
Object-oriented Programming in Dependent Type Theory

Anton Setzer
Swansea University, Swansea UK

Joint work with Andreas Abel and Stephan Adelsberger
COST Action EUTYPES WG meeting, Ljubljana, Slovenia

31 January 2017

Anton Setzer OO in dependent type theory 1/ 34

Coalgebras in Dependent Type Theory

Objects

State Dependent Objects

Heap

Conclusion

Appendix: GUIs using Objects

Bibliography

Anton Setzer OO in dependent type theory 2/ 34

Coalgebras in Dependent Type Theory

Coalgebras in Dependent Type Theory

Objects

State Dependent Objects

Heap

Conclusion

Appendix: GUIs using Objects

Bibliography

Anton Setzer OO in dependent type theory 3/ 34

Coalgebras in Dependent Type Theory

Old Version of Coalgebras: Codata Types

I Idea of Codata Types:

codata Stream : Set where
cons : N→ Stream→ Stream

I Same definition as inductive data type but we are allowed to have
infinite chains of constructors

cons n0 (cons n1 (cons n2 · · ·))

Anton Setzer OO in dependent type theory 4/ 34

Coalgebras in Dependent Type Theory

Objects as Elements of Coalgebras

I Coalgebras are used for modelling various phenomena related
infinite sequences of computations.

I Correspond to non-well-founded trees.
I Arise when dealing with interactive programs.

I Interactive programs often don’t terminate unless terminated by the
user.

I Coalgebras arise as representations of real numbers.
I Examples: streams of digits, Cauchy sequences.
I In general approximations by finite values

I Coalgebraic programming is heavily used in
object-oriented Programming.

I See section on objects below.

Anton Setzer OO in dependent type theory 5/ 34

Coalgebras in Dependent Type Theory

Solution: Coalgebras Defined by Observations

I Problem of codata types: Non-normalisation and undecidability of
equality.

I Instead we define define coalgebras by their observations.
Tentative syntax

coalg Stream : Set where
head : Stream→ N
tail : Stream→ Stream

I Stream is the largest set of terms which allow arbitrary many
applications of tail followed by head to obtain a natural numbers.

I From this one can develop a general model for coalgebras (see our
paper [Set16]).

I Therefore no infinite expansion of streams:
– for each expansion of a stream one needs one application of tail.

Anton Setzer OO in dependent type theory 6/ 34

Coalgebras in Dependent Type Theory

Syntax in Agda

I In Agda the record type has been reused for defining coalgebras:

record Stream (A : Set) : Set where
coinductive
field

head : A
tail : Stream A

Anton Setzer OO in dependent type theory 7/ 34

Coalgebras in Dependent Type Theory

Principle of Guarded Recursion

I Define
f : A→ Stream
head (f a) = · · · : N
tail (f a) = · · · : Stream

where

tail (f a) = f a′ for some a′ : A
or
tail (f a) = s ′ for some s ′ : Stream given before

I No function can be applied to the corecursion hypothesis.
I Using sized types one can apply size preserving or size increasing

functions to co-IH (Abel).
I Above is example of copattern matching.

Anton Setzer OO in dependent type theory 8/ 34

Coalgebras in Dependent Type Theory

Example

I Constant stream of a, a, a, . . .

const : {A : Set} → A→ Stream A
head (const a) = a
tail (const a) = const a

I The increasing stream n, n + 1, n + 2, . . .

inc : N→ Stream N
head (inc n) = n
tail (inc n) = inc (n + 1)

I Cons is defined:

cons : X → Stream X → Stream X
head (cons x l) = x
tail (cons x l) = l

Anton Setzer OO in dependent type theory 9/ 34

Coalgebras in Dependent Type Theory

Nested Pattern/Copattern Matching

I We can even define functions by a combination of pattern and
copattern matching and nest those:
The following defines the stream

stutterDown n n = n, n, n − 1, n − 1, . . . 0, 0, n, n, n − 1, n − 1, . . .

stutterDown : N → N → Stream N
head (stutterDown n m) = m
head (tail (stutterDown n m)) = m
tail (tail (stutterDown n (suc m))) = stutterDown n m
tail (tail (stutterDown n 0)) = stutterDown n n

