Object-oriented Programming in Dependent Type Theory

Anton Setzer Swansea University, Swansea UK Joint work with Andreas Abel and Stephan Adelsberger COST Action EUTYPES WG meeting, Ljubljana, Slovenia

31 January 2017

Coalgebras in Dependent Type Theory

Objects

State Dependent Objects

Heap

Conclusion

Appendix: GUIs using Objects

Bibliography

Anton Setzer

Coalgebras in Dependent Type Theory

Objects

State Dependent Objects

Heap

Conclusion

Appendix: GUIs using Objects

Bibliography

3

イロト イポト イヨト イヨト

Old Version of Coalgebras: Codata Types

► Idea of Codata Types:

codata Stream : Set where cons : $\mathbb{N} \rightarrow \text{Stream} \rightarrow \text{Stream}$

 Same definition as inductive data type but we are allowed to have infinite chains of constructors

 $cons n_0 (cons n_1 (cons n_2 \cdots))$

Objects as Elements of Coalgebras

- Coalgebras are used for modelling various phenomena related infinite sequences of computations.
 - Correspond to non-well-founded trees.
 - Arise when dealing with interactive programs.
 - Interactive programs often don't terminate unless terminated by the user.
- ► Coalgebras arise as representations of **real numbers**.
 - Examples: streams of digits, Cauchy sequences.
 - In general approximations by finite values
- Coalgebraic programming is heavily used in object-oriented Programming.
 - See section on objects below.

Solution: Coalgebras Defined by Observations

- Problem of codata types: Non-normalisation and undecidability of equality.
- Instead we define define coalgebras by their observations. Tentative syntax

- Stream is the largest set of terms which allow arbitrary many applications of tail followed by head to obtain a natural numbers.
- From this one can develop a general model for coalgebras (see our paper [Set16]).
- Therefore no infinite expansion of streams:
 - for each expansion of a stream one needs one application of tail.

Syntax in Agda

► In Agda the record type has been reused for defining coalgebras:

```
record Stream (A : Set) : Set where
coinductive
field
head : A
tail : Stream A
```

イロト 不得下 イヨト イヨト 三日

Principle of Guarded Recursion

Define

$$\begin{array}{lll} f: A \to \mathsf{Stream} \\ \mathsf{head} & (f \ a) &= \ \cdots &: \ \mathbb{N} \\ \mathsf{tail} & (f \ a) &= \ \cdots &: \ \mathsf{Stream} \end{array}$$

where

tail
$$(f a) = f a'$$
 for some $a' : A$
or
tail $(f a) = s'$ for some s' : Stream given before

- ▶ No function can be applied to the corecursion hypothesis.
- Using sized types one can apply size preserving or size increasing functions to co-IH (Abel).
- Above is example of **copattern matching**.

Image: A matrix and a matrix

ヨト イヨト -

Example

▶ Constant stream of *a*, *a*, *a*, . . .

const : $\{A : Set\} \rightarrow A \rightarrow Stream A$ head (const a) = a tail (const a) = const a

• The increasing stream $n, n+1, n+2, \ldots$

inc : $\mathbb{N} \to \text{Stream} \ \mathbb{N}$ head (inc n) = ntail (inc n) = inc (n + 1)

► Cons is **defined**:

cons : $X \rightarrow$ Stream $X \rightarrow$ Stream Xhead (cons x l) = xtail (cons x l) = l

Nested Pattern/Copattern Matching

 We can even define functions by a combination of pattern and copattern matching and nest those: The following defines the stream

stutterDown $n n = n, n, n-1, n-1, \dots, 0, 0, n, n, n-1, n-1, \dots$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Hello World in Agda

We can develop IO programs based on coalgebras and get the following hello world program:

module helloWorld where

open import ConsoleLib

```
main : ConsoleProg
main = run (WriteString "Hello World")
```

