Coalgebras and Codata in Agda

Anton Setzer Swansea University (Wales, UK)

(Wessex Seminar, Bath, 3 March 2009)

1. The concept of codata.
2. Codata in Agda.
3. Weakly Final Coalgebras in Dependent Type Theory.
4. Proofs by Corecursion.

1. The Concept of "Codata"

- "codata" introduced in functional languages as a data type of infinite objects.
- "data" corresponds to well-founded objects e.g.

$$
\begin{aligned}
\text { data List } & \text { Set where } \\
\text { nil } & : \text { List } \\
\text { cons } & : \mathbb{N} \rightarrow \text { List } \rightarrow \text { List }
\end{aligned}
$$

- Elements of List are finite lists e.g.

$$
\text { cons } 3 \text { (cons } 4 \text { nil) }
$$

Induction over data

- Therefore we can define operations by recursion on lists e.g.

$$
\begin{array}{ll}
\text { length : List } \rightarrow \mathbb{N} & \\
\text { length nil } & =0 \\
\text { length }(\text { cons } n l) & =\text { length } l+1
\end{array}
$$

- If we use codata we have

$$
\begin{aligned}
& \text { codata coList }: \text { Set where } \\
& \qquad \begin{array}{ll}
\text { nil } & : \text { coList } \\
\text { cons } & : \mathbb{N} \rightarrow \text { coList } \rightarrow \text { coList }
\end{array}
\end{aligned}
$$

- coList contains infinite objects, e.g.

$$
\begin{aligned}
& \omega: \text { coList } \\
& \omega=\operatorname{cons} 0(\operatorname{cons} 0(\operatorname{cons} 0 \cdots))
\end{aligned}
$$

- We can define ω by coiteration or guarded recursion:

$$
\begin{aligned}
& \omega: \text { coList } \\
& \omega=\text { cons } 0 \omega
\end{aligned}
$$

Guarded Recursion

- We can not define length anymore but colength by coiteration into coN

```
codata coN : Set where
                0 : coN
                \(\mathrm{S}: \quad \mathrm{coN} \rightarrow \mathrm{coN}\)
```

colength : coList \rightarrow coN
colength nil $=0$
colength $($ cons $n l)=\mathrm{S}($ colength $l)$

- So

$$
\text { colength } \omega=\mathrm{S}(\mathrm{~S}(\mathrm{~S} \cdots)))
$$

Problem

- Problem of this approach: undecidability of equality.
- For

$$
f, g: \mathbb{N} \rightarrow \mathbb{N}
$$

we can define by coiteration $l_{f}, l_{g}:$ coList s.t.

$$
\begin{aligned}
l_{f} & =\operatorname{cons}(f 0)(\operatorname{cons}(f 1)(\operatorname{cons}(f 2) \cdots)) \\
l_{g} & =\operatorname{cons}(g 0)(\operatorname{cons}(g 1)(\operatorname{cons}(g 2) \cdots))
\end{aligned}
$$

- l_{f} and l_{g} are equal if $f=g$.
- Equality on $\mathbb{N} \rightarrow \mathbb{N}$ is undecidable, therefore on coList as well.
- Type checking for dependently typed language requires equality checking, therefore type checking becomes undecidable.

Intensional Equality

- Two functions are equal if their programs have the same normal form:
- $\lambda x . s=\lambda x . t$ if s and t have the same normal form.
- In the same way we can only achieve that two elements of coList are equal, if the programs for forming them are equal.

Example IO

- Assume
- C : Set set of commands
- $\mathrm{R}: \mathrm{C} \rightarrow$ Set set of responses to a command.
- Example
- $\mathrm{C}=\operatorname{read}+\operatorname{write}(s:$ String $)+$ terminate.
- R read $=$ String,
- $\mathrm{R}($ write $s)=\{*\}$,
- R terminate $=\emptyset$.

