
Simulating Codata Types using Coalgebras

Anton Setzer
Swansea University, Swansea UK
Types 2018, Braga, Portugal

18 June 2018

Coalgebras in Type Theory

Musical Notation In Agda Reduced to Coalgebras

Suggested Extension

Conclusion

Anton Setzer Simulating Codata Types using Coalgebras 2/ 25

Coalgebras in Type Theory

Coalgebras in Type Theory

Musical Notation In Agda Reduced to Coalgebras

Suggested Extension

Conclusion

Anton Setzer Simulating Codata Types using Coalgebras 3/ 25

Coalgebras in Type Theory

Codata Types

I Original way of defining infinite (in general non-well-founded)
structures in functional programming are codata types:

codata coList : Set where
nil : coList
cons : N→ coList→ coList

I Define
from : N→ coList
from n = cons n (from (n + 1))

I Problem
I Literally taken non-normalising.
I Restriction of evaluation to lazy evaluation or similar led to

subject reduction problem in Coq and early versions of Agda.
I Proof in [4] that there is no decidable equality on codata types

which would allow pattern matching.

Anton Setzer Simulating Codata Types using Coalgebras 4/ 25

Coalgebras in Type Theory

Coalgebras

I Solution define infinite structures by elimination rules or by their
observations.

I Replace Pattern matching by copattern matching [2].
I Example Streams (syntax is desired syntax – Agda uses record types

instead):
coalg Stream : Set where

head : Stream→ N
tail : Stream→ Stream

I Define the stream n, n + 1, n + 2, . . . by copattern matching

from : N→ Stream
head (from n) = n
tail (from n) = from (n + 1)

Anton Setzer Simulating Codata Types using Coalgebras 5/ 25

Coalgebras in Type Theory

Colists

I When applying the above to colists one need to have an observation
which determines for every colist whether it is nil or cons.

I Most easily done by using a simultaneous inductive-coinductive
definition.

mutual
coalg ∞coList : Set where
[:∞coList→ coList

data coList : Setwhere
nil : coList
cons : N→∞coList→ coList

Anton Setzer Simulating Codata Types using Coalgebras 6/ 25

Musical Notation In Agda Reduced to Coalgebras

Coalgebras in Type Theory

Musical Notation In Agda Reduced to Coalgebras

Suggested Extension

Conclusion

Anton Setzer Simulating Codata Types using Coalgebras 7/ 25

Musical Notation In Agda Reduced to Coalgebras

Examples of Coalgebras in Agda

I We have developed lots of coalgebras in Agda:
I IO monad in Agda.
I Formalisation of CSP in Agda.
I Objects (as in object-based programming) in Agda
I GUIs in Agda.
I Business processes in Agda
I Many variants of the above

I In some examples definition by several eliminators is the right thing.
I In some example one has the pattern as above but needs to add to the

type corresponding to ∞coList extra components.
I But most examples follow exactly the same pattern as above.
I Musical notation modified by Danielsson [5] was an abbreviation

mechanism in Agda for having the above. (Currently abandoned).
I Suggestion: Reduce musical notation to coalgebras.
I Musical notation as a syntactic sugar for coalgebra approach.

Anton Setzer Simulating Codata Types using Coalgebras 8/ 25

Musical Notation In Agda Reduced to Coalgebras

Functions for Introduction Codata like Coalgebras

I When defining functions into a codata like coalgebra one defines
mutually two functions:

]f : A→∞coList
[(]f a) = f a

f : A→ coList
f a = · · · (referring to]f)

I Example from musical notation documentation in Agda:

]map : (N→ N)→ coList→∞coList
[(]map f l) = map f l

map : (N→ N)→ coList→ coList
map f nil = nil
map f (cons n l) = cons (f n) (]map f l)

