Coalgebras and Codata in Agda

Anton Setzer Swansea University (Wales, UK)

(Wessex Seminar, Bath, 3 March 2009)

- 1. The concept of codata.
- 2. Codata in Agda.
- 3. Weakly Final Coalgebras in Dependent Type Theory.
- 4. Proofs by Corecursion.

1. The Concept of "Codata"

- "codata" introduced in functional languages as a data type of infinite objects.
- "data" corresponds to well-founded objects e.g.

data List : Set where nil : List $cons : \mathbb{N} \to List \to List$

Elements of List are finite lists e.g.

 $\cos 3 (\cos 4 \operatorname{nil})$

Induction over data

Therefore we can define operations by recursion on lists e.g.

 $length : List \to \mathbb{N}$ length nil = 0length (cons n l) = length l + 1

CoList

If we use codata we have

codata coList : Set where nil : coList cons : $\mathbb{N} \rightarrow \text{coList} \rightarrow \text{coList}$

coList contains infinite objects, e.g.

 ω : coList $\omega = \cos 0 \ (\cos 0 \ (\cos 0 \ \cdots))$

\checkmark We can define ω by coiteration or guarded recursion:

 $\omega : \text{coList}$ $\omega = \cos 0 \ \omega$

Guarded Recursion

We can not define length anymore but colength by coiteration into coℕ

 $codata \ co\mathbb{N}$: Set where

- $0 : co\mathbb{N}$
- $S : co\mathbb{N} \to co\mathbb{N}$

colength : coList $\rightarrow co\mathbb{N}$ colength nil = 0 colength (cons n l) = S (colength l)

🥒 So

colength
$$\omega = S (S (S \cdots)))$$

Problem

Problem of this approach: undecidability of equality.For

$$f,g:\mathbb{N}\to\mathbb{N}$$

we can define by coiteration $l_f, l_g : \text{coList s.t.}$

$$l_f = \cos(f \ 0) \left(\cos \left(f \ 1\right) \left(\cos \left(f \ 2\right) \cdots \right) \right)$$
$$l_g = \cos(g \ 0) \left(\cos \left(g \ 1\right) \left(\cos \left(g \ 2\right) \cdots \right) \right)$$

•
$$l_f$$
 and l_g are equal if $f = g$.

- Equality on $\mathbb{N} \to \mathbb{N}$ is undecidable, therefore on coList as well.
- Type checking for dependently typed language requires equality checking, therefore type checking becomes undecidable.

Intensional Equality

- Two functions are equal if their programs have the same normal form:
 - $\lambda x.s = \lambda x.t$ if s and t have the same normal form.
- In the same way we can only achieve that two elements of coList are equal, if the programs for forming them are equal.

Example IO

- Assume
 - C : Set set of commands
 - ${\scriptstyle {\bullet}} \ {\rm R}: {\rm C} \rightarrow {\rm Set}$ set of responses to a command.
- Example
 - C = read + write(s : String) + terminate.
 - R read = String,
 - $R \text{ (write } s) = \{*\},\$
 - R terminate = \emptyset .

Example IO

codata IO (C : Set)(R : C \rightarrow Set) : Set where prog : (c : C) \rightarrow (n : R c \rightarrow IO C R) \rightarrow IO C R

p : IO C R p = prog (write "Password: ") $(\lambda _.(\text{prog read})$ $(\lambda \textit{ passwd.if passwd} = "1234"$ then (prog terminate efq) else (prog (write "Wrong Password!") $(\lambda _.p)))))$

Objects

class Cell{ $n : \mathbb{N};$ set $(m : \mathbb{N}) :$ void { $n = m; \};$ get $() : \mathbb{N} \{$ return $n; \}; \}$

Modelling Cell using Codata

codata Cell : Set where
createCell :
$$(set : \mathbb{N} \to \text{Cell})$$

 $\to (get : \mathbb{N} \times \text{Cell})$
 $\to \text{Cell}$

$$\begin{aligned} \text{cell} : \mathbb{N} &\to \text{Cell} \\ \text{cell} \; n = \text{createCell} \; (\lambda \; m. \text{cell} \; m) \\ & \langle n, \text{cell} \; n \rangle \end{aligned}$$

2. Codata in Agda

- Use of codata type.
- However, we do not have extensional equality for codata types.
- Guarded recursion defined using " \sim ":
- Example code:

codata coList : Set where nil : coList cons : $\mathbb{N} \rightarrow \text{coList} \rightarrow \text{coList}$

- $\omega: ext{coList}$
- $\omega~\sim~{\rm cons}~0~\omega$

After one unfolding ω and $\cos 0 \omega$ are the same.

