
A Simple Model of Smart Contracts in Agda

.FahadAlhabardi1 and Anton Setzer2
1,2Swansea University, Blockchain Lab, Dept. of Computer Science, UK

Types 2023
Universitat Politècnica de València, València, Spain

June 12, 2023

Anton Setzer A Simple Model of Smart Contracts in Agda June 12, 2023 1 / 26

Table of Contents

1 Background

2 Model of Smart Contracts in Agda

3 Example

4 Conclusion

Anton Setzer A Simple Model of Smart Contracts in Agda June 12, 2023 2 / 26

1 Background

2 Model of Smart Contracts in Agda

3 Example

4 Conclusion

Anton Setzer A Simple Model of Smart Contracts in Agda June 12, 2023 3 / 26

Ethereum

Ethereum = A second-generation Blockchain technology [7].
Launched by Vitalik Buterin [4] in 2013.
Main difference to Bitcoin is in the use of smart contracts:

§ Ethereum [9]:
‹ Turing complete language which includes loops;
‹ allows calls to other contracts;
‹ adds cost of execution of instructions (gas) to guarantee

termination.

Recently switch from proof of work to proof of stake [5],
solving the waste of energy problem.

Anton Setzer A Simple Model of Smart Contracts in Agda June 12, 2023 4 / 26

Smart Contracts

Smart contract = program which is automatically executed
when conditions in the blockchains are satisfied [8].
Smart contracts are immutable programs [3].
Smart contracts in the cryptocurrency Ethereum are usually written in
the high-level language Solidity [6] which compiles into the low-level
Ethereum Virtual Machine (EVM) [4].
World State Machine with essentially immutable history.
Example applications:

§ Tracing of goods (using we have an immutable database),
§ Electronic voting,
§ NFT (ownership of electronic items),
§ Investment fonds (DAO).

Because of high monetary impact, immutability, and
shortness of programs, prime candidate for verification.

Anton Setzer A Simple Model of Smart Contracts in Agda June 12, 2023 5 / 26

Smart Contracts
Blockchain is roughly speaking a data base which determines for
each address its current state (amount of money, other data).
In Ethereum smart contracts = objects deployed to addresses,
with methods which can be called by

§ ordinary (externally owned) accounts,
§ other smart contracts.

Toy example (Solidity):
1 pragma solidity ^0.8.17;
2
3 contract testLedger {
4 function f (int n) public pure returns (int){
5 return g(n);
6 }
7
8 function g (int n) public pure returns (int){
9 if (n > 0) { return f(n - 1);}

10 else { return 0;}
11 }
12 }

Anton Setzer A Simple Model of Smart Contracts in Agda June 12, 2023 6 / 26

Contribution

Previous work: Verification of Bitcoin smart contracts using
weakest preconditions of Hoare logic [2, 1] in Agda.
Goal of this and follow up papers is adaption to Solidity style smart
contracts.
First Step Here: develop model of Solidity-style smart contracts in
Agda.
More complex, because of use of objects.
We cover execution of contracts including
calling of other contracts and contracts having
multiple functions (methods).

Anton Setzer A Simple Model of Smart Contracts in Agda June 12, 2023 7 / 26

1 Background

2 Model of Smart Contracts in Agda

3 Example

4 Conclusion

Anton Setzer A Simple Model of Smart Contracts in Agda June 12, 2023 8 / 26

Messages

EVM allows calling functions with serialised parameters.
Parameters represent elements of arrays, maps, enumerations,
integers, etc.
In our model, we abstract from this encoding by defining a
message data type:

data Msg : Set where nat : (n : N) → Msg
list : (l : List Msg) → Msg

Arrays are represented as lists of messages.
Maps are represented as lists of pairs (represented as lists) of
messages.

Anton Setzer A Simple Model of Smart Contracts in Agda June 12, 2023 9 / 26

Programs (SmartContractExec)

data SmartContractExec : Set where
return : Msg → SmartContractExec
call : SmartContractExecStep → SmartContractExec
error : ErrorMsg → SmartContractExec

SmartContractExec consists of three constructors:
return = terminates execution and return its argument;
call = calls SmartContractExecStep

then continues as defined by its continuation argument
error = raises an error.