Anton Setzer Simulating Codata Types using Coalgebras 9/ 25

Suggested Extension

Coalgebras in Type Theory

Musical Notation In Agda Reduced to Coalgebras

Suggested Extension

Conclusion

Anton Setzer Simulating Codata Types using Coalgebras 10/ 25

Suggested Extension

∞ as Syntactic Sugar

I Whenever one defines a new constant

C : (x1 : A1) (x2 : A2) · · · (xn : An)→ Set

one defines simultaneously with any definition involving C

coalg ∞C (x1 : A1) (x2 : A2) · · · (xn : An) : Set where
[:∞C x1 · · · xn → C x1 · · · xn

I Whenever one defines a new constant

f : (x1 : A1) (x2 : A2) · · · (xn : An)→ C t

where C is a constant one defines

]f : (x1 : A1) (x2 : A2) · · · (xn : An)→∞C t
[(]f x1 · · · xn) = f x1 · · · xn

Anton Setzer Simulating Codata Types using Coalgebras 11/ 25

Suggested Extension

∞ as Syntactic Sugar

I Whether the following is a good notation needs to be discussed.
I However it allows to give an interpretation of Altenkirch et. al.’s

boxed operator [3], where] t is the type of delayed computations.
I If C s1 · · · sn is an expression where C is a constant define

∞ (C s1 · · · sn) :=∞C s1 · · · sn

I If f s1 · · · sn is an expression where f is a constant define

] (f s1 · · · sn) :=]f s1 · · · sn

I In the above C s1 · · · sn and f s1 · · · sn are not evaluated, the right
hand side is evaluated.

I Note that ∞ x and] x for variables x is not defined.

Anton Setzer Simulating Codata Types using Coalgebras 12/ 25

Suggested Extension

Syntactic Sugar

I Note that the above is just syntactic sugar.
I Type checking and Term checking relies on type and termination

checking of the desugared version.
I Should the above definitions not be suitable, the user has access to

the standard coalgebra definitions.

Anton Setzer Simulating Codata Types using Coalgebras 13/ 25

Suggested Extension

Example: coList, map and from

data coList : Setwhere
nil : coList
cons : N→∞ coList→ coList

map : (N→ N)→ coList→ coList
map f nil = nil
map f (cons n l) = cons (f n) (] (map f l))

from : N→ coList
from n = cons n (] (from (n + 1)))

Anton Setzer Simulating Codata Types using Coalgebras 14/ 25

Suggested Extension

Sized Types

I For coalgebras one needs except for very simple examples sized types.
I In case of coList the definition is as follows:

mutual
coalg ∞coList {i : Size} : Set where
[: {j : Size < i} → ∞coList {i} → coList{j}

data coList {i : Size} : Set where
nil : coList {i}
cons : N→∞coList {i} → coList {i}

Anton Setzer Simulating Codata Types using Coalgebras 15/ 25

Suggested Extension

∞,] with Sizes

I Whenever one defines a new constant

C : {i : Size} (x1 : A1) (x2 : A2) · · · (xn : An)→ Set

one defines simultaneously with any definition involving C

coalg ∞C {i : Size} (x1 : A1) (x2 : A2) · · · (xn : An) : Set where
[: {j : Size < i} → ∞C {i} x1 · · · xn → C {j} x1 · · · xn

I Whenever one defines a new constant

f : {i : Size} (x1 : A1) (x2 : A2) · · · (xn : An)→ C t

where C is a constant one defines

]f : {i : Size} (x1 : A1) (x2 : A2) · · · (xn : An)→∞C t
[(]f {i} x1 · · · xn) {j} = f {j} x1 · · · xn

Anton Setzer Simulating Codata Types using Coalgebras 16/ 25

Suggested Extension

IO Interface

data Command : Set where
getStr : Command
putStr : String→ Command

Response : Command→ Set
Response getStr = String
Response (putStr s) = >

Anton Setzer Simulating Codata Types using Coalgebras 17/ 25

Suggested Extension

Example IO

data IO {i : Size} (A : Set) : Set where
return : A→ IO {i} A
exec : (c : Command)