Example IO

codata $\mathrm{IO}(\mathrm{C}: \operatorname{Set})(\mathrm{R}: \mathrm{C} \rightarrow$ Set $):$ Set where

$$
\operatorname{prog}:(c: \mathrm{C}) \rightarrow(n: \mathrm{R} c \rightarrow \mathrm{IO} \mathrm{CR}) \rightarrow \mathrm{IO} \mathrm{CR}
$$

$p: \mathrm{IO} \mathrm{CR}$
$p=\operatorname{prog}$ (write "Password: ")
(λ_{\ldots}.(prog read
(λ passwd.if passwd $=" 1234 "$
then (prog terminate efq)
else (prog (write "Wrong Password!")

$$
\left.\left.\left.\left.\left(\lambda_{_} \cdot p\right)\right)\right)\right)\right)
$$

Objects

$$
\begin{aligned}
& \text { class } \operatorname{Cell}\{ \\
& \qquad \begin{array}{l}
n: \mathbb{N} ; \\
\operatorname{set}(m: \mathbb{N}): \operatorname{void}\{ \\
\quad n=m ;\} ; \\
\operatorname{get}(): \mathbb{N}\{ \\
\quad \text { return } n ;\} ;\}
\end{array}
\end{aligned}
$$

Modelling Cell using Codata

2. Codata in Agda

- Use of codata type.
- However, we do not have extensional equality for codata types.
- Guarded recursion defined using " \sim ":
- Example code:

```
codata coList : Set where
nil : coList
cons : N}->\mathrm{ coList }->\mathrm{ coList
\omega: coList
\omega~
```

After one unfolding ω and cons 0ω are the same.

Pattern Matching

- Case distinction on codata types defined using pattern matching:

$$
\begin{array}{ll}
f: \text { coList } \rightarrow & \mathbb{N} \\
f \text { nil } & =0 \\
f(\operatorname{cons} n l) & =n
\end{array}
$$

- Example:

$$
\left.\begin{array}{l}
\text { codata } \operatorname{coN}: \text { Set where } \\
0: \operatorname{coN} \\
\mathrm{S}: \operatorname{coN} \rightarrow \operatorname{coN} \\
f: \operatorname{coList} \rightarrow \operatorname{coN} \\
f \text { nil } \quad \sim 0 \\
f(\text { cons } 0 l) \quad \sim \mathrm{S}(f l) \\
f(\operatorname{cons}(\mathrm{~S} n) l)
\end{array}\right) \sim \mathrm{S}(f n l) .
$$

Problem of Subject Reduction

- Consider the following code (by Nicolas Ory; same problem occurs in Coq):

$$
\begin{aligned}
& \text { data } \quad=={ }_{_}(x: \text { coList }): \text { coList } \rightarrow \text { Set where } \\
& \text { reff : } a==a \\
& \text { out : coList } \rightarrow \text { coList } \\
& \text { out nil } \quad=\text { nil } \\
& \text { out (cons } n l) \quad=\text { cons } n l \\
& \text { lemma : }(l: \text { coList }) \rightarrow l==\text { out } l \\
& \text { lemma nil } \quad=\text { refl } \\
& \text { lemma }(\text { cons } n l)=\text { refl } \\
& \mathrm{p}: \omega==\operatorname{cons} 0 \omega \\
& \mathrm{p}=\operatorname{lemma} \omega
\end{aligned}
$$

Problem of Subject Reduction

$$
\begin{aligned}
& p: \omega==\operatorname{cons} 0 \omega \\
& p=\operatorname{lemma} \omega
\end{aligned}
$$

- $\mathrm{p} \longrightarrow$ refl but we don't have refl $: \omega==\operatorname{cons} 0 \omega$.
- Quick fix in Agda:

Dependent pattern matching on codata is not allowed. Therefore the code

$$
\begin{aligned}
& \text { out }: \text { coList } \rightarrow \text { coList } \\
& \text { out nil }=\text { nil } \\
& \text { out }(\text { cons } n l)=\text { cons } n l
\end{aligned}
$$

causes an error.

Underlying Problem

- Unclear what " \sim " means.
- Unclear what pattern matching on coalgebras means

$$
\begin{aligned}
\text { out }: \text { coList } \rightarrow & \text { coList } \\
\text { out nil } & =\text { nil } \\
\text { out }(\text { cons } n l) & =\operatorname{cons} n l
\end{aligned}
$$

For which l does one of the above patterns trigger?