イロト イポト イヨト イヨト

Coalgebras in Dependent Type Theory

Objects

State Dependent Objects

Heap

Conclusion

Appendix: GUIs using Objects

Bibliography

Э

イロト イポト イヨト イヨト

Object-Oriented/Based Programming

- Object-oriented (OO) programming is currently main programming paradigm.
 - Means that the main programming paradigm is essentially coalgebraic programming.
- Good for bundling operations into one objects, hiding implementations and reuse of code.
- ► Here restriction to **object-based programming**.
 - Only notion of an object covered.
 - Steps towards full OO programming work in progress.
- Ultimate goal: use objects in order to organise proofs in a better way.

Example: cell in Java

class cell <A> {

```
/* Instance Variable */
A content;
```

```
/* Constructor */
cell (A s) { content = s; }
```

```
/* Method put */
public void put (A s) { content = s; }
```

```
/* Method get */
public A get () { return content; }
```

}

Modelling Methods as Objects

- ► The Type (interface) cell modelled as a coalgebra Cell.
- A method

 $B \equiv (A x)$

is modelled as observation

 $\mathsf{m}: \mathsf{Cell} \to \mathsf{A} \to \mathsf{B} \times \mathsf{Cell}$

- ► Return type void is modelled as Unit (one element type).
- A constructor with argument A modelled as a function defined by guarded recursion

 $\mathsf{cell}: \mathsf{A} \to \mathsf{Cell}$

Cell in Agda

```
record Cell (X : Set) : Set where

coinductive

field

put : X \rightarrow ( Unit \times Cell X )

get : Unit \rightarrow ( X \times Cell X )
```

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

An interface for an object consist of methods and the result type:

record I	nterface	:	Set ₁ where
field	Method	:	Set
	Result	:	$Method \to Set$

An Object of an interface *I* has a method which for every method returns an element of the result type and the updated object:

```
record Object (I : Interface) : Set where
coinductive
field objectMethod : (m : Method I) \rightarrow Result I m \times Object I
```

Example: A Cell

A cell contains one element.

The methods allow to get its content and put a new value into the cell:

data CellMethod A : Set where get : CellMethod Aput : $A \rightarrow$ CellMethod A

celli : $(A : Set) \rightarrow$ Interface Method (celli A) = CellMethod A Result (celli A) m = CellResult m

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

The cell object is defined as follows:

Cell : Set \rightarrow Set Cell A = Object (cell A)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Coalgebras in Dependent Type Theory

Objects

State Dependent Objects

Heap

Conclusion

Appendix: GUIs using Objects

Bibliography

Э

イロト イポト イヨト イヨト

State Dependent Interface

```
record Interface<sup>s</sup> : Set<sub>1</sub> where

field

State<sup>s</sup> : Set

Method<sup>s</sup> : State<sup>s</sup> \rightarrow Set

Result<sup>s</sup> : (s : State<sup>s</sup>) \rightarrow (m : Method<sup>s</sup> s) \rightarrow Set

next<sup>s</sup> : (s : State<sup>s</sup>) \rightarrow (m : Method<sup>s</sup> s) \rightarrow Result<sup>s</sup> s m

\rightarrow State<sup>s</sup>
```

State Dependent Object

Assuming *I* : Interface^s we define the set of state dependent objects:

```
record Object<sup>s</sup> (I : Interface<sup>s</sup>) (s : State<sup>s</sup> I) : Set where
coinductive
field
objectMethod : (m : Method<sup>s</sup> I s)
\rightarrow \Sigma[ r \in \text{Result}^s I s m] Object<sup>s</sup> I (next<sup>s</sup> I s m r)
```

