------------------------------------------------------------------------
-- The Agda standard library
--
-- Integers, basic types and operations
------------------------------------------------------------------------

module Data.Integer.Base where

open import Data.Nat.Base as 
  using () renaming (_+_ to _ℕ+_; _*_ to _ℕ*_)
open import Data.Sign as Sign using (Sign) renaming (_*_ to _S*_)
open import Function
open import Relation.Nullary
open import Relation.Binary
open import Relation.Binary.Core using (_≡_; refl)
-- Importing Core here ^^^ to keep a small import list

infix  8 -_
infixl 7 _*_ _⊓_
infixl 6 _+_ _-_ _⊖_ _⊔_
infix  4 _≤_ _≥_ _<_ _>_ _≰_ _≱_ _≮_ _≯_

------------------------------------------------------------------------
-- The types

-- Integers.

open import Agda.Builtin.Int public
  using ()
  renaming ( Int to 
           ; negsuc to -[1+_]  -- -[1+ n ] stands for - (1 + n).
           ; pos    to +_ )    -- + n stands for n.

------------------------------------------------------------------------
-- Conversions

-- Absolute value.

∣_∣ :   
 + n       = n
 -[1+ n ]  = ℕ.suc n

-- Gives the sign. For zero the sign is arbitrarily chosen to be +.

sign :   Sign
sign (+ _)    = Sign.+
sign -[1+ _ ] = Sign.-

------------------------------------------------------------------------
-- A view of integers as sign + absolute value

infix 5 _◂_ _◃_

_◃_ : Sign    
_       ℕ.zero  = + ℕ.zero
Sign.+  n       = + n
Sign.-  ℕ.suc n = -[1+ n ]

◃-left-inverse :  i  sign i   i   i
◃-left-inverse -[1+ n ]    = refl
◃-left-inverse (+ ℕ.zero)  = refl
◃-left-inverse (+ ℕ.suc n) = refl

data SignAbs :   Set where
  _◂_ : (s : Sign) (n : )  SignAbs (s  n)

------------------------------------------------------------------------
-- Arithmetic

-- Negation.

-_ :   
- (+ ℕ.suc n) = -[1+ n ]
- (+ ℕ.zero)  = + ℕ.zero
- -[1+ n ]    = + ℕ.suc n

-- Subtraction of natural numbers.

_⊖_ :     
m        ℕ.zero  = + m
ℕ.zero   ℕ.suc n = -[1+ n ]
ℕ.suc m  ℕ.suc n = m  n

-- Addition.

_+_ :     
-[1+ m ] + -[1+ n ] = -[1+ ℕ.suc (m ℕ+ n) ]
-[1+ m ] + +    n   = n  ℕ.suc m
+    m   + -[1+ n ] = m  ℕ.suc n
+    m   + +    n   = + (m ℕ+ n)

-- Subtraction.

_-_ :     
i - j = i + - j

-- Successor.

suc :   
suc i = + 1 + i

private

  suc-is-lazy⁺ :  n  suc (+ n)  + ℕ.suc n
  suc-is-lazy⁺ n = refl

  suc-is-lazy⁻ :  n  suc -[1+ ℕ.suc n ]  -[1+ n ]
  suc-is-lazy⁻ n = refl

-- Predecessor.

pred :   
pred i = - + 1 + i

private

  pred-is-lazy⁺ :  n  pred (+ ℕ.suc n)  + n
  pred-is-lazy⁺ n = refl

  pred-is-lazy⁻ :  n  pred -[1+ n ]  -[1+ ℕ.suc n ]
  pred-is-lazy⁻ n = refl

-- Multiplication.

_*_ :     
i * j = sign i S* sign j   i  ℕ*  j 

-- Maximum.

_⊔_ :     
-[1+ m ]  -[1+ n ] = -[1+ ℕ._⊓_ m n ]
-[1+ m ]  +    n   = + n
+    m    -[1+ n ] = + m
+    m    +    n   = + (ℕ._⊔_ m n)

-- Minimum.

_⊓_ :     
-[1+ m ]  -[1+ n ] = -[1+ ℕ._⊔_ m n ]
-[1+ m ]  +    n   = -[1+ m ]
+    m    -[1+ n ] = -[1+ n ]
+    m    +    n   = + (ℕ._⊓_ m n)

------------------------------------------------------------------------
-- Ordering

data _≤_ :     Set where
  -≤+ :  {m n}  -[1+ m ]  + n
  -≤- :  {m n}  (n≤m : n ℕ.≤ m)  -[1+ m ]  -[1+ n ]
  +≤+ :  {m n}  (m≤n : m ℕ.≤ n)  + m  + n

_≥_ : Rel  _
x  y = y  x

_<_ : Rel  _
x < y = suc x  y

_>_ : Rel  _
x > y = y < x

_≰_ : Rel  _
x  y = ¬ (x  y)

_≱_ : Rel  _
x  y = ¬ (x  y)

_≮_ : Rel  _
x  y = ¬ (x < y)

_≯_ : Rel  _
x  y = ¬ (x > y)

drop‿+≤+ :  {m n}  + m  + n  ℕ._≤_ m n
drop‿+≤+ (+≤+ m≤n) = m≤n

drop‿-≤- :  {m n}  -[1+ m ]  -[1+ n ]  ℕ._≤_ n m
drop‿-≤- (-≤- n≤m) = n≤m