{-# OPTIONS --copatterns #-}
module SizedIO.Base where
open import Data.Maybe.Base
open import Data.Sum renaming (inj₁ to left; inj₂ to right; [_,_]′ to either)
open import Function
open import Size
open import NativeIO
record IOInterface : Set₁ where
field
Command : Set
Response : (m : Command) → Set
open IOInterface public
module _ (I : IOInterface ) (let C = Command I) (let R = Response I) where
mutual
record IO (i : Size) (A : Set) : Set where
coinductive
constructor delay
field
force : {j : Size< i} → IO' j A
data IO' (i : Size) (A : Set) : Set where
do' : (c : C) (f : R c → IO i A) → IO' i A
return' : (a : A) → IO' i A
data IO+ (i : Size) (A : Set) : Set where
do' : (c : C) (f : R c → IO i A) → IO+ i A
open IO public
module _ {I : IOInterface } (let C = Command I) (let R = Response I) where
return : ∀{i}{A : Set} (a : A) → IO I i A
force (return a) = return' a
do : ∀{i}{A : Set} (c : C) (f : R c → IO I i A) → IO I i A
force (do c f) = do' c f
do1 : ∀{i} (c : C) → IO I i (R c)
do1 c = do c return
infixl 2 _>>=_ _>>='_ _>>_
mutual
_>>='_ : ∀{i}{A B : Set}(m : IO' I i A) (k : A → IO I (↑ i) B) → IO' I i B
do' c f >>=' k = do' c λ x → f x >>= k
return' a >>=' k = force (k a)
_>>=_ : ∀{i}{A B : Set}(m : IO I i A) (k : A → IO I i B) → IO I i B
force (m >>= k) = force m >>=' k
_>>_ : ∀{i}{B : Set} (m : IO I i Unit) (k : IO I i B) → IO I i B
m >> k = m >>= λ _ → k
{-# NON_TERMINATING #-}
translateIO : ∀{A : Set}
→ (translateLocal : (c : C) → NativeIO (R c))
→ IO I ∞ A
→ NativeIO A
translateIO translateLocal m = case (force m {_}) of
λ{ (do' c f) → (translateLocal c) native>>= λ r →
translateIO translateLocal (f r)
; (return' a) → nativeReturn a
}
fromIO+' : ∀{i}{A : Set} → IO+ I i A → IO' I i A
fromIO+' (do' c f) = do' c f
fromIO+ : ∀{i}{A : Set} → IO+ I i A → IO I i A
force (fromIO+ (do' c f)) = do' c f
_>>=+'_ : ∀{i}{A B : Set}(m : IO+ I i A) (k : A → IO I i B) → IO' I i B
do' c f >>=+' k = do' c λ x → f x >>= k
_>>=+_ : ∀{i}{A B : Set}(m : IO+ I i A) (k : A → IO I i B) → IO I i B
force (m >>=+ k) = m >>=+' k
mutual
_>>+_ : ∀{i}{A B : Set}(m : IO I i (A ⊎ B)) (k : A → IO I i B) → IO I i B
force (m >>+ k) = force m >>+' k
_>>+'_ : ∀{j}{A B : Set} (m : IO' I j (A ⊎ B)) (k : A → IO I (↑ j) B) → IO' I j B
do' c f >>+' k = do' c λ x → f x >>+ k
return' (left a) >>+' k = force (k a)
return' (right b) >>+' k = return' b
trampoline : ∀{i}{A S : Set} (f : S → IO+ I i (S ⊎ A)) (s : S) → IO I i A
force (trampoline f s) = case (f s) of
\{ (do' c k) → do' c λ r → k r >>+ trampoline f }
forever : ∀{i}{A B : Set} → IO+ I i A → IO I i B
force (forever (do' c f)) = do' c λ r → f r >>= λ _ → forever (do' c f)
whenJust : ∀{i}{A : Set} → Maybe A → (A → IO I i (Unit )) → IO I i Unit
whenJust nothing k = return _
whenJust (just a) k = k a
mutual
mapIO : ∀ {i} → {I : IOInterface} → {A B : Set} → (A → B) → IO I i A → IO I i B
force (mapIO f p) = mapIO' f (force p)
mapIO' : ∀ {i} → {I : IOInterface} → {A B : Set} → (A → B) → IO' I i A → IO' I i B
mapIO' f (do' c g) = do' c (λ r → mapIO f (g r))
mapIO' f (return' a) = return' (f a)