Example Safe Stack

 $\mathsf{StackState}^{\mathrm{s}} = \mathbb{N}$

data StackMethod^s (A : Set) : StackState^s \rightarrow Set where push : {n : StackState^s} $\rightarrow A \rightarrow$ StackMethod^s A npop : {n : StackState^s} \rightarrow StackMethod^s A (suc n)

$$\begin{array}{l} \mathsf{StackResult}^{\mathrm{s}} : \ (A: \mathsf{Set}) \to (s: \mathsf{StackState}^{\mathrm{s}}) \to \mathsf{StackMethod}^{\mathrm{s}} A \ s \\ \to \mathsf{Set} \\ \\ \mathsf{StackResult}^{\mathrm{s}} A \ .n \ (\mathsf{push} \ \{ \ n \ \} \ x_1) \ = \mathsf{Unit} \\ \\ \mathsf{StackResult}^{\mathrm{s}} A \ (\mathsf{suc} \ .n) \ (\mathsf{pop} \ \{ n \ \} \) = A \\ \\ \mathsf{n}^{\mathrm{s}} : \ (A: \mathsf{Set}) \to (s: \mathsf{StackState}^{\mathrm{s}}) \to (m: \mathsf{StackMethod}^{\mathrm{s}} A \ s) \\ \to (r: \mathsf{StackResult}^{\mathrm{s}} A \ s \ m) \to \mathsf{StackState}^{\mathrm{s}} \\ \to (r: \mathsf{StackResult}^{\mathrm{s}} A \ s \ m) \to \mathsf{StackState}^{\mathrm{s}} \\ \mathsf{n}^{\mathrm{s}} A \ .n \ (\mathsf{push} \ \{ \ n \ \} \ x) \ r = \mathsf{suc} \ n \\ \\ \mathsf{n}^{\mathrm{s}} A \ (\mathsf{suc} \ .n) \ (\mathsf{pop} \ \{ \ n \ \}) \ r = n \\ \\ \\ \underbrace{\mathsf{OQ} \ in \ \mathsf{dependent \ type \ theory}} \\ \end{array}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Example Fibonacci Stack

```
data FibState : Set where
fib : \mathbb{N} \rightarrow FibState
val : \mathbb{N} \rightarrow FibState
```

data FibStackEl : Set where _+· : $\mathbb{N} \rightarrow$ FibStackEl ·+fib_ : $\mathbb{N} \rightarrow$ FibStackEl

 $\begin{aligned} \mathsf{FibStack} &: \mathbb{N} \to \mathsf{Set} \\ \mathsf{FibStack} &= \mathsf{Object}^{\mathrm{s}} \ \mathsf{(StackInterface}^{\mathrm{s}} \ \mathsf{FibStackEl}) \end{aligned}$

```
emptyFibStack : FibStack 0
emptyFibStack = stackO []
```

イロト イポト イヨト イヨト 三日

Reduce

reduce : Stackmachine \rightarrow Stackmachine $\uplus \mathbb{N}$ reduce $(n, fib 0, stack) = inj_1 (n, val 1, stack)$ reduce $(n, \text{ fib } 1, \text{ stack}) = \text{inj}_1 (n, \text{ val } 1, \text{ stack})$ reduce (n, fib (suc (suc m)), stack) =objectMethod stack (push (·+fib m)) $\triangleright \lambda \{ (-, stack_1) \rightarrow$ ini_1 (suc *n*, fib (suc *m*), stack₁) } reduce $(0, val m, -) = inj_2 m$ reduce (suc n, val m, stack) = objectMethod stack pop ▷ $\lambda \{ (k + \cdot, stack_1) \rightarrow$ ini_1 (*n*, val (*k* + *m*), stack₁); $(\cdot + \text{fib } k, stack_1) \rightarrow$ objectMethod stack₁ (push $(m + \cdot)$) $\triangleright \lambda \{(-, stack_2) \rightarrow$ ini_1 (suc *n*, fib *k*, *stack*₂) } }