3. Weakly Final Coalgebras in Dept.

- Abbreviation:
-

$$
\operatorname{nil}^{\prime}+\operatorname{cons}^{\prime}(\mathbb{N}, X)
$$

stands for

$$
\{*\}+\mathbb{N} \times X
$$

with the following definitions:

$$
\begin{array}{ll}
\text { nil }^{\prime} & =\operatorname{inl} * \\
\operatorname{cons}^{\prime} n l & =\operatorname{inr}\langle n, l\rangle
\end{array}
$$

Coalgebras in Category Theory

- A coalgebra for the functor F : Set \rightarrow Set

$$
\mathrm{F} X=\operatorname{nil}^{\prime}+\operatorname{cons}^{\prime}(\mathbb{N}, X)
$$

is an arrow

$$
\text { coList } \xrightarrow{\text { case }} \text { nil }^{\prime}+\text { cons }^{\prime}(\mathbb{N}, \text { coList })
$$

- We do no longer have for l : coList $l=$ nil' or $l=$ cons' $n l$.
- Instead we have that for $l:$ coList

$$
\text { case } l=\text { nil' or case } l=\text { cons' }^{\prime} n l^{\prime}
$$

- So elements of coList are not infinite but might be unfolded infinitely often using case.

Coalgebras in Category Theory

- If $f(a)=\operatorname{nil}^{\prime}$, then case $(g a)=\operatorname{nil}^{\prime}$.
- If $f(a)=$ cons' $^{\prime} n a^{\prime}$, then case $(g a)=$ cons' $^{\prime} n(g a)$.

Coalgebras in Category Theory

- If $f(a)=$ nil $^{\prime}$, then case $(g a)=$ nil $^{\prime}$.
- If $f(a)=$ cons' $^{\prime} n a^{\prime}$, then case $(g a)=\operatorname{cons}^{\prime} n(g a)$.
- The above allows to define

$$
\begin{aligned}
& g: A \rightarrow \text { coList } \\
& \text { case }(g a)= \text { nil }^{\prime} \\
& \text { or } \\
& \operatorname{cons}^{\prime} n\left(g a^{\prime}\right) \text { for some } n, a^{\prime}
\end{aligned}
$$

Dual of the Constructors

- Using bisimulation equality we can derive

$$
\begin{aligned}
& \text { nil }: \text { coList } \\
& \text { case nil }=\text { nil }^{\prime} \\
& \text { cons }: \mathbb{N} \rightarrow \text { coList } \rightarrow \text { coList } \\
& \text { case }(\text { cons } n l)=\text { cons }^{\prime} n l
\end{aligned}
$$

- Note that

$$
\text { cons' }^{\prime} n l: \text { nil }^{\prime}+\text { cons' }^{\prime}(\mathbb{N}, \text { coList })
$$

whereas

$$
\text { cons } n l: \text { coList }
$$

Corecursion

- We can extend the principle of guarded recursion to allow such definitions:

$$
\begin{aligned}
& \text { coList } \xrightarrow{\text { case }} \text { nil }^{\prime}+\operatorname{cons}^{\prime}(\mathbb{N}, \text { coList })
\end{aligned}
$$

- The dual of the step from iteration to recursion, which allows to define by recursion

$$
\begin{array}{ll}
\operatorname{pred}: \mathbb{N} \rightarrow & \mathbb{N} \\
\operatorname{pred} 0 & = \\
\operatorname{pred}(\mathrm{S} n) & = \\
\end{array}
$$

Deep Corecursion

- We can extend corecursion further in order to allow

```
\(g: A \rightarrow\) coList
case \((g a)=\operatorname{nil}^{\prime}\)
    or
    cons' \(n_{1}\left(\right.\) cons \(n_{2}\left(\cdots\left(\right.\right.\) cons \(\left.\left.\left.n_{k}(g a)\right) \cdots\right)\right)\)
        for some \(k \geq 1, n_{i}, a\)
    or
    cons' \(n_{1}\left(\right.\) cons \(n_{2}\left(\cdots\left(\right.\right.\) cons \(\left.\left.\left.n_{k} l\right) \cdots\right)\right)\)
        for some \(k \geq 1, n_{i}, l\)
```

- Dual of course of value induction.

