
Coalgebras and Codata in Agda
Anton Setzer

Swansea University (Wales, UK)

(Wessex Seminar, Bath, 3 March 2009)

1. The concept of codata.

2. Codata in Agda.

3. Weakly Final Coalgebras in Dependent Type Theory.

4. Proofs by Corecursion.

Anton Setzer (Swansea): Coalgebras and Codata in Agda 1

1. The Concept of “Codata”
“codata” introduced in functional languages as a data
type of infinite objects.

“data” corresponds to well-founded objects e.g.

data List : Set where

nil : List

cons : N → List → List

Elements of List are finite lists e.g.

cons 3 (cons 4 nil)

Anton Setzer (Swansea): Coalgebras and Codata in Agda 2

Induction over data
Therefore we can define operations by recursion on
lists e.g.

length : List → N

length nil = 0

length (cons n l) = length l + 1

Anton Setzer (Swansea): Coalgebras and Codata in Agda 3

CoList
If we use codata we have

codata coList : Set where

nil : coList

cons : N → coList → coList

coList contains infinite objects, e.g.

ω : coList

ω = cons 0 (cons 0 (cons 0 · · ·))

We can define ω by coiteration or guarded recursion:

ω : coList

ω = cons 0 ω

Anton Setzer (Swansea): Coalgebras and Codata in Agda 4

Guarded Recursion
We can not define length anymore but colength by
coiteration into coN

codata coN : Set where

0 : coN

S : coN → coN

colength : coList → coN

colength nil = 0

colength (cons n l) = S (colength l)

So
colength ω = S (S (S · · ·)))

Anton Setzer (Swansea): Coalgebras and Codata in Agda 5

Problem
Problem of this approach: undecidability of equality.

For
f, g : N → N

we can define by coiteration lf , lg : coList s.t.

lf = cons(f 0) (cons (f 1) (cons (f 2) · · ·))

lg = cons(g 0) (cons (g 1) (cons (g 2) · · ·))

lf and lg are equal if f = g.

Equality on N → N is undecidable, therefore on coList
as well.

Type checking for dependently typed language requires
equality checking, therefore type checking becomes
undecidable.

Anton Setzer (Swansea): Coalgebras and Codata in Agda 6

Intensional Equality
Two functions are equal if their programs have the same
normal form:

λ x.s = λ x.t if s and t have the same normal form.

In the same way we can only achieve that two elements
of coList are equal, if the programs for forming them are
equal.

Anton Setzer (Swansea): Coalgebras and Codata in Agda 7

Example IO
Assume

C : Set set of commands
R : C → Set set of responses to a command.

Example
C = read + write(s : String) + terminate.
R read = String,
R (write s) = {∗},
R terminate = ∅.

Anton Setzer (Swansea): Coalgebras and Codata in Agda 8

Example IO

codata IO (C : Set)(R : C → Set) : Set where

prog : (c : C) → (n : R c → IO C R) → IO C R

p : IO C R

p = prog (write “Password: ”)
(λ _.(prog read

(λ passwd.if passwd = “1234”
then (prog terminate efq)

else (prog (write “Wrong Password!”)
(λ _.p)))))

Anton Setzer (Swansea): Coalgebras and Codata in Agda 9

Objects

class Cell{

n : N;

set (m : N) : void {

n = m; };

get () : N {

return n; }; }

Anton Setzer (Swansea): Coalgebras and Codata in Agda 10

Modelling Cell using Codata

codata Cell : Set where

createCell : (set : N → Cell)

→ (get : N × Cell)

→ Cell

cell : N → Cell

cell n = createCell (λ m.cell m)

〈n, cell n〉

Anton Setzer (Swansea): Coalgebras and Codata in Agda 11

2. Codata in Agda
Use of codata type.

However, we do not have extensional equality for
codata types.

Guarded recursion defined using “∼”:

Example code:

codata coList : Set where

nil : coList

cons : N → coList → coList

ω : coList

ω ∼ cons 0 ω

After one unfolding ω and cons 0 ω are the same.
Anton Setzer (Swansea): Coalgebras and Codata in Agda 12

Pattern Matching
Case distinction on codata types defined using pattern
matching:

f : coList → N

f nil = 0

f (cons n l) = n

Example:
codata coN : Set where

0 : coN

S : coN → coN

f : coList → coN

f nil ∼ 0

f (cons 0 l) ∼ S (f l)

f (cons (S n) l) ∼ S (f n l)

Anton Setzer (Swansea): Coalgebras and Codata in Agda 13

Problem of Subject Reduction
Consider the following code (by Nicolas Ory; same
problem occurs in Coq):

data _ == _ (x : coList) : coList → Set where

refl : a == a

out : coList → coList

out nil = nil

out (cons n l) = cons n l

lemma : (l : coList) → l == out l

lemma nil = refl

lemma (cons n l) = refl

p : ω == cons 0 ω

p = lemma ω

Anton Setzer (Swansea): Coalgebras and Codata in Agda 14

Problem of Subject Reduction

p : ω == cons 0 ω

p = lemma ω

p −→ refl but we don’t have refl : ω == cons 0 ω.