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Fibonacci Function

```
{-# NON_TERMINATING #-}
iter : Stackmachine \rightarrow \mathbb{N}
iter stack with reduce stack
... | inj<sub>1</sub> s' = iter s'
... | inj<sub>2</sub> m = m
```

```
fibUsingStack : \mathbb{N} \to \mathbb{N}
fibUsingStack n = iter (0, fib n, emptyFibStack)
```

State Dependent Objects

Paper to appear in JFP [AAS16a]

28/34

Results in [AAS16a]

- Development of GUIs in Agda.
 - Based on server-side programmings.
 - Use of action listeners which are part of an object
- Verification of laws of a safe and equivalences of implementations of stacks using bisimilarity.
- Library ooAgda on github [AAS16b].
- Remark: Library CSP-Agda for the process algebra CSP in Agda is now on github, see [IS17], article: [IS16].

SpaceShip Example

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Coalgebras in Dependent Type Theory

Objects

State Dependent Objects

Heap

Conclusion

Appendix: GUIs using Objects

Bibliography

Э

イロト イポト イヨト イヨト

Dynamic Creation of Objects

- Idea is to create a set Heap, and pointers on the heap which dereference as objects.
- We have a state dependent object heap
 - depending on the size of the heap,
 - and methods for
 - dereferencing pointers,
 - updating pointers,
 - creating new pointers (which increases the size
- Currently working on linked and double linked lists built on the heap.
 - Goal is to create a proper queue.
 - Idea: Develop and verify the networking protocols such as the Chord protocol.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Current Challenges

- What is the right language?
 - At the moment in OO programs in Agda we need to introduce for every new instance of an object a new variable.
 - Can we write a library which hides these new variables?
 - Do we need new language constructs in Agda or (preferred) can we achieve this using the library?
- How to execute programs involving the heap efficiently.
 - At the moment heap is implemented as a list of heap elements.
 - Can we in a compiled version override this by calls to the "real" heap?
 - Do we obtain good performance of a queue?
 - Is it possible to write a true heap directly in Agda without overriding?

イロト イポト イヨト イヨト

Conclusion

- Definition of coinductive data types (coalgebras) by their observations.
 - Use of copattern matching
- Objects as examples of coalgebras.
- State dependent objects.
- Current work: Developing of heap and dynamic creation of objects on the heap.

Coalgebras in Dependent Type Theory

Objects

State Dependent Objects

Heap

Conclusion

Appendix: GUIs using Objects

Bibliography

Э

イロト イポト イヨト イヨト

SpaceShip Example

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Graphics Interface Level1

data GuiLev1Command : Set where							
makeFrame	:	GuiLev1Command					
makeButton	:	Frame	\rightarrow	GuiLev1Con	nmand		
addButton	:	Frame	\rightarrow	${\sf Button} \ \to \\$	GuiLev1Command		
drawBitmap	:	DC	\rightarrow	$Bitmap \ \rightarrow$	$Point \to Bool$		
ightarrow GuiLev1Command							
repaint	:	Frame	\rightarrow	GuiLev1Con	nmand		

Graphics Level2 Commands

 $\begin{array}{l} {\sf GuiLev2State}:\;{\sf Set}_1\\ {\sf GuiLev2State}={\sf VarList} \end{array}$

data GuiLev2Command (s: GuiLev2State) : Set₁ where : GuiLev1Command \rightarrow GuiLev2Command s level1C createVar : $\{A : Set\} \rightarrow A \rightarrow GuiLev2Command s$ setButtonHandler : Button \rightarrow List (prod s \rightarrow IO GuiLev1Interface ∞ (prod s)) \rightarrow GuiLev2Command s setOnPaint : Frame \rightarrow List (prod $s \rightarrow$ DC \rightarrow Rect \rightarrow IO GuiLev1Interface ∞ (prod s)) \rightarrow GuiLev2Command s (B) (E) (E) (E) SQA Anton Setzer OO in dependent type theory 38/34