Anton Setzer OO in dependent type theory 10/ 34

Coalgebras in Dependent Type Theory

Hello World in Agda

We can develop IO programs based on coalgebras and get the following
hello world program:

module helloWorld where

open import ConsoleLib

main : ConsoleProg
main = run (WriteString "Hello World")

Anton Setzer OO in dependent type theory 11/ 34

Objects

Coalgebras in Dependent Type Theory

Objects

State Dependent Objects

Heap

Conclusion

Appendix: GUIs using Objects

Bibliography

Anton Setzer OO in dependent type theory 12/ 34

Objects

Object-Oriented/Based Programming

I Object-oriented (OO) programming is currently main programming
paradigm.

I Means that the main programming paradigm is essentially
coalgebraic programming.

I Good for bundling operations into one objects, hiding implementations
and reuse of code.

I Here restriction to object-based programming.
I Only notion of an object covered.
I Steps towards full OO programming work in progress.

I Ultimate goal: use objects in order to organise proofs in a better
way.

Anton Setzer OO in dependent type theory 13/ 34

Objects

Example: cell in Java

class cell <A> {

/∗ Instance Variable ∗/
A content;

/∗ Constructor ∗/
cell (A s) { content = s; }

/∗ Method put ∗/
public void put (A s) { content = s; }

/∗ Method get ∗/
public A get () { return content; }

}

Anton Setzer OO in dependent type theory 14/ 34

Objects

Modelling Methods as Objects

I The Type (interface) cell modelled as a coalgebra Cell.
I A method

B m (A x)

is modelled as observation
m : Cell → A → B × Cell

I Return type void is modelled as Unit (one element type).
I A constructor with argument A modelled as a function defined by

guarded recursion
cell : A → Cell

Anton Setzer OO in dependent type theory 15/ 34

Objects

Cell in Agda

record Cell (X : Set) : Set where
coinductive
field

put : X → (Unit × Cell X)
get : Unit → (X × Cell X)

cell : {X : Set} → X → Cell X
put (cell x) y = (unit , cell y)
get (cell x) = (x , cell x)

Anton Setzer OO in dependent type theory 16/ 34

Objects

Generic Version

An interface for an object consist of methods and the result type:

record Interface : Set1 where
field Method : Set

Result : Method → Set

An Object of an interface I has a method which for every method returns
an element of the result type and the updated object:

record Object (I : Interface) : Set where
coinductive
field objectMethod : (m : Method I) → Result I m × Object I

Anton Setzer OO in dependent type theory 17/ 34

Objects

Example: A Cell

A cell contains one element.
The methods allow to get its content and put a new value into the cell:

data CellMethod A : Set where
get : CellMethod A
put : A → CellMethod A

CellResult : ∀{A} → CellMethod A → Set
CellResult {A} get = A
CellResult (put) = Unit

cellI : (A : Set) → Interface
Method (cellI A) = CellMethod A
Result (cellI A) m = CellResult m

Anton Setzer OO in dependent type theory 18/ 34

Objects

Definition of Cell

The cell object is defined as follows:

Cell : Set → Set
Cell A = Object (cellI A)

cell : {A : Set} → A → Cell A
objectMethod (cell a) get = (a , cell a)
objectMethod (cell a) (put b) = (unit , cell b)

Anton Setzer OO in dependent type theory 19/ 34

State Dependent Objects

Coalgebras in Dependent Type Theory

Objects

State Dependent Objects

Heap

Conclusion

Appendix: GUIs using Objects

Bibliography

Anton Setzer OO in dependent type theory 20/ 34

State Dependent Objects

State Dependent Interface

record Interfaces : Set1 where
field

States : Set
Methods : States → Set
Results : (s : States) → (m : Methods s) → Set
nexts : (s : States) → (m : Methods s) → Results s m

→ States

Anton Setzer OO in dependent type theory 21/ 34

State Dependent Objects

State Dependent Object

Assuming I : Interfaces we define the set of state dependent objects:

record Objects (I : Interfaces) (s : States I) : Set where
coinductive
field

objectMethod : (m : Methods I s)
→ Σ[r ∈ Results I s m] Objects I (nexts I s m r)