Pattern Matching

Case distinction on codata types defined using pattern matching:

 $f: \text{coList} \to \mathbb{N}$ f nil = 0 $f (\text{cons } n \ l) = n$

Example:

codata coN : Set where 0 : coN $S : coN \rightarrow coN$ $f : coList \rightarrow coN$ $f nil \sim 0$ $f (cons 0 l) \sim S (f l)$ $f (cons (S n) l) \sim S (f n l)$

Problem of Subject Reduction

Consider the following code (by Nicolas Ory; same problem occurs in Coq):

data $_ = _ (x : coList) : coList \rightarrow Set$ where refl: a == a $out: coList \rightarrow coList$ = nil out nil out $(\cos n l) = \cos n l$ lemma : $(l : \text{coList}) \rightarrow l == \text{out } l$ lemma nil = refl lemma (cons n l) = refl $p: \omega == \cos 0 \omega$ $p = lemma \omega$

Problem of Subject Reduction

 $p: \omega == \cos 0 \omega$ $p = \operatorname{lemma} \omega$

- p \longrightarrow refl but we don't have refl : $\omega == \cos 0 \omega$.
- Quick fix in Agda:
 Dependent pattern matching on codata is not allowed.
 Therefore the code

out : coList \rightarrow coList out nil = nil out (cons n l) = cons n l

causes an error.

Underlying Problem

• Unclear what " \sim " means.

Unclear what pattern matching on coalgebras means

out : coList \rightarrow coList out nil = nil out (cons n l) = cons n l

For which *l* does one of the above patterns trigger?

3. Weakly Final Coalgebras in Dept.

Abbreviation:

$$\operatorname{nil}' + \operatorname{cons}'(\mathbb{N}, X)$$

stands for

 $\{*\} + \mathbb{N} \times X$

with the following definitions:

 $\operatorname{nil}' = \operatorname{inl} *$ $\operatorname{cons}' n \ l = \operatorname{inr} \langle n, l \rangle$

Coalgebras in Category Theory

• A coalgebra for the functor $F : Set \rightarrow Set$

$$F X = nil' + cons'(\mathbb{N}, X)$$

is an arrow

$$\operatorname{coList} \xrightarrow{\operatorname{case}} \operatorname{nil}' + \operatorname{cons}'(\mathbb{N}, \operatorname{coList})$$

- We do no longer have for l : coList l = nil' or l = cons' n l.
- **Instead we have that for** l : coList

case
$$l = \operatorname{nil}'$$
 or case $l = \operatorname{cons}' n l'$

So elements of coList are not infinite but might be unfolded infinitely often using case.

Coalgebras in Category Theory

• If $f(a) = \operatorname{nil}'$, then case $(g a) = \operatorname{nil}'$.

• If $f(a) = \cos' n a'$, then case $(g a) = \cos' n (g a)$.

Coalgebras in Category Theory

- If $f(a) = \operatorname{nil}'$, then case $(g a) = \operatorname{nil}'$.
- If $f(a) = \cos' n a'$, then case $(g a) = \cos' n (g a)$.
- The above allows to define

$$g: A \to \text{coList}$$

case $(g \ a) = \text{nil}'$
or
 $\cos' n \ (g \ a')$ for some n, a'

Dual of the Constructors

Using bisimulation equality we can derive

nil : coList case nil = nil' cons : $\mathbb{N} \to \text{coList} \to \text{coList}$ case (cons $n \ l$) = cons' $n \ l$

Note that

 $\cos' n \ l : \operatorname{nil}' + \cos'(\mathbb{N}, \operatorname{coList})$

whereas

 $\cos n \ l : \text{coList}$

Corecursion

We can extend the principle of guarded recursion to allow such definitions:

The dual of the step from iteration to recursion, which allows to define by recursion

pred :
$$\mathbb{N} \to \mathbb{N}$$

pred 0 = 0
pred (S n) = n

Deep Corecursion

We can extend corecursion further in order to allow

```
g: A \rightarrow \text{coList}
case (g a) = nil'
or
cons' n_1 (cons n_2 (\cdots (cons n_k (g a)) \cdots))
for some k \ge 1, n_i, a
or
cons' n_1 (cons n_2 (\cdots (cons n_k l) \cdots))
for some k \ge 1, n_i, l
```

```
Dual of course of value induction.
```

Formal Diagram

- Let F^{∞} the weakly final coalgebra for F.
- Let $\operatorname{build}_n : \operatorname{F}^n(\operatorname{F}^\infty) \to \operatorname{F}^\infty$ the *n*-times build.

Rules for coList

Formation Rule

coList : Set

Elimination Rule

case : $\operatorname{coList} \to \operatorname{nil}' + \operatorname{cons}'(\mathbb{N}, \operatorname{coList})$

Introduction Rule

$$\frac{A: \text{Set} \quad f: A \to \text{nil}' + \text{cons}'(\mathbb{N}, A)}{\text{intro } A \ f: A \to \text{coList}}$$

Equality Rule

case (intro A f a) = (nil' + cons'(\mathbb{N} , intro A f)) (f a)

Rules for coList

• intro A f a = intro A' f' a'if A = A' and f = f' and a = a'.