Quick fix in Agda:
Dependent pattern matching on codata is not allowed.
Therefore the code

out : coList → coList

out nil = nil

out (cons n l) = cons n l

causes an error.

Anton Setzer (Swansea): Coalgebras and Codata in Agda 15

Underlying Problem
Unclear what “∼” means.

Unclear what pattern matching on coalgebras means

out : coList → coList

out nil = nil

out (cons n l) = cons n l

For which l does one of the above patterns trigger?

Anton Setzer (Swansea): Coalgebras and Codata in Agda 16

3. Weakly Final Coalgebras in Dept. Type
Abbreviation:

nil′ + cons′(N, X)

stands for
{∗} + N × X

with the following definitions:

nil′ = inl ∗

cons′ n l = inr 〈n, l〉

Anton Setzer (Swansea): Coalgebras and Codata in Agda 17

Coalgebras in Category Theory
A coalgebra for the functor F : Set → Set

F X = nil′ + cons′(N, X)

is an arrow

coList
case- nil′ + cons′(N, coList)

We do no longer have for l : coList l = nil′ or
l = cons′ n l.

Instead we have that for l : coList

case l = nil′ or case l = cons′ n l′

So elements of coList are not infinite but might be
unfolded infinitely often using case.

Anton Setzer (Swansea): Coalgebras and Codata in Agda 18

Coalgebras in Category Theory

coList
case- nil′ + cons′(N, coList)

A

∃g

6

f - nil′ + cons′(N, A)

nil′ + cons′(N, g)

6

If f(a) = nil′, then case (g a) = nil′.

If f(a) = cons′ n a′, then case (g a) = cons′ n (g a).

Anton Setzer (Swansea): Coalgebras and Codata in Agda 19

Coalgebras in Category Theory
If f(a) = nil′, then case (g a) = nil′.

If f(a) = cons′ n a′, then case (g a) = cons′ n (g a).

The above allows to define

g : A → coList

case (g a) = nil′

or
cons′ n (g a′) for some n, a′

Anton Setzer (Swansea): Coalgebras and Codata in Agda 20

Dual of the Constructors
Using bisimulation equality we can derive

nil : coList

case nil = nil′

cons : N → coList → coList

case (cons n l) = cons′ n l

Note that

cons′ n l : nil′ + cons′(N, coList)

whereas
cons n l : coList

Anton Setzer (Swansea): Coalgebras and Codata in Agda 21

Corecursion
We can extend the principle of guarded recursion to
allow such definitions:

coList
case - nil′ + cons′(N, coList)

A

∃g

6

f- nil′ + cons′(N, A) + cons′(N, coList)

nil′ + cons′(N, g)

6

+ cons′(N, id)

The dual of the step from iteration to recursion, which
allows to define by recursion

pred : N → N

pred 0 = 0

pred (S n) = n

Anton Setzer (Swansea): Coalgebras and Codata in Agda 22

Deep Corecursion
We can extend corecursion further in order to allow

g : A → coList

case (g a) = nil′

or
cons′ n1 (cons n2 (· · · (cons nk (g a)) · · ·))

for some k ≥ 1, ni, a

or
cons′ n1 (cons n2 (· · · (cons nk l) · · ·))

for some k ≥ 1, ni, l

Dual of course of value induction.

Anton Setzer (Swansea): Coalgebras and Codata in Agda 23

Formal Diagram
Let F∞ the weakly final coalgebra for F.

Let buildn : Fn(F∞) → F∞ the n-times build.

F∞
case - F(F∞)

Σn:NF(Fn(F∞))

Σn:NF(buildn)

6

A

∃ g

6

f
- Σn:NFn+1(F∞ + A)

Σn:NFn+1(id + g)

6

Anton Setzer (Swansea): Coalgebras and Codata in Agda 24

Rules for coList

Formation Rule
coList : Set

Elimination Rule

case : coList → nil′ + cons′(N, coList)

Introduction Rule

A : Set f : A → nil′ + cons′(N, A)

intro A f : A → coList

Equality Rule

case (intro A f a) = (nil′ + cons′(N, intro A f)) (f a)

Anton Setzer (Swansea): Coalgebras and Codata in Agda 25

Rules for coList

intro A f a = intro A′ f ′ a′

if A = A′ and f = f ′ and a = a′.

Anton Setzer (Swansea): Coalgebras and Codata in Agda 26

Suggested Agda Syntax

mutual

coalg coList : Set where

case : coList → coListShape

data coListShape : Set where

nil′ : coListShape

cons′ : N → coList → coListShape

ω : coList

case ω = cons′ 0 ω

Anton Setzer (Swansea): Coalgebras and Codata in Agda 27

Getting Close to Codata
Define (idea by Nils Danielsson):

coalg � (A : Set) : Set where

case : � A → A

data coListShape : Set where

nil′ : coListShape

cons′ : N → � coListShape → coListShape

coList : Set

coList = � coListShape

nil : coList

case nil = nil′

Anton Setzer (Swansea): Coalgebras and Codata in Agda 28

Simplification by Nils Danielsson

cons : N → coList → coList

case (cons n l) = cons′ n l

Write
r ∼ s

for
case r = case s

Now
ω : coList

case ω = cons′ n ω

can be replaced by

ω : coList

ω ∼ cons n ω

Anton Setzer (Swansea): Coalgebras and Codata in Agda 29

Subject Reduction Revisited

data _ == _ (x : coList) : coList → Set where

refl : a == a

out : coList → coList

out x with (case x)