Anton Setzer A Simple Model of Smart Contracts in Agda June 12, 2023 10 / 26

SmartContractExecStep

record SmartContractExecStep : Set where
coinductive
field calledAddress : Address

calledFunction : FunctionName
calledMsg : Msg
cont : Msg → SmartContractExec

calledAddress = address of contract being called;
calledFunction = function name called;
calledMsg = argument of the function (a message);
cont = continuation, depends on

the result of executed function.
SmartContractExec and SmartContractExecStep are defined
coinductively, so loops and even non-terminating programs are
allowed.

Anton Setzer A Simple Model of Smart Contracts in Agda June 12, 2023 11 / 26

Ledger and ExecutionStack

A ledger determines for any address function name and msg argument
the smart contract function to be executed:

Ledger = Address → FunctionName → Msg → SmartContractExec

ExecutionStack = stack of continuations
§ continuation are executed once the result of the execution above it has

finished giving an element of Msg.

ExecutionStack = List (Msg → SmartContractExec)

Anton Setzer A Simple Model of Smart Contracts in Agda June 12, 2023 12 / 26

StateExecFun

The state of execution is given by

record StateExecFun : Set where
constructor stateEF
field executionStack : ExecutionStack

nextstep : SmartContractExec

i.e. having two fields:
executionStack is the current execution stack;
nextstep is the current code to be executed.

Anton Setzer A Simple Model of Smart Contracts in Agda June 12, 2023 13 / 26

stepEF and stepEFntimes

stepEF, is the one-step execution of a smart contract.
stepEFntimes, which iterates it n times, corresponding to execution
with a simple form of gas limit.

stepEF : Ledger → StateExecFun → StateExecFun
stepEFntimes : Ledger → StateExecFun → N → StateExecFun

Anton Setzer A Simple Model of Smart Contracts in Agda June 12, 2023 14 / 26

Evaluation

evaluateNonTerminating : Ledger → Address → FunctionName
→ Msg → NatOrError

We can define as well a terminating version with additional parameter

gas : N

which restricts evaluation to gas many steps.

Anton Setzer A Simple Model of Smart Contracts in Agda June 12, 2023 15 / 26

1 Background

2 Model of Smart Contracts in Agda

3 Example

4 Conclusion

Anton Setzer A Simple Model of Smart Contracts in Agda June 12, 2023 16 / 26

Example of simple Solidity-style of smart contract in Agda

Example recursively decrementing by 1 until 0:

testLedger : Ledger
testLedger 0 "f" (nat n)

= call (smartContractExecStep 0 "g" (nat n) return)
testLedger 0 "g" (nat (suc n))

= call (smartContractExecStep 0 "f" (nat n) return)
testLedger 0 "g" (nat 0)

= return (nat 0)
testLedger ow ow’ ow”

= error (strErr " Error undefined")

evaluateNonTerminating testLedger 0 "f" (nat 5)
evaluates to nat 0

Anton Setzer A Simple Model of Smart Contracts in Agda June 12, 2023 17 / 26

Example in Solidity language

Corresponding Solidity code:
1 pragma solidity ^0.8.17;
2
3 contract testLedger {
4 function f (int n) public pure returns (int){
5 return g(n);
6 }
7
8 function g (int n) public pure returns (int){
9 if (n > 0) { return f(n - 1);}

10 else { return 0;}
11 }
12 }

Anton Setzer A Simple Model of Smart Contracts in Agda June 12, 2023 18 / 26

Example Run in Solidity

When applying "f" to 7 and "g" to 4 we obtain the following results:

Figure: Result using Solidity language

Anton Setzer A Simple Model of Smart Contracts in Agda June 12, 2023 19 / 26

1 Background

2 Model of Smart Contracts in Agda

3 Example

4 Conclusion

Anton Setzer A Simple Model of Smart Contracts in Agda June 12, 2023 20 / 26

Conclusion

We developed a simple model of Solidity-style smart contracts
in Agda.
Dealt with execution and calling of other contracts.
Not yet support of gas cost, amount of money,
transfer of money, state.
Work in progress:

§ Extend the simple model by the not yet supported items.
§ Develop an interactive program in Agda which allows to execute

calls of functions in contracts with a corresponding ledger.
Future work:

§ Adapt the verification of bitcoin using weakest preconditions [2] to
verifying contracts in this model.

