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Coalgebras in Type Theory

Codata Types

I Original way of defining infinite (in general non-well-founded)
structures in functional programming are codata types:

codata coList : Set where
nil : coList
cons : N→ coList→ coList

I Define
from : N→ coList
from n = cons n (from (n + 1))

I Problem
I Literally taken non-normalising.
I Restriction of evaluation to lazy evaluation or similar led to

subject reduction problem in Coq and early versions of Agda.
I Proof in [4] that there is no decidable equality on codata types

which would allow pattern matching.
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Coalgebras in Type Theory

Coalgebras

I Solution define infinite structures by elimination rules or by their
observations.

I Replace Pattern matching by copattern matching [2].
I Example Streams (syntax is desired syntax – Agda uses record types

instead):
coalg Stream : Set where

head : Stream→ N
tail : Stream→ Stream

I Define the stream n, n + 1, n + 2, . . . by copattern matching

from : N→ Stream
head (from n) = n
tail (from n) = from (n + 1)
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Coalgebras in Type Theory

Colists

I When applying the above to colists one need to have an observation
which determines for every colist whether it is nil or cons.

I Most easily done by using a simultaneous inductive-coinductive
definition.

mutual
coalg ∞coList : Set where
[ :∞coList→ coList

data coList : Setwhere
nil : coList
cons : N→∞coList→ coList
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Musical Notation In Agda Reduced to Coalgebras

Examples of Coalgebras in Agda

I We have developed lots of coalgebras in Agda:
I IO monad in Agda.
I Formalisation of CSP in Agda.
I Objects (as in object-based programming) in Agda
I GUIs in Agda.
I Business processes in Agda
I Many variants of the above

I In some examples definition by several eliminators is the right thing.
I In some example one has the pattern as above but needs to add to the

type corresponding to ∞coList extra components.
I But most examples follow exactly the same pattern as above.
I Musical notation modified by Danielsson [5] was an abbreviation

mechanism in Agda for having the above. (Currently abandoned).
I Suggestion: Reduce musical notation to coalgebras.
I Musical notation as a syntactic sugar for coalgebra approach.
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Musical Notation In Agda Reduced to Coalgebras

Functions for Introduction Codata like Coalgebras

I When defining functions into a codata like coalgebra one defines
mutually two functions:

]f : A→∞coList
[ (]f a) = f a

f : A→ coList
f a = · · · (referring to ]f)

I Example from musical notation documentation in Agda:

]map : (N→ N)→ coList→∞coList
[ (]map f l) = map f l

map : (N→ N)→ coList→ coList
map f nil = nil
map f (cons n l) = cons (f n) (]map f l)
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Suggested Extension

∞ as Syntactic Sugar

I Whenever one defines a new constant

C : (x1 : A1) (x2 : A2) · · · (xn : An)→ Set

one defines simultaneously with any definition involving C

coalg ∞C (x1 : A1) (x2 : A2) · · · (xn : An) : Set where
[ :∞C x1 · · · xn → C x1 · · · xn

I Whenever one defines a new constant

f : (x1 : A1) (x2 : A2) · · · (xn : An)→ C t

where C is a constant one defines

]f : (x1 : A1) (x2 : A2) · · · (xn : An)→∞C t
[ (]f x1 · · · xn) = f x1 · · · xn
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Suggested Extension

∞ as Syntactic Sugar

I Whether the following is a good notation needs to be discussed.
I However it allows to give an interpretation of Altenkirch et. al.’s

boxed operator [3], where ] t is the type of delayed computations.
I If C s1 · · · sn is an expression where C is a constant define

∞ (C s1 · · · sn) :=∞C s1 · · · sn

I If f s1 · · · sn is an expression where f is a constant define

] (f s1 · · · sn) := ]f s1 · · · sn

I In the above C s1 · · · sn and f s1 · · · sn are not evaluated, the right
hand side is evaluated.

I Note that ∞ x and ] x for variables x is not defined.
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Suggested Extension

Syntactic Sugar

I Note that the above is just syntactic sugar.
I Type checking and Term checking relies on type and termination

checking of the desugared version.
I Should the above definitions not be suitable, the user has access to

the standard coalgebra definitions.
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Suggested Extension

Example: coList, map and from

data coList : Setwhere
nil : coList
cons : N→∞ coList→ coList

map : (N→ N)→ coList→ coList
map f nil = nil
map f (cons n l) = cons (f n) (] (map f l))

from : N→ coList
from n = cons n (] (from (n + 1)))
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Suggested Extension

Sized Types

I For coalgebras one needs except for very simple examples sized types.
I In case of coList the definition is as follows:

mutual
coalg ∞coList {i : Size} : Set where
[ : {j : Size < i} → ∞coList {i} → coList{j}

data coList {i : Size} : Set where
nil : coList {i}
cons : N→∞coList {i} → coList {i}
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Suggested Extension

∞, ] with Sizes

I Whenever one defines a new constant

C : {i : Size} (x1 : A1) (x2 : A2) · · · (xn : An)→ Set

one defines simultaneously with any definition involving C

coalg ∞C {i : Size} (x1 : A1) (x2 : A2) · · · (xn : An) : Set where
[ : {j : Size < i} → ∞C {i} x1 · · · xn → C {j} x1 · · · xn

I Whenever one defines a new constant

f : {i : Size} (x1 : A1) (x2 : A2) · · · (xn : An)→ C t

where C is a constant one defines

]f : {i : Size} (x1 : A1) (x2 : A2) · · · (xn : An)→∞C t
[ (]f {i} x1 · · · xn) {j} = f {j} x1 · · · xn
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Suggested Extension

IO Interface

data Command : Set where
getStr : Command
putStr : String→ Command

Response : Command→ Set
Response getStr = String
Response (putStr s) = >
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Suggested Extension

Example IO

data IO {i : Size} (A : Set) : Set where
return : A→ IO {i} A
exec : (c : Command)

(p : Response c →∞ (IO {i} A))
→ IO {i} A

copycat : {i : Size} → IO {i} ⊥
copycat = exec getStr λ s →

] (exec (putStr s) λ →
] copycat)
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Suggested Extension

Object Interface for Cell

data Method : Set where
get : Method
put : N→ Method

Result : Method→ Set
Result get = N
Result (put n) = >
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Suggested Extension

Example Object [1]

Object : {i : Size} → Set
Object{i} = (m : Method)→ IO∞ (Result m × ] (Object{i}))

cell : {i : Size} → N→ Object {i}
cell n get = exec (putStr “get invoked”) λ →

] (return (n , ] (cell n)))
cell n (put m) = exec (putStr “put invoked”) λ →

] (return ( , ] (cell m)))
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Conclusion

Conclusion

I Definition of coalgebras by their elimination as a clean approach for
defining “infinite data types” (more precisely well-founded).

I Musical notation as syntactic sugar which reduces to coalgebras.
I Delayed computations can be interpreted in this setting.
I Resulting code is very close to codata types.
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