· · · | nil′ = nil

· · · | cons′ n l = cons n l

lemma : (l : coList) → l == out l

lemma l with (case l)

· · · |nil′ = {! !} goal type = l == nil

· · · |cons′ n l′ = {! !} goal type = l′ == cons n l′

The last two goals are not solvable.
Anton Setzer (Swansea): Coalgebras and Codata in Agda 30

IO using Coalg

coalg IO (C : Set) (R : C → Set) : Set where

command : IO C R → C

next : (p : IO C R) → R (command p) → IO C R

progPasswd : IO C R

command progPasswd = write “Password: ”
next progPasswd _ = progRead

progRead : IO C R

command progRead = read

next progRead s = progCheck s

Anton Setzer (Swansea): Coalgebras and Codata in Agda 31

IO using Coalg

progCheck : String → IO C R

progCheck s = if (s = “123”) then progSuccess else progFail

progSuccess : IO C R

command progSuccess = terminate

next progSuccess ()

progFail : IO C R

command progFail = write “Wrong Password!!”
next progFail _ = progPasswd

Anton Setzer (Swansea): Coalgebras and Codata in Agda 32

Cell using Coalg

coalg Cell : Set where

set : Cell → N → Cell

get : Cell → N × Cell

cell : N → Cell

set (cell n) m = cell m

get (cell n) = 〈n, cell n〉

Anton Setzer (Swansea): Coalgebras and Codata in Agda 33

4. Proofs by Corecursion
Let a transition system be given by

Vertex : Set

Edge : Vertex → Set

target : (l : Vertex) → Edge l → Vertex

Let

(Vertex1,Edge1, target1) = ({∗}, λ x.{∗}, λ x, y.∗)

and

(Vertex2,Edge2, target2) = (N, λ x.{∗}, λ x, y.S x)

Anton Setzer (Swansea): Coalgebras and Codata in Agda 34

(Vertex1,Edge1, target1) = ({∗}, λ x.{∗}, λ x, y.∗)

(Vertex2,Edge2, target2) = (N, λ x.{∗}, λ x, y.S x)

∗

0 1 2 · · · · · ·

Anton Setzer (Swansea): Coalgebras and Codata in Agda 35

Bisimulation
Define

coalg Bisim : (n1 : Vertex1) → (n2 : Vertex2) → Set where

toEdge2 : (b1 : Edge1 n1) → Edge2 n2

correctVertex2 : (b1 : Edge1 n1) → Bisim

(target1 n1 b1)

(target2 n2 (toEdge2 b1))

toEdge1 : (b2 : Edge2 n2) → Edge1 n1

correctVertex1 : (b2 : Edge2 n2) → Bisim

(target1 n1 (toEdge1 b2))

(target2 n2 b2)

Anton Setzer (Swansea): Coalgebras and Codata in Agda 36

Proof by Corecursion

lemma : (v1 : Vertex1) → (v2 : Vertex2) → Bisim v1 v2

toEdge2 (lemma v1 v2) b1 = ∗

correctVertex2 (lemma v1 v2) b1 = lemma ∗ (S v2)

toEdge1 (lemma v1 v2) b2 = ∗

correctVertex1 (lemma v1 v2) b2 = lemma ∗ (S v2)

Anton Setzer (Swansea): Coalgebras and Codata in Agda 37

Conclusion
Coalgebras should be the primary concept, not codata.

But a good idea to find good abbreviations in order to
get close to codata, but these should only be
abbreviations.

Elements of coalgebras represent infinite objects, but
are not infinite objects themselves.

Intensional equality between elements of coalgebras.

Proofs by corecursion now possible.

Anton Setzer (Swansea): Coalgebras and Codata in Agda 38

	
	1. The Concept of ``Codata''
	Induction over data
	CoList
	Guarded Recursion
	Problem
	Intensional Equality
	Example IO
	Example IO
	Objects
	Modelling Cell using Codata
	2. Codata in Agda
	Pattern Matching
	Problem of Subject Reduction
	Problem of Subject Reduction
	Underlying Problem
	3. Weakly Final Coalgebras in Dept. Type Theory
	Coalgebras in Category Theory
	Coalgebras in Category Theory
	Coalgebras in Category Theory
	Dual of the Constructors
	Corecursion
	Deep Corecursion
	Formal Diagram
	Rules for $coList $
	Rules for $coList $
	Suggested Agda Syntax
	Getting Close to Codata
	Simplification by Nils Danielsson
	Subject Reduction Revisited
	IO using Coalg
	IO using Coalg
	Cell using Coalg
	4. Proofs by Corecursion
	
	Bisimulation
	Proof by Corecursion
	Conclusion