Anton Setzer A Simple Model of Smart Contracts in Agda June 12, 2023 21 / 26

Thank you for listening.

Anton Setzer A Simple Model of Smart Contracts in Agda June 12, 2023 22 / 26

[1] Fahad Alhabardi, Bogdan Lazar, and Anton Setzer.
Verifying correctness of smart contracts with conditionals.
In 2022 IEEE 1st Global Emerging Technology Blockchain Forum:
Blockchain & Beyond (iGETblockchain), pages 1–6, 2022.
doi: https:
//doi.org/10.1109/iGETblockchain56591.2022.10087054.

[2] Fahad F. Alhabardi, Arnold Beckmann, Bogdan Lazar, and Anton
Setzer.
Verification of Bitcoin Script in Agda Using Weakest Preconditions for
Access Control.
In 27th International Conference on Types for Proofs and Programs
(TYPES 2021), volume 239 of LIPIcs, pages 1:1–1:25, Dagstuhl,
Germany, 2022. Leibniz-Zentrum für Informatik.
doi: https://doi.org/10.4230/LIPIcs.TYPES.2021.1.

Anton Setzer A Simple Model of Smart Contracts in Agda June 12, 2023 23 / 26

https://doi.org/10.1109/iGETblockchain56591.2022.10087054
https://doi.org/10.1109/iGETblockchain56591.2022.10087054
https://doi.org/10.4230/LIPIcs.TYPES.2021.1

[3] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli.
A Survey of Attacks on Ethereum Smart Contracts (SoK).
In Principles of Security and Trust, pages 164–186, Berlin, Heidelberg,
2017. Springer.
doi: https://doi.org/10.1007/978-3-662-54455-6_8.

[4] Vitalik Buterin.
Ethereum: A next-generation smart contract and decentralized
application platform, 2014.
Availabe from https://ethereum.org/en/whitepaper.

[5] Ethereum community.
Proof-of-Stake (POS), Retrieved 03 May 2023.
Availabe from https://ethereum.org/en/developers/docs/
consensus-mechanisms/pos/.

[6] Ethereum Community.
Solidity documentation, Retrieved 15 April 2023.
Availabe from https://docs.soliditylang.org/en/v0.8.16/.

Anton Setzer A Simple Model of Smart Contracts in Agda June 12, 2023 24 / 26

https://doi.org/10.1007/978-3-662-54455-6_8
https://ethereum.org/en/whitepaper
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://docs.soliditylang.org/en/v0.8.16/

[7] Han-Min Kim, Gee-Woo Bock, and Gunwoong Lee.
Predicting ethereum prices with machine learning based on blockchain
information.
Expert Systems with Applications, 184:115480, 2021.
doi:https://doi.org/10.1016/j.eswa.2021.115480.

[8] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas
Hobor.
Making Smart Contracts Smarter.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’16, page 254–269, New York, NY,
USA, 2016. Association for Computing Machinery.
doi:http://dx.doi.org/10.1145/2976749.2978309.

[9] Dejan Vujičić, Dijana Jagodić, and Siniša Ranđić.
Blockchain technology, Bitcoin, and Ethereum: A brief overview.
In 2018 17th International Symposium INFOTEH-JAHORINA
(INFOTEH), pages 1–6, 2018.
doi:http://dx.doi.org/10.1109/INFOTEH.2018.8345547.

Anton Setzer A Simple Model of Smart Contracts in Agda June 12, 2023 25 / 26

https://doi.org/https://doi.org/10.1016/j.eswa.2021.115480
https://doi.org/http://dx.doi.org/10.1145/2976749.2978309
https://doi.org/http://dx.doi.org/10.1109/INFOTEH.2018.8345547

Anton Setzer A Simple Model of Smart Contracts in Agda June 12, 2023 26 / 26

	Background
	Model of Smart Contracts in Agda
	Example
	Conclusion

