open import Algebra
open import Algebra.RingSolver.AlmostCommutativeRing
module Algebra.RingSolver.Lemmas
{r₁ r₂ r₃}
(coeff : RawRing r₁)
(r : AlmostCommutativeRing r₂ r₃)
(morphism : coeff -Raw-AlmostCommutative⟶ r)
where
private
module C = RawRing coeff
open AlmostCommutativeRing r
open import Algebra.Morphism
open _-Raw-AlmostCommutative⟶_ morphism
open import Relation.Binary.EqReasoning setoid
open import Function
lemma₀ : ∀ a b c x →
(a + b) * x + c ≈ a * x + (b * x + c)
lemma₀ a b c x = begin
(a + b) * x + c ≈⟨ distribʳ _ _ _ ⟨ +-cong ⟩ refl ⟩
(a * x + b * x) + c ≈⟨ +-assoc _ _ _ ⟩
a * x + (b * x + c) ∎
lemma₁ : ∀ a b c d x →
(a + b) * x + (c + d) ≈ (a * x + c) + (b * x + d)
lemma₁ a b c d x = begin
(a + b) * x + (c + d) ≈⟨ lemma₀ _ _ _ _ ⟩
a * x + (b * x + (c + d)) ≈⟨ refl ⟨ +-cong ⟩ sym (+-assoc _ _ _) ⟩
a * x + ((b * x + c) + d) ≈⟨ refl ⟨ +-cong ⟩ (+-comm _ _ ⟨ +-cong ⟩ refl) ⟩
a * x + ((c + b * x) + d) ≈⟨ refl ⟨ +-cong ⟩ +-assoc _ _ _ ⟩
a * x + (c + (b * x + d)) ≈⟨ sym $ +-assoc _ _ _ ⟩
(a * x + c) + (b * x + d) ∎
lemma₂ : ∀ a b c x → a * c * x + b * c ≈ (a * x + b) * c
lemma₂ a b c x = begin
a * c * x + b * c ≈⟨ lem ⟨ +-cong ⟩ refl ⟩
a * x * c + b * c ≈⟨ sym $ distribʳ _ _ _ ⟩
(a * x + b) * c ∎
where
lem = begin
a * c * x ≈⟨ *-assoc _ _ _ ⟩
a * (c * x) ≈⟨ refl ⟨ *-cong ⟩ *-comm _ _ ⟩
a * (x * c) ≈⟨ sym $ *-assoc _ _ _ ⟩
a * x * c ∎
lemma₃ : ∀ a b c x → a * b * x + a * c ≈ a * (b * x + c)
lemma₃ a b c x = begin
a * b * x + a * c ≈⟨ *-assoc _ _ _ ⟨ +-cong ⟩ refl ⟩
a * (b * x) + a * c ≈⟨ sym $ distribˡ _ _ _ ⟩
a * (b * x + c) ∎
lemma₄ : ∀ a b c d x →
(a * c * x + (a * d + b * c)) * x + b * d ≈
(a * x + b) * (c * x + d)
lemma₄ a b c d x = begin
(a * c * x + (a * d + b * c)) * x + b * d ≈⟨ distribʳ _ _ _ ⟨ +-cong ⟩ refl ⟩
(a * c * x * x + (a * d + b * c) * x) + b * d ≈⟨ refl ⟨ +-cong ⟩ ((refl ⟨ +-cong ⟩ refl) ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ refl ⟩
(a * c * x * x + (a * d + b * c) * x) + b * d ≈⟨ +-assoc _ _ _ ⟩
a * c * x * x + ((a * d + b * c) * x + b * d) ≈⟨ lem₁ ⟨ +-cong ⟩ (lem₂ ⟨ +-cong ⟩ refl) ⟩
a * x * (c * x) + (a * x * d + b * (c * x) + b * d) ≈⟨ refl ⟨ +-cong ⟩ +-assoc _ _ _ ⟩
a * x * (c * x) + (a * x * d + (b * (c * x) + b * d)) ≈⟨ sym $ +-assoc _ _ _ ⟩
a * x * (c * x) + a * x * d + (b * (c * x) + b * d) ≈⟨ sym $ distribˡ _ _ _ ⟨ +-cong ⟩ distribˡ _ _ _ ⟩
a * x * (c * x + d) + b * (c * x + d) ≈⟨ sym $ distribʳ _ _ _ ⟩
(a * x + b) * (c * x + d) ∎
where
lem₁′ = begin
a * c * x ≈⟨ *-assoc _ _ _ ⟩
a * (c * x) ≈⟨ refl ⟨ *-cong ⟩ *-comm _ _ ⟩
a * (x * c) ≈⟨ sym $ *-assoc _ _ _ ⟩
a * x * c ∎
lem₁ = begin
a * c * x * x ≈⟨ lem₁′ ⟨ *-cong ⟩ refl ⟩
a * x * c * x ≈⟨ *-assoc _ _ _ ⟩
a * x * (c * x) ∎
lem₂ = begin
(a * d + b * c) * x ≈⟨ distribʳ _ _ _ ⟩
a * d * x + b * c * x ≈⟨ *-assoc _ _ _ ⟨ +-cong ⟩ *-assoc _ _ _ ⟩
a * (d * x) + b * (c * x) ≈⟨ (refl ⟨ *-cong ⟩ *-comm _ _) ⟨ +-cong ⟩ refl ⟩
a * (x * d) + b * (c * x) ≈⟨ sym $ *-assoc _ _ _ ⟨ +-cong ⟩ refl ⟩
a * x * d + b * (c * x) ∎
lemma₅ : ∀ x → (0# * x + 1#) * x + 0# ≈ x
lemma₅ x = begin
(0# * x + 1#) * x + 0# ≈⟨ ((zeroˡ _ ⟨ +-cong ⟩ refl) ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ refl ⟩
(0# + 1#) * x + 0# ≈⟨ (+-identityˡ _ ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ refl ⟩
1# * x + 0# ≈⟨ +-identityʳ _ ⟩
1# * x ≈⟨ *-identityˡ _ ⟩
x ∎
lemma₆ : ∀ a x → 0# * x + a ≈ a
lemma₆ a x = begin
0# * x + a ≈⟨ zeroˡ _ ⟨ +-cong ⟩ refl ⟩
0# + a ≈⟨ +-identityˡ _ ⟩
a ∎
lemma₇ : ∀ x → - 1# * x ≈ - x
lemma₇ x = begin
- 1# * x ≈⟨ -‿*-distribˡ _ _ ⟩
- (1# * x) ≈⟨ -‿cong (*-identityˡ _) ⟩
- x ∎