Suggested Agda Syntax

mutual

coalg coList : Set where case : coList \rightarrow coListShape

data coListShape : Set where nil' : coListShape cons' : $\mathbb{N} \to \operatorname{coList} \to \operatorname{coListShape}$ $\omega : \operatorname{coList}$ $\operatorname{case} \omega = \operatorname{cons}' 0 \omega$

Getting Close to Codata

Define (idea by Nils Danielsson):

coalg \Box (A : Set) : Set where case : $\Box A \rightarrow A$

data coListShape : Set where nil' : coListShape cons' : $\mathbb{N} \to \square$ coListShape \to coListShape coList : Set $coList = \square$ coListShape nil : coList

case nil = nil'

Simplification by Nils Danielsson

Subject Reduction Revisited

data $_ == _ (x : coL$ refl : $a == a$	ist) : coList \rightarrow Set where	
out : coList \rightarrow coList out x with (case x)		
$\cdots \mid nil'$	= nil	
$\cdots \mid \cos' n \mid l$	$= \cos n l$	
lemma : $(l : \text{coList}) \rightarrow l == \text{out } l$		
lemma l with (case l)		
\cdots nil'	$= \{! !\}$ goal type = $l == nil$	
\cdots cons' $n l'$	$= \{! !\} \text{ goal type} = l' == \cos n l'$	

The last two goals are not solvable.

Anton Setzer (Swansea): Coalgebras and Codata in Agda

IO using Coalg

coalg IO (C : Set) (R : C \rightarrow Set) : Set where command : IO C R \rightarrow C next : (p : IO C R) \rightarrow R (command p) \rightarrow IO C R

progPasswd : IO C R
command progPasswd = write "Password: "
next progPasswd _ = progRead

progRead : IO C R command progRead = read next progRead s = progCheck s

IO using Coalg

 $progCheck : String \rightarrow IO C R$ progCheck s = if (s = "123") then progSuccess else progFail

progSuccess : IO C Rcommand progSuccess = terminate next progSuccess ()

progFail : IO C R command progFail = write "Wrong Password!!" next progFail _ progPasswd

Cell using Coalg

coalg Cell : Set where set : Cell $\rightarrow \mathbb{N} \rightarrow$ Cell get : Cell $\rightarrow \mathbb{N} \times$ Cell

 $cell : \mathbb{N} \to Cell$ set (cell n) m = cell m get (cell n) = $\langle n, cell n \rangle$

4. Proofs by Corecursion

Let a transition system be given by

Vertex	•	Set
Edge	•	$Vertex \rightarrow Set$
target	•	$(l: Vertex) \to Edge \ l \to Vertex$

Let

$$(\operatorname{Vertex}_1, \operatorname{Edge}_1, \operatorname{target}_1) = (\{*\}, \lambda \; x. \{*\}, \lambda \; x, y. *)$$
 and

 $(\text{Vertex}_2, \text{Edge}_2, \text{target}_2) = (\mathbb{N}, \lambda \ x. \{*\}, \lambda \ x, y. \text{S} \ x)$

 $(\text{Vertex}_1, \text{Edge}_1, \text{target}_1) = (\{*\}, \lambda x. \{*\}, \lambda x, y. *)$ $(\text{Vertex}_2, \text{Edge}_2, \text{target}_2) = (\mathbb{N}, \lambda x. \{*\}, \lambda x, y. \text{S} x)$

Bisimulation

Define

coalg Bisim : $(n_1 : \text{Vertex}_1) \rightarrow (n_2 : \text{Vertex}_2) \rightarrow \text{Set where}$ $toEdge_2 : (b_1 : Edge_1 n_1) \rightarrow Edge_2 n_2$ correctVertex₂ : $(b_1 : Edge_1 \ n_1) \rightarrow Bisim$ $(target_1 n_1 b_1)$ $(target_2 n_2 (toEdge_2 b_1))$ $toEdge_1 : (b_2 : Edge_2 n_2) \rightarrow Edge_1 n_1$ correctVertex₁ : $(b_2 : Edge_2 n_2) \rightarrow Bisim$ $(target_1 n_1 (toEdge_1 b_2))$ $(target_2 n_2 b_2)$

Proof by Corecursion

Conclusion

- Coalgebras should be the primary concept, not codata.
- But a good idea to find good abbreviations in order to get close to codata, but these should only be abbreviations.
- Elements of coalgebras represent infinite objects, but are not infinite objects themselves.
- Intensional equality between elements of coalgebras.
- Proofs by corecursion now possible.