------------------------------------------------------------------------
-- The Agda standard library
--
-- Basic types related to coinduction
------------------------------------------------------------------------
module Coinduction where
open import Agda.Builtin.Coinduction public
------------------------------------------------------------------------
-- Rec, a type which is analogous to the Rec type constructor used in
-- ΠΣ (see Altenkirch, Danielsson, Löh and Oury. ΠΣ: Dependent Types
-- without the Sugar. FLOPS 2010, LNCS 6009.)
data Rec {a} (A : ∞ (Set a)) : Set a where
  fold : (x : ♭ A) → Rec A
unfold : ∀ {a} {A : ∞ (Set a)} → Rec A → ♭ A
unfold (fold x) = x
{-
  -- If --guardedness-preserving-type-constructors is enabled one can
  -- define types like ℕ by recursion:
  open import Data.Sum
  open import Data.Unit
  ℕ : Set
  ℕ = ⊤ ⊎ Rec (♯ ℕ)
  zero : ℕ
  zero = inj₁ _
  suc : ℕ → ℕ
  suc n = inj₂ (fold n)
  ℕ-rec : (P : ℕ → Set) →
          P zero →
          (∀ n → P n → P (suc n)) →
          ∀ n → P n
  ℕ-rec P z s (inj₁ _)        = z
  ℕ-rec P z s (inj₂ (fold n)) = s n (ℕ-rec P z s n)
  -- This feature is very experimental, though: it may lead to
  -- inconsistencies.
-}