------------------------------------------------------------------------
-- The Agda standard library
--
-- Various forms of induction for natural numbers
------------------------------------------------------------------------

module Induction.Nat where

open import Function
open import Data.Nat
open import Data.Nat.Properties using (≤⇒≤′)
open import Data.Fin using (_≺_)
open import Data.Fin.Properties
open import Data.Product
open import Data.Unit
open import Induction
open import Induction.WellFounded as WF
open import Level using (Lift)
open import Relation.Binary.PropositionalEquality
open import Relation.Unary

------------------------------------------------------------------------
-- Ordinary induction

Rec :    RecStruct   
Rec _ P zero    = Lift 
Rec _ P (suc n) = P n

recBuilder :  {}  RecursorBuilder (Rec )
recBuilder P f zero    = _
recBuilder P f (suc n) = f n (recBuilder P f n)

rec :  {}  Recursor (Rec )
rec = build recBuilder

------------------------------------------------------------------------
-- Complete induction

CRec :    RecStruct   
CRec _ P zero    = Lift 
CRec _ P (suc n) = P n × CRec _ P n

cRecBuilder :  {}  RecursorBuilder (CRec )
cRecBuilder P f zero    = _
cRecBuilder P f (suc n) = f n ih , ih
  where ih = cRecBuilder P f n

cRec :  {}  Recursor (CRec )
cRec = build cRecBuilder

------------------------------------------------------------------------
-- Complete induction based on _<′_

<′-Rec :  {}  RecStruct   
<′-Rec = WfRec _<′_

mutual

  <′-wellFounded : WellFounded _<′_
  <′-wellFounded n = acc (<′-wellFounded′ n)

  <′-wellFounded′ :  n  <′-Rec (Acc _<′_) n
  <′-wellFounded′ zero     _ ()
  <′-wellFounded′ (suc n) .n ≤′-refl       = <′-wellFounded n
  <′-wellFounded′ (suc n)  m (≤′-step m<n) = <′-wellFounded′ n m m<n

module _ {} where
  open WF.All <′-wellFounded  public
    renaming ( wfRecBuilder to <′-recBuilder
             ; wfRec        to <′-rec
             )
    hiding (wfRec-builder)

------------------------------------------------------------------------
-- Complete induction based on _<_

<-Rec :  {}  RecStruct   
<-Rec = WfRec _<_

<-wellFounded : WellFounded _<_
<-wellFounded = Subrelation.wellFounded ≤⇒≤′ <′-wellFounded

module _ {} where
  open WF.All <-wellFounded  public
    renaming ( wfRecBuilder to <-recBuilder
             ; wfRec        to <-rec
             )
    hiding (wfRec-builder)

------------------------------------------------------------------------
-- Complete induction based on _≺_

≺-Rec :  {}  RecStruct   
≺-Rec = WfRec _≺_

≺-wellFounded : WellFounded _≺_
≺-wellFounded = Subrelation.wellFounded ≺⇒<′ <′-wellFounded

module _ {} where
  open WF.All ≺-wellFounded  public
    renaming ( wfRecBuilder to ≺-recBuilder
             ; wfRec        to ≺-rec
             )
    hiding (wfRec-builder)

------------------------------------------------------------------------
-- Examples

private

 module Examples where

  -- Doubles its input.

  twice :   
  twice = rec _ λ
    { zero    _        zero
    ; (suc n) twice-n  suc (suc twice-n)
    }

  -- Halves its input (rounding downwards).
  --
  -- The step function is mentioned in a proof below, so it has been
  -- given a name. (The mutual keyword is used to avoid having to give
  -- a type signature for the step function.)

  mutual

    half₁-step = λ
      { zero          _                 zero
      ; (suc zero)    _                 zero
      ; (suc (suc n)) (_ , half₁n , _)  suc half₁n
      }

    half₁ :   
    half₁ = cRec _ half₁-step

  -- An alternative implementation of half₁.

  mutual

    half₂-step = λ
      { zero          _    zero
      ; (suc zero)    _    zero
      ; (suc (suc n)) rec  suc (rec n (≤′-step ≤′-refl))
      }

    half₂ :   
    half₂ = <′-rec _ half₂-step

  -- The application half₁ (2 + n) is definitionally equal to
  -- 1 + half₁ n. Perhaps it is instructive to see why.