(p : Response c →∞ (IO {i} A))
→ IO {i} A

copycat : {i : Size} → IO {i} ⊥
copycat = exec getStr λ s →

] (exec (putStr s) λ →
] copycat)

Anton Setzer Simulating Codata Types using Coalgebras 18/ 25

Suggested Extension

Object Interface for Cell

data Method : Set where
get : Method
put : N→ Method

Result : Method→ Set
Result get = N
Result (put n) = >

Anton Setzer Simulating Codata Types using Coalgebras 19/ 25

Suggested Extension

Example Object [1]

Object : {i : Size} → Set
Object{i} = (m : Method)→ IO∞ (Result m ×] (Object{i}))

cell : {i : Size} → N→ Object {i}
cell n get = exec (putStr “get invoked”) λ →

] (return (n ,] (cell n)))
cell n (put m) = exec (putStr “put invoked”) λ →

] (return (,] (cell m)))

Anton Setzer Simulating Codata Types using Coalgebras 20/ 25

Conclusion

Coalgebras in Type Theory

Musical Notation In Agda Reduced to Coalgebras

Suggested Extension

Conclusion

Anton Setzer Simulating Codata Types using Coalgebras 21/ 25

Conclusion

Conclusion

I Definition of coalgebras by their elimination as a clean approach for
defining “infinite data types” (more precisely well-founded).

I Musical notation as syntactic sugar which reduces to coalgebras.
I Delayed computations can be interpreted in this setting.
I Resulting code is very close to codata types.

Anton Setzer Simulating Codata Types using Coalgebras 22/ 25

Conclusion

Bibliography I

A. Abel, S. Adelsberger, and A. Setzer.
Interactive programming in Agda – Objects and graphical user
interfaces.
Journal of Functional Programming, 27, Jan 2017.
doi 10.1017/S0956796816000319.

A. Abel, B. Pientka, A. Setzer, and D. Thibodeau.
Copatterns: Programming infinite structures by observations.
In R. Giacobazzi and R. Cousot, editors, Proceedings of the 40th
annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’13, pages 27–38, New York, NY, USA,
2013. ACM.

Anton Setzer Simulating Codata Types using Coalgebras 23/ 25

10.1017/S0956796816000319

Conclusion

Bibliography II

T. Altenkirch, N. Danielsson, A. Löh, and N. Oury.
ΠΣ: Dependent types without the sugar.
In M. Blume, N. Kobayashi, and G. Vidal, editors, Functional and
Logic Programming, volume 6009 of Lecture Notes in Computer
Science, pages 40–55. Springer Berlin / Heidelberg, 2010.
http://dx.doi.org/10.1007/978-3-642-12251-4_5.

U. Berger and A. Setzer.
Undecidability of equality for codata types, 2018.
To appear in proceedings of CMCS’18, available from
http://www.cs.swan.ac.uk/~csetzer/articles/CMCS2018/
bergerSetzerProceedingsCMCS18.pdf.

Anton Setzer Simulating Codata Types using Coalgebras 24/ 25

http://dx.doi.org/10.1007/978-3-642-12251-4_5
http://www.cs.swan.ac.uk/~csetzer/articles/CMCS2018/bergerSetzerProceedingsCMCS18.pdf
http://www.cs.swan.ac.uk/~csetzer/articles/CMCS2018/bergerSetzerProceedingsCMCS18.pdf

Conclusion

Bibliography III

N. A. Danielsson.
Changes to coinduction, 17 March 2009.
Message posted on gmane.comp.lang.agda, available from
http://article.gmane.org/gmane.comp.lang.agda/763/.

Anton Setzer Simulating Codata Types using Coalgebras 25/ 25

http://article.gmane.org/gmane.comp.lang.agda/763/

	Coalgebras in Type Theory
	Musical Notation In Agda Reduced to Coalgebras
	Suggested Extension
	Conclusion

