------------------------------------------------------------------------
-- The Agda standard library
--
-- List membership and some related definitions
------------------------------------------------------------------------

open import Relation.Binary

module Data.List.Membership.Setoid {c } (S : Setoid c ) where

open import Function using (_∘_; id; flip)
open import Data.List.Base using (List; []; _∷_)
open import Data.List.Any using (Any; map; here; there)
open import Data.Product as Prod using (; _×_; _,_)
open import Relation.Nullary using (¬_)

open Setoid S renaming (Carrier to A)

------------------------------------------------------------------------
-- Definitions

infix 4 _∈_ _∉_

_∈_ : A  List A  Set _
x  xs = Any (x ≈_) xs

_∉_ : A  List A  Set _
x  xs = ¬ x  xs

------------------------------------------------------------------------
-- Operations

mapWith∈ :  {b} {B : Set b}
           (xs : List A)  (∀ {x}  x  xs  B)  List B
mapWith∈ []       f = []
mapWith∈ (x  xs) f = f (here refl)  mapWith∈ xs (f  there)

find :  {p} {P : A  Set p} {xs} 
       Any P xs   λ x  x  xs × P x
find (here px)   = (_ , here refl , px)
find (there pxs) = Prod.map id (Prod.map there id) (find pxs)

lose :  {p} {P : A  Set p} {x xs} 
       P Respects _≈_  x  xs  P x  Any P xs
lose resp x∈xs px = map (flip resp px) x∈xs

------------------------------------------------------------------------
-- DEPRECATED
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.

map-with-∈ = mapWith∈