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Ethereum

Ethereum = A second-generation Blockchain technology [7].
Launched by Vitalik Buterin [4] in 2013.
Main difference to Bitcoin is in the use of smart contracts:

§ Ethereum [9]:
‹ Turing complete language which includes loops;
‹ allows calls to other contracts;
‹ adds cost of execution of instructions (gas) to guarantee

termination.

Recently switch from proof of work to proof of stake [5],
solving the waste of energy problem.
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Smart Contracts

Smart contract = program which is automatically executed
when conditions in the blockchains are satisfied [8].
Smart contracts are immutable programs [3].
Smart contracts in the cryptocurrency Ethereum are usually written in
the high-level language Solidity [6] which compiles into the low-level
Ethereum Virtual Machine (EVM) [4].
World State Machine with essentially immutable history.
Example applications:

§ Tracing of goods (using we have an immutable database),
§ Electronic voting,
§ NFT (ownership of electronic items),
§ Investment fonds (DAO).

Because of high monetary impact, immutability, and
shortness of programs, prime candidate for verification.
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Smart Contracts
Blockchain is roughly speaking a data base which determines for
each address its current state (amount of money, other data).
In Ethereum smart contracts = objects deployed to addresses,
with methods which can be called by

§ ordinary (externally owned) accounts,
§ other smart contracts.

Toy example (Solidity):
1 pragma solidity ^0.8.17;
2
3 contract testLedger {
4 function f (int n) public pure returns (int){
5 return g(n);
6 }
7
8 function g (int n) public pure returns (int){
9 if (n > 0) { return f(n - 1);}

10 else { return 0;}
11 }
12 }
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Contribution

Previous work: Verification of Bitcoin smart contracts using
weakest preconditions of Hoare logic [2, 1] in Agda.
Goal of this and follow up papers is adaption to Solidity style smart
contracts.
First Step Here: develop model of Solidity-style smart contracts in
Agda.
More complex, because of use of objects.
We cover execution of contracts including
calling of other contracts and contracts having
multiple functions (methods).
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Messages

EVM allows calling functions with serialised parameters.
Parameters represent elements of arrays, maps, enumerations,
integers, etc.
In our model, we abstract from this encoding by defining a
message data type:

data Msg : Set where nat : (n : N) → Msg
list : (l : List Msg) → Msg

Arrays are represented as lists of messages.
Maps are represented as lists of pairs (represented as lists) of
messages.
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Programs (SmartContractExec)

data SmartContractExec : Set where
return : Msg → SmartContractExec
call : SmartContractExecStep → SmartContractExec
error : ErrorMsg → SmartContractExec

SmartContractExec consists of three constructors:
return = terminates execution and return its argument;
call = calls SmartContractExecStep

then continues as defined by its continuation argument
error = raises an error.
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SmartContractExecStep

record SmartContractExecStep : Set where
coinductive
field calledAddress : Address

calledFunction : FunctionName
calledMsg : Msg
cont : Msg → SmartContractExec

calledAddress = address of contract being called;
calledFunction = function name called;
calledMsg = argument of the function (a message);
cont = continuation, depends on

the result of executed function.
SmartContractExec and SmartContractExecStep are defined
coinductively, so loops and even non-terminating programs are
allowed.
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Ledger and ExecutionStack

A ledger determines for any address function name and msg argument
the smart contract function to be executed:

Ledger = Address → FunctionName → Msg → SmartContractExec

ExecutionStack = stack of continuations
§ continuation are executed once the result of the execution above it has

finished giving an element of Msg.

ExecutionStack = List (Msg → SmartContractExec)
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StateExecFun

The state of execution is given by

record StateExecFun : Set where
constructor stateEF
field executionStack : ExecutionStack

nextstep : SmartContractExec

i.e. having two fields:
executionStack is the current execution stack;
nextstep is the current code to be executed.
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stepEF and stepEFntimes

stepEF, is the one-step execution of a smart contract.
stepEFntimes, which iterates it n times, corresponding to execution
with a simple form of gas limit.

stepEF : Ledger → StateExecFun → StateExecFun
stepEFntimes : Ledger → StateExecFun → N → StateExecFun
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Evaluation

evaluateNonTerminating : Ledger → Address → FunctionName
→ Msg → NatOrError

We can define as well a terminating version with additional parameter

gas : N

which restricts evaluation to gas many steps.
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Example of simple Solidity-style of smart contract in Agda

Example recursively decrementing by 1 until 0:

testLedger : Ledger
testLedger 0 "f" (nat n)

= call (smartContractExecStep 0 "g" (nat n) return)
testLedger 0 "g" (nat (suc n))

= call (smartContractExecStep 0 "f" (nat n) return)
testLedger 0 "g" (nat 0)

= return (nat 0)
testLedger ow ow’ ow”

= error (strErr " Error undefined")

evaluateNonTerminating testLedger 0 "f" (nat 5)
evaluates to nat 0
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Example in Solidity language

Corresponding Solidity code:
1 pragma solidity ^0.8.17;
2
3 contract testLedger {
4 function f (int n) public pure returns (int){
5 return g(n);
6 }
7
8 function g (int n) public pure returns (int){
9 if (n > 0) { return f(n - 1);}

10 else { return 0;}
11 }
12 }
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Example Run in Solidity

When applying "f" to 7 and "g" to 4 we obtain the following results:

Figure: Result using Solidity language
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Conclusion

We developed a simple model of Solidity-style smart contracts
in Agda.
Dealt with execution and calling of other contracts.
Not yet support of gas cost, amount of money,
transfer of money, state.
Work in progress:

§ Extend the simple model by the not yet supported items.
§ Develop an interactive program in Agda which allows to execute

calls of functions in contracts with a corresponding ledger.
Future work:

§ Adapt the verification of bitcoin using weakest preconditions [2] to
verifying contracts in this model.
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Thank you for listening.
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