open import Algebra
module Algebra.Monoid-solver {m₁ m₂} (M : Monoid m₁ m₂) where
open import Data.Fin as Fin hiding (_≟_)
import Data.Fin.Properties as Fin
open import Data.List.Base hiding (lookup)
import Data.List.Relation.Equality.DecPropositional as ListEq
open import Data.Maybe as Maybe
using (Maybe; decToMaybe; From-just; from-just)
open import Data.Nat.Base using (ℕ)
open import Data.Product
open import Data.Vec using (Vec; lookup)
open import Function using (_∘_; _$_)
open import Relation.Binary using (Decidable)
import Relation.Binary.EqReasoning
open import Relation.Binary.PropositionalEquality as P using (_≡_)
import Relation.Binary.Reflection
open import Relation.Nullary
import Relation.Nullary.Decidable as Dec
open Monoid M
open Relation.Binary.EqReasoning setoid
infixr 5 _⊕_
data Expr (n : ℕ) : Set where
var : Fin n → Expr n
id : Expr n
_⊕_ : Expr n → Expr n → Expr n
Env : ℕ → Set _
Env n = Vec Carrier n
⟦_⟧ : ∀ {n} → Expr n → Env n → Carrier
⟦ var x ⟧ ρ = lookup x ρ
⟦ id ⟧ ρ = ε
⟦ e₁ ⊕ e₂ ⟧ ρ = ⟦ e₁ ⟧ ρ ∙ ⟦ e₂ ⟧ ρ
Normal : ℕ → Set
Normal n = List (Fin n)
⟦_⟧⇓ : ∀ {n} → Normal n → Env n → Carrier
⟦ [] ⟧⇓ ρ = ε
⟦ x ∷ nf ⟧⇓ ρ = lookup x ρ ∙ ⟦ nf ⟧⇓ ρ
normalise : ∀ {n} → Expr n → Normal n
normalise (var x) = x ∷ []
normalise id = []
normalise (e₁ ⊕ e₂) = normalise e₁ ++ normalise e₂
homomorphic : ∀ {n} (nf₁ nf₂ : Normal n) (ρ : Env n) →
⟦ nf₁ ++ nf₂ ⟧⇓ ρ ≈ (⟦ nf₁ ⟧⇓ ρ ∙ ⟦ nf₂ ⟧⇓ ρ)
homomorphic [] nf₂ ρ = begin
⟦ nf₂ ⟧⇓ ρ ≈⟨ sym $ identityˡ _ ⟩
ε ∙ ⟦ nf₂ ⟧⇓ ρ ∎
homomorphic (x ∷ nf₁) nf₂ ρ = begin
lookup x ρ ∙ ⟦ nf₁ ++ nf₂ ⟧⇓ ρ ≈⟨ ∙-cong refl (homomorphic nf₁ nf₂ ρ) ⟩
lookup x ρ ∙ (⟦ nf₁ ⟧⇓ ρ ∙ ⟦ nf₂ ⟧⇓ ρ) ≈⟨ sym $ assoc _ _ _ ⟩
lookup x ρ ∙ ⟦ nf₁ ⟧⇓ ρ ∙ ⟦ nf₂ ⟧⇓ ρ ∎
normalise-correct :
∀ {n} (e : Expr n) (ρ : Env n) → ⟦ normalise e ⟧⇓ ρ ≈ ⟦ e ⟧ ρ
normalise-correct (var x) ρ = begin
lookup x ρ ∙ ε ≈⟨ identityʳ _ ⟩
lookup x ρ ∎
normalise-correct id ρ = begin
ε ∎
normalise-correct (e₁ ⊕ e₂) ρ = begin
⟦ normalise e₁ ++ normalise e₂ ⟧⇓ ρ ≈⟨ homomorphic (normalise e₁) (normalise e₂) ρ ⟩
⟦ normalise e₁ ⟧⇓ ρ ∙ ⟦ normalise e₂ ⟧⇓ ρ ≈⟨ ∙-cong (normalise-correct e₁ ρ) (normalise-correct e₂ ρ) ⟩
⟦ e₁ ⟧ ρ ∙ ⟦ e₂ ⟧ ρ ∎
open module R = Relation.Binary.Reflection
setoid var ⟦_⟧ (⟦_⟧⇓ ∘ normalise) normalise-correct
public using (solve; _⊜_)
infix 5 _≟_
_≟_ : ∀ {n} → Decidable {A = Normal n} _≡_
nf₁ ≟ nf₂ = Dec.map′ ≋⇒≡ ≡⇒≋ (nf₁ ≋? nf₂)
where open ListEq Fin._≟_
prove′ : ∀ {n} (e₁ e₂ : Expr n) → Maybe (∀ ρ → ⟦ e₁ ⟧ ρ ≈ ⟦ e₂ ⟧ ρ)
prove′ e₁ e₂ =
Maybe.map lemma $ decToMaybe (normalise e₁ ≟ normalise e₂)
where
lemma : normalise e₁ ≡ normalise e₂ → ∀ ρ → ⟦ e₁ ⟧ ρ ≈ ⟦ e₂ ⟧ ρ
lemma eq ρ =
R.prove ρ e₁ e₂ (begin
⟦ normalise e₁ ⟧⇓ ρ ≡⟨ P.cong (λ e → ⟦ e ⟧⇓ ρ) eq ⟩
⟦ normalise e₂ ⟧⇓ ρ ∎)
prove : ∀ n (es : Expr n × Expr n) →
From-just (∀ ρ → ⟦ proj₁ es ⟧ ρ ≈ ⟦ proj₂ es ⟧ ρ)
(uncurry prove′ es)
prove _ = from-just ∘ uncurry prove′