module Data.Conat where
open import Coinduction
open import Data.Nat.Base using (ℕ; zero; suc)
open import Function
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as P using (_≡_)
data Coℕ : Set where
  zero : Coℕ
  suc  : (n : ∞ Coℕ) → Coℕ
module Coℕ-injective where
 suc-injective : ∀ {m n} → (Coℕ ∋ suc m) ≡ suc n → m ≡ n
 suc-injective P.refl = P.refl
pred : Coℕ → Coℕ
pred zero    = zero
pred (suc n) = ♭ n
fromℕ : ℕ → Coℕ
fromℕ zero    = zero
fromℕ (suc n) = suc (♯ fromℕ n)
fromℕ-injective : ∀ {m n} → fromℕ m ≡ fromℕ n → m ≡ n
fromℕ-injective {zero}  {zero}  eq = P.refl
fromℕ-injective {zero}  {suc n} ()
fromℕ-injective {suc m} {zero}  ()
fromℕ-injective {suc m} {suc n} eq = P.cong suc (fromℕ-injective (P.cong pred eq))
∞ℕ : Coℕ
∞ℕ = suc (♯ ∞ℕ)
infixl 6 _+_
_+_ : Coℕ → Coℕ → Coℕ
zero  + n = n
suc m + n = suc (♯ (♭ m + n))
data _≈_ : Coℕ → Coℕ → Set where
  zero :                                 zero  ≈ zero
  suc  : ∀ {m n} (m≈n : ∞ (♭ m ≈ ♭ n)) → suc m ≈ suc n
module ≈-injective where
 suc-injective : ∀ {m n p q} → (suc m ≈ suc n ∋ suc p) ≡ suc q → p ≡ q
 suc-injective P.refl = P.refl
setoid : Setoid _ _
setoid = record
  { Carrier       = Coℕ
  ; _≈_           = _≈_
  ; isEquivalence = record
    { refl  = refl
    ; sym   = sym
    ; trans = trans
    }
  }
  where
  refl : Reflexive _≈_
  refl {zero}  = zero
  refl {suc n} = suc (♯ refl)
  sym : Symmetric _≈_
  sym zero      = zero
  sym (suc m≈n) = suc (♯ sym (♭ m≈n))
  trans : Transitive _≈_
  trans zero      zero      = zero
  trans (suc m≈n) (suc n≈k) = suc (♯ trans (♭ m≈n) (♭ n≈k))