
Simulating Codata Types using Coalgebras
Anton Setzer

Dept. of Computer Science, Swansea University, Swansea, UK
a.g.setzer@swan.ac.uk

Abstract

We show how the so called musical notation in Agda for codata types can be considered
as syntactic sugar for using codata types in a coalgebraic setting. This allows to simulate
codata types using coalgebras while avoiding subject reduction and undecidability problems
of codata types. This restricted form of codata types can be added to the coalgebraic setting
allowing to shorten proofs and programs involving codata types.

The idea of a codata type is that it is like an algebraic data type (as introduced by the keyword
data in Agda/Haskell), but one allows infinite, or more generally non-wellfounded, applications
of constructors. An example is the type of colists which in Agda style would be defined as

codata coList : Set where
cons : N→ coList→ coList
nil : coList

and which contains finite lists as well as infinite lists such as the list of numbers greater than
n, defined as enum n := cons n (cons (n+ 1) (cons (n+ 2) · · ·)).
The problems are that when implementing it first in Coq and Agda a subject reduction problem
occurred. In our coauthored article [4] we showed that the implicit assumption when pattern
matching on codata types, namely that every element of a codata type is introduced by a
constructor, results in an undecidable equality.
In order to repair this, in our coauthored article [1] coalgebras and copatterns were proposed
for replacing codata types, giving a cleaner theory. They have since been implemented in Agda,
In that approach coalgebraic types are defined by their observations. An example is the set of
streams which in our desired notation (Agda uses record types instead) would be defined as:

coalg Stream : Set where
head : Stream→ N
tail : Stream→ Stream

We can define colists using coalgebras as follows:

data coList : Set where
cons : N→∞coList→ coList
nil : coList

coalg ∞coList : Set where
[: ∞coList→ coList

The type of colists is called ∞coList which has observation [, which determines for a colist
whether it is of the form nil or (cons n s). coList is the type of colist shapes having these
elements. Danielsson [5] pointed out that a key example for codata types is the map function,
which can get in variants of codata types quite long definitions. In coalgebras it can be defined
as follows:

map : (N→ N)→ coList→ coList
map f (cons n l) = cons (f n) (]map f ([l)))
map f nil = nil

]map : (N→ N)→ coList→∞coList
[(]map f l) = map f l

In Agda there exists a (currently no longer maintained) variant of codata types, using the so
called “Musical Notation” [2], which is a termination checked version of [3]. There one has a

Simulating Codata Types using Coalgebras Anton Setzer

type former ∞ : Set → Set, which defines a generic coalgebra ∞ A from A, and an operation
] : A→∞ A, lifting elements from A to ∞ A. It can be considered as being defined as follows:

coalg (∞ A) : Set where
[: ∞ A→ A

] : A→∞ A
[(] a) = a

Then colists and the map function are defined as

data coList : Set where
cons : N→∞ coList→ coList
nil : coList

map : (N→ N)→ coList→ coList
map f (cons n l) = cons (f n) (] (map f ([l)))
map f nil = nil

The problem is that the definition of map is, if followed to the letter, non normalising. Fur-
thermore it is not clear, what the right notion of equality is for elements] (map f l) and
] (map f ′ l′). In addition, ∞ A cannot defined generically in advance, it needs to be a coalge-
bra defined simultaneously with A. These problems can be clarified, by understanding them as
definitions using coalgebras, and introducing the following notations:
• When introducing a new constant A : (~x : ~A) → Set we define automatically a new

constant∞A of the same type, and when introducing a new function f : (~y : ~B)→ A ~t we
define a constant]f : (~y : ~B) → ∞A ~t with definitions (which are simultaneously defined
with the definitions of A and f):

coalg ∞A (~x : ~A) : Set where
[: ∞A ~x→ A ~x

]f : (~y : ~B)→∞A ~t
[(]f ~y) = f ~y

• If A, f are constants, then ∞ (A ~t) denotes ∞A ~t and] (f ~t) denotes]f ~t.
With this the above musical definition of coList andmap is the same as the previously introduced
direct simulation of coList using coalgebras, and the musical notation can be considered as
syntactic sugar for simulating codata types in coalgebras. It could live alongside the coalgebraic
version, shortening proofs and programs involving codata types.
We will discuss in our talk how to modify this definition to accommodate sized types. One should
note that Agda seems to treat mutual coinductive-inductive definitions as νX.µY definitions
without giving the option of defining them as µY.νX. Experiments show that this seems to be
the case both for the coalgebraic version and the version with musical notation.

References
[1] A. Abel, B. Pientka, D. Thibodeau, and A. Setzer. Copatterns: Programming infinite structures

by observations. In R. Giacobazzi and R. Cousot, editors, Proceedings of POPL ’13, pages 27–38,
New York, NY, USA, 2013. ACM. https://doi.org/10.1145/2429069.2429075.

[2] Agda Wiki. Coinductive data types, 1 January 2011. http://wiki.portal.chalmers.se/agda/
pmwiki.php?n=ReferenceManual.Codatatypes.

[3] T. Altenkirch, N. Danielsson, A. Löh, and N. Oury. ΠΣ: Dependent types without the sugar. In
M. Blume, N. Kobayashi, and G. Vidal, editors, Functional and Logic Programming, volume 6009
of Lecture Notes in Computer Science, pages 40–55. Springer Berlin / Heidelberg, 2010. http:
//dx.doi.org/10.1007/978-3-642-12251-4_5.

[4] U. Berger and A. Setzer. Undecidability of equality for codata types, February 2018. To ap-
pear in proceedings of CMCS’18, available from http://www.cs.swan.ac.uk/~csetzer/articles/
CMCS2018/bergerSetzerProceedingsCMCS18.pdf.

[5] N. A. Danielsson. Changes to coinduction, 17 March 2009. Message posted on
gmane.comp.lang.agda, available from http://article.gmane.org/gmane.comp.lang.agda/763/.

2

https://doi.org/10.1145/2429069.2429075
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=ReferenceManual.Codatatypes
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=ReferenceManual.Codatatypes
http://dx.doi.org/10.1007/978-3-642-12251-4_5
http://dx.doi.org/10.1007/978-3-642-12251-4_5
http://www.cs.swan.ac.uk/~csetzer/articles/CMCS2018/bergerSetzerProceedingsCMCS18.pdf
http://www.cs.swan.ac.uk/~csetzer/articles/CMCS2018/bergerSetzerProceedingsCMCS18.pdf
http://article.gmane.org/gmane.comp.lang.agda/763/