Formal Diagram

- Let F^{∞} the weakly final coalgebra for F .
- Let build ${ }_{n}: \mathrm{F}^{n}\left(\mathrm{~F}^{\infty}\right) \rightarrow \mathrm{F}^{\infty}$ the n-times build.

Rules for coList

- Formation Rule
coList : Set
- Elimination Rule

$$
\text { case }: \text { coList } \rightarrow \text { nil }^{\prime}+\operatorname{cons}^{\prime}(\mathbb{N}, \text { coList })
$$

- Introduction Rule

$$
\frac{A: \text { Set } \quad f: A \rightarrow \operatorname{nil}^{\prime}+\operatorname{cons}^{\prime}(\mathbb{N}, A)}{\text { intro } A f: A \rightarrow \operatorname{coList}}
$$

- Equality Rule

$$
\text { case }(\text { intro } A f a)=\left(\text { nil }^{\prime}+\operatorname{cons}^{\prime}(\mathbb{N}, \text { intro } A f)\right)(f a)
$$

Rules for coList

- intro $A f a=\operatorname{intro} A^{\prime} f^{\prime} a^{\prime}$ if $A=A^{\prime}$ and $f=f^{\prime}$ and $a=a^{\prime}$.

Suggested Agda Syntax

 -mutual
coalg coList : Set where
case : coList \rightarrow coListShape
data coListShape : Set where
nil ${ }^{\prime}$: coListShape
cons $^{\prime}: \mathbb{N} \rightarrow$ coList \rightarrow coListShape
ω : coList
case $\omega=$ cons $^{\prime} 0 \omega$

Getting Close to Codata

- Define (idea by Nils Danielsson):

```
coalg \(\square(A\) : Set \()\) : Set where
    case : \(\square A \rightarrow A\)
data coListShape : Set where
    nil \({ }^{\prime}\) : coListShape
    cons \(^{\prime} \quad: \quad \mathbb{N} \rightarrow \square\) coListShape \(\rightarrow\) coListShape
coList : Set
coList \(=\square\) coListShape
nil : coList
case nil \(=\) nil \(^{\prime}\)
```


Simplification by Nils Danielsson

$$
\begin{aligned}
& \text { cons }: \mathbb{N} \rightarrow \text { coList } \rightarrow \text { coList } \\
& \text { case }(\text { cons } n l)=\text { cons }^{\prime} n l
\end{aligned}
$$

- Write

$$
r \sim s
$$

for

$$
\text { case } r=\text { case } s
$$

- Now

$$
\begin{aligned}
& \omega: \text { coList } \\
& \text { case } \omega=\operatorname{cons}^{\prime} n \omega
\end{aligned}
$$

can be replaced by

$$
\begin{aligned}
& \omega: \text { coList } \\
& \omega \sim \operatorname{cons} n \omega
\end{aligned}
$$

Subject Reduction Revisited

data ${ }_{-}==_{-}(x:$ coList $):$ coList \rightarrow Set where refl : $a==a$
out : coList \rightarrow coList
out x with (case x)
$\ldots \mid$ nil $^{\prime}$
$=$ nil
$\cdots \mid$ cons $^{\prime} n l \quad=$ cons $n l$
lemma: $(l:$ coList $) \rightarrow l==$ out l
lemma l with (case l)

```
\(\cdots \quad \mid\) nil \(^{\prime} \quad=\{!!\} \quad\) goal type \(=l==\) nil
\(\cdots \quad \mid\) cons \(^{\prime} n l^{\prime} \quad=\{!!\}\) goal type \(=l^{\prime}==\operatorname{cons} n l^{\prime}\)
```

- The last two goals are not solvable.