Graphics Level2 Response + Next

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Graphics Level2 Interface

ヨト イヨト -

Action Handling Object

data ActionHandlerMethod : Set where

onPaintM	:	DC	\rightarrow	$Rect \to ActionHandlerMethod$
moveSpaceShipM	:	Frame	\rightarrow	ActionHandlerMethod
callRepaintM	:	Frame	\rightarrow	ActionHandlerMethod

ActionHandlerInterface : Interface Method ActionHandlerInterface = ActionHandlerMethod Result ActionHandlerInterface = ActionHandlerResult

ActionHandler : Set ActionHandler = IOObject GuiLev1Interface ActionHandlerInterface

< ロ > < 同 > < 回 > < 回 > < 回 > <

Action Handling Object

actionHandler : $\mathbb{Z} \rightarrow$ ActionHandler method (actionHandler z) (onPaintM dc rect) = do ∞ (drawBitmap dc ship (z, (+ 150)) true) $\lambda_{-} \rightarrow$ return ∞ (unit, actionHandler z) method (actionHandler z) (moveSpaceShipM fra) = return ∞ (unit, actionHandler (z + (+ 20))) method (actionHandler z) (callRepaintM fra) = do ∞ (repaint fra) $\lambda_{-} \rightarrow$ return ∞ (unit, actionHandler z)

actionHandlerInit : ActionHandler actionHandlerInit = actionHandler (+ 150)

<ロ> <部 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > <

Action Handlers

Action Handlers

$\begin{array}{rll} \mbox{callRepaint} & : & \mbox{Frame} \rightarrow \mbox{ActionHandler} \\ & \rightarrow \mbox{ IO GuiLev1Interface ActionHandler} \end{array}$

callRepaint fra obj = maplO proj₂ (method obj (callRepaintM fra))

buttonHandler : Frame \rightarrow List (ActionHandler \rightarrow IO GuiLev1Interface ActionHandler) buttonHandler *fra* = moveSpaceShip *fra* :: [callRepaint *fra*]

・ロト ・聞 ト ・ ヨト ・ ヨト …

Spaceship Program

```
main : NativelO Unit
main = start (translateLev2 program)
```

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Bibliography I

Andreas Abel, Stephan Adelsberger, and Anton Setzer. Interactive programming in Agda – objects and graphical user interfaces.

To appear in Journal of Functional Programming. Preprint available at http://www.cs.swan.ac.uk/~csetzer/articles/ooAgda.pdf,
2016.

Andreas Abel, Stephan Adelsberger, and Anton Setzer. ooAgda. Agda Library. Available from https://github.com/agda/ooAgda, 2016.

소리 에 관계에 가 물 에 가 물 에 다

Bibliography II

Bashar Igried and Anton Setzer.

Programming with monadic CSP-style processes in dependent type theory.

In <u>Proceedings of the 1st International Workshop on Type-Driven</u> <u>Development</u>, TyDe 2016, pages 28–38, New York, NY, USA, 2016. ACM.

http://doi.acm.org/10.1145/2976022.2976032.

Bashar Igried and Anton Setzer. CSP-Agda. Agda library. Available at https://github.com/csetzer/cspagdaPublic, 2017.

・ロト ・得ト ・ヨト ・ヨト - ヨ

Bibliography III

Anton Setzer.

Object-oriented programming in dependent type theory. In Conference Proceedings of TFP 2006, 2006. Available from http: //www.cs.nott.ac.uk/~nhn/TFP2006/TFP2006-Programme.html and http://www.cs.swan.ac.uk/\$\sim\$csetzer/index.html.

Anton Setzer.

How to reason coinductively informally.

In Reinhard Kahle, Thomas Strahm, and Thomas Studer, editors, Advances in Proof Theory, pages 377-408. Springer, 2016. Doi page http://link.springer.com/chapter/10.1007% 2F978-3-319-29198-7_12, authors copy at http://www.cs.swan. ac.uk/~csetzer/articles/jaeger60Birthdaymain.pdf.