : Set b)  Set (a  b)
A × B = Σ[ x  A ] B

_,′_ :  {a b} {A : Set a} {B : Set b}  A  B  A × B
_,′_ = _,_

------------------------------------------------------------------------
-- Unique existence

-- Parametrised on the underlying equality.

∃! :  {a b } {A : Set a} 
     (A  A  Set )  (A  Set b)  Set (a  b  )
∃! _≈_ B =  λ x  B x × (∀ {y}  B y  x  y)

------------------------------------------------------------------------
-- Functions

-- Sometimes the first component can be inferred.

,_ :  {a b} {A : Set a} {B : A  Set b} {x}  B x   B
, y = _ , y

<_,_> :  {a b c} {A : Set a} {B : A  Set b} {C :  {x}  B x  Set c}
        (f : (x : A)  B x)  ((x : A)  C (f x)) 
        ((x : A)  Σ (B x) C)
< f , g > x = (f x , g x)

map :  {a b p q}
      {A : Set a} {B : Set b} {P : A  Set p} {Q : B  Set q} 
      (f : A  B)  (∀ {x}  P x  Q (f x)) 
      Σ A P  Σ B Q
map f g (x , y) = (f x , g y)

map₁ :  {a b c} {A : Set a} {B : Set b} {C : Set c} 
       (A  B)  A × C  B × C
map₁ f = map f id

map₂ :  {a b c} {A : Set a} {B : A  Set b} {C : A  Set c} 
       (∀ {x}  B x  C x)  Σ A B  Σ A C
map₂ f = map id f

zip :  {a b c p q r}
        {A : Set a} {B : Set b} {C : Set c}
        {P : A  Set p} {Q : B  Set q} {R : C  Set r} 
      (_∙_ : A  B  C) 
      (∀ {x y}  P x  Q y  R (x  y)) 
      Σ A P  Σ B Q  Σ C R
zip _∙_ _∘_ (a , p) (b , q) = ((a  b) , (p  q))

swap :  {a b} {A : Set a} {B : Set b}  A × B  B × A
swap (x , y) = (y , x)

_-×-_ :  {a b i j} {A : Set a} {B : Set b} 
        (A  B  Set i)  (A  B  Set j)  (A  B  Set _)
f -×- g = f -[ _×_ ]- g

_-,-_ :  {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} 
        (A  B  C)  (A  B  D)  (A  B  C × D)
f -,- g = f -[ _,_ ]- g

curry :  {a b c} {A : Set a} {B : A  Set b} {C : Σ A B  Set c} 
        ((p : Σ A B)  C p) 
        ((x : A)  (y : B x)  C (x , y))
curry f x y = f (x , y)

curry′ :  {a b c} {A : Set a} {B : Set b} {C : Set c} 
         (A × B  C)  (A  B  C)
curry′ = curry

uncurry :  {a b c} {A : Set a} {B : A  Set b} {C : Σ A B  Set c} 
          ((x : A)  (y : B x)  C (x , y)) 
          ((p : Σ A B)  C p)
uncurry f (x , y) = f x y

uncurry′ :  {a b c} {A : Set a} {B : Set b} {C : Set c} 
           (A  B  C)  (A × B  C)
uncurry′ = uncurry