  half₁-2+ :  n  half₁ (2 + n)  1 + half₁ n
  half₁-2+ n = begin

    half₁ (2 + n)                                                         ≡⟨⟩

    cRec _ half₁-step (2 + n)                                             ≡⟨⟩

    half₁-step (2 + n) (cRecBuilder _ half₁-step (2 + n))                 ≡⟨⟩

    half₁-step (2 + n)
      (let ih = cRecBuilder _ half₁-step (1 + n) in
       half₁-step (1 + n) ih , ih)                                        ≡⟨⟩

    half₁-step (2 + n)
      (let ih = cRecBuilder _ half₁-step n in
       half₁-step (1 + n) (half₁-step n ih , ih) , half₁-step n ih , ih)  ≡⟨⟩

    1 + half₁-step n (cRecBuilder _ half₁-step n)                         ≡⟨⟩

    1 + cRec _ half₁-step n                                               ≡⟨⟩

    1 + half₁ n                                                           

    where open ≡-Reasoning

  -- The application half₂ (2 + n) is definitionally equal to
  -- 1 + half₂ n. Perhaps it is instructive to see why.

  half₂-2+ :  n  half₂ (2 + n)  1 + half₂ n
  half₂-2+ n = begin

    half₂ (2 + n)                                               ≡⟨⟩

    <′-rec _ half₂-step (2 + n)                                 ≡⟨⟩

    half₂-step (2 + n) (<′-recBuilder _ half₂-step (2 + n))     ≡⟨⟩

    1 + <′-recBuilder _ half₂-step (2 + n) n (≤′-step ≤′-refl)  ≡⟨⟩

    1 + Some.wfRecBuilder _ half₂-step (2 + n)
          (<′-wellFounded (2 + n)) n (≤′-step ≤′-refl)          ≡⟨⟩

    1 + Some.wfRecBuilder _ half₂-step (2 + n)
          (acc (<′-wellFounded′ (2 + n))) n (≤′-step ≤′-refl)   ≡⟨⟩

    1 + half₂-step n
          (Some.wfRecBuilder _ half₂-step n
             (<′-wellFounded′ (2 + n) n (≤′-step ≤′-refl)))     ≡⟨⟩

    1 + half₂-step n
          (Some.wfRecBuilder _ half₂-step n
             (<′-wellFounded′ (1 + n) n ≤′-refl))               ≡⟨⟩

    1 + half₂-step n
          (Some.wfRecBuilder _ half₂-step n (<′-wellFounded n)) ≡⟨⟩

    1 + half₂-step n (<′-recBuilder _ half₂-step n)             ≡⟨⟩

    1 + <′-rec _ half₂-step n                                   ≡⟨⟩

    1 + half₂ n                                                 

    where open ≡-Reasoning

  -- Some properties that the functions above satisfy, proved using
  -- cRec.

  half₁-+₁ :  n  half₁ (twice n)  n
  half₁-+₁ = cRec _ λ
    { zero          _                         refl
    ; (suc zero)    _                         refl
    ; (suc (suc n)) (_ , half₁twice-n≡n , _) 
        cong (suc  suc) half₁twice-n≡n
    }

  half₂-+₁ :  n  half₂ (twice n)  n
  half₂-+₁ = cRec _ λ
    { zero          _                         refl
    ; (suc zero)    _                         refl
    ; (suc (suc n)) (_ , half₁twice-n≡n , _) 
        cong (suc  suc) half₁twice-n≡n
    }

  -- Some properties that the functions above satisfy, proved using
  -- <′-rec.

  half₁-+₂ :  n  half₁ (twice n)  n
  half₁-+₂ = <′-rec _ λ
    { zero          _    refl
    ; (suc zero)    _    refl
    ; (suc (suc n)) rec 
        cong (suc  suc) (rec n (≤′-step ≤′-refl))
    }

  half₂-+₂ :  n  half₂ (twice n)  n
  half₂-+₂ = <′-rec _ λ
    { zero          _    refl
    ; (suc zero)    _    refl
    ; (suc (suc n)) rec 
        cong (suc  suc) (rec n (≤′-step ≤′-refl))
    }

------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.

rec-builder      = recBuilder
cRec-builder     = cRecBuilder
<′-rec-builder   = <′-recBuilder
<-rec-builder    = <-recBuilder
≺-rec-builder    = ≺-recBuilder
<′-well-founded  = <′-wellFounded
<′-well-founded′ = <′-wellFounded′
<-well-founded   = <-wellFounded
≺-well-founded   = ≺-wellFounded