IO using Coalg

coalg IO (C : Set) (R : C \rightarrow Set) : Set where command : IO CR $\rightarrow \mathrm{C}$
next $\quad:(p: \mathrm{IO} \mathrm{C} R) \rightarrow \mathrm{R}($ command $p) \rightarrow \mathrm{IO} \mathrm{C} R$
progPasswd: IO C R
command progPasswd $=$ write "Password: "
next progPasswd $\quad=\quad$ progRead
progRead: IO C R
command progRead $=$ read
next progRead $s=$ progCheck s

IO using Coalg

progCheck: String \rightarrow IO C R
progCheck $s=$ if ($s=$ "123") then progSuccess else progFail
progSuccess: IO C R
command progSuccess $=$ terminate
next progSuccess ()
progFail: IO C R
command progFail $=$ write "Wrong Password!!"
next progFail_ $\quad=\quad$ progPasswd

Cell using Coalg

coalg Cell : Set where

$$
\begin{array}{ll}
\text { set } & \text { Cell } \rightarrow \mathbb{N} \rightarrow \text { Cell } \\
\text { get } & \text { : }
\end{array}
$$

cell : $\mathbb{N} \rightarrow$ Cell
set $($ cell $n) m=$ cell m
get $($ cell $n) \quad=\langle n$, cell $n\rangle$

4. Proofs by Corecursion

- Let a transition system be given by

Vertex : Set
Edge : Vertex \rightarrow Set
target $:(l:$ Vertex $) \rightarrow$ Edge $l \rightarrow$ Vertex

- Let
$\left(\right.$ Vertex $_{1}$, Edge $_{1}$, target $\left._{1}\right)=(\{*\}, \lambda x \cdot\{*\}, \lambda x, y . *)$
and
$\left(\right.$ Vertex $_{2}$, Edge $_{2}$, target $\left._{2}\right)=(\mathbb{N}, \lambda x \cdot\{*\}, \lambda x, y \cdot \mathrm{~S} x)$

$$
\begin{aligned}
\left(\text { Vertex }_{1}, \text { Edge }_{1}, \text { target }_{1}\right) & =(\{*\}, \lambda x \cdot\{*\}, \lambda x, y \cdot *) \\
\left(\text { Vertex }_{2}, \text { Edge }_{2}, \text { target }_{2}\right) & =(\mathbb{N}, \lambda x \cdot\{*\}, \lambda x, y \cdot \mathrm{~S} x)
\end{aligned}
$$

Bisimulation

- Define
coalg Bisim : $\left(n_{1}:\right.$ Vertex $\left._{1}\right) \rightarrow\left(n_{2}:\right.$ Vertex $\left._{2}\right) \rightarrow$ Set where toEdge $_{2}:\left(b_{1}:\right.$ Edge $\left._{1} n_{1}\right) \rightarrow$ Edge $_{2} n_{2}$
correctVertex $2:\left(b_{1}:\right.$ Edge $\left._{1} n_{1}\right) \rightarrow$ Bisim
$\left(\right.$ target $\left._{1} n_{1} b_{1}\right)$
$\left(\right.$ target $_{2} n_{2}\left(\right.$ toEdge $\left.\left._{2} b_{1}\right)\right)$
toEdge $_{1}:\left(b_{2}:\right.$ Edge $\left._{2} n_{2}\right) \rightarrow$ Edge $_{1} n_{1}$
correctVertex $1:\left(b_{2}:\right.$ Edge $\left._{2} n_{2}\right) \rightarrow$ Bisim
$\left(\right.$ target $_{1} n_{1}\left(\right.$ toEdge $\left.\left._{1} b_{2}\right)\right)$
$\left(\right.$ target $\left._{2} n_{2} b_{2}\right)$

Proof by Corecursion

Conclusion

- Coalgebras should be the primary concept, not codata.
- But a good idea to find good abbreviations in order to get close to codata, but these should only be abbreviations.
- Elements of coalgebras represent infinite objects, but are not infinite objects themselves.
- Intensional equality between elements of coalgebras.
- Proofs by corecursion now possible.