Anton Setzer OO in dependent type theory 22/ 34

State Dependent Objects

Example Safe Stack

StackStates = N

data StackMethods (A : Set) : StackStates → Set where
push : {n : StackStates} → A → StackMethods A n
pop : {n : StackStates} → StackMethods A (suc n)

StackResults : (A : Set) → (s : StackStates) → StackMethods A s
→ Set

StackResults A .n (push { n } x1) = Unit
StackResults A (suc .n) (pop {n}) = A

ns : (A : Set) → (s : StackStates) → (m : StackMethods A s)
→ (r : StackResults A s m) → StackStates

ns A .n (push { n } x) r = suc n
ns A (suc .n) (pop { n }) r = n
Anton Setzer OO in dependent type theory 23/ 34

State Dependent Objects

Safe Stack

StackInterfaces : (A : Set) → Interfaces

States (StackInterfaces A) = StackStates

Methods (StackInterfaces A) = StackMethods A
Results (StackInterfaces A) = StackResults A
nexts (StackInterfaces A) = ns A

stackO : ∀{E : Set} {n : N} (v : Vec E n)
→ Objects (StackInterfaces E) n

objectMethod (stackO es) (push e) = (, stackO (e :: es))
objectMethod (stackO (e :: es)) pop = (e , stackO es)

Anton Setzer OO in dependent type theory 24/ 34

State Dependent Objects

Example Fibonacci Stack

data FibState : Set where
fib : N → FibState
val : N → FibState

data FibStackEl : Set where
+· : N → FibStackEl
·+fib : N → FibStackEl

FibStack : N → Set
FibStack = Objects (StackInterfaces FibStackEl)

emptyFibStack : FibStack 0
emptyFibStack = stackO []

Stackmachine : Set
Stackmachine = Σ[n ∈ N] (FibState × FibStack n)
Anton Setzer OO in dependent type theory 25/ 34

State Dependent Objects

Reduce

reduce : Stackmachine → Stackmachine] N
reduce (n , fib 0 , stack) = inj1 (n , val 1 , stack)
reduce (n , fib 1 , stack) = inj1 (n , val 1 , stack)
reduce (n , fib (suc (suc m)) , stack) =

objectMethod stack (push (·+fib m)) B ń { (, stack1) →
inj1 (suc n , fib (suc m) , stack1) }

reduce (0 , val m ,) = inj2 m
reduce (suc n , val m , stack) =

objectMethod stack pop B ń { (k +· , stack1) →
inj1 (n , val (k + m) , stack1) ;

(·+fib k , stack1) →
objectMethod stack1 (push (m +·)) B ń {(, stack2) →
inj1 (suc n , fib k , stack2) } }

Anton Setzer OO in dependent type theory 26/ 34

State Dependent Objects

Fibonacci Function

{-# NON TERMINATING #-}
iter : Stackmachine → N
iter stack with reduce stack
... | inj1 s’ = iter s’
... | inj2 m = m

fibUsingStack : N → N
fibUsingStack n = iter (0 , fib n , emptyFibStack)

Anton Setzer OO in dependent type theory 27/ 34

State Dependent Objects

Paper to appear in JFP [AAS16a]

Anton Setzer OO in dependent type theory 28/ 34

State Dependent Objects

Results in [AAS16a]

I Development of GUIs in Agda.
I Based on server-side programmings.
I Use of action listeners which are part of an object

I Verification of laws of a safe and equivalences of implementations of
stacks using bisimilarity.

I Library ooAgda on github [AAS16b].

I Remark: Library CSP-Agda for the process algebra CSP in Agda is
now on github, see [IS17], article: [IS16].

Anton Setzer OO in dependent type theory 29/ 34

SpaceShip Example

Heap

Coalgebras in Dependent Type Theory

Objects

State Dependent Objects

Heap

Conclusion

Appendix: GUIs using Objects

Bibliography

Anton Setzer OO in dependent type theory 31/ 34

Heap

Dynamic Creation of Objects

I Idea is to create a set Heap, and pointers on the heap which
dereference as objects.

I We have a state dependent object heap
I depending on the size of the heap,
I and methods for

I dereferencing pointers,
I updating pointers,
I creating new pointers (which increases the size

I Currently working on linked and double linked lists built on the heap.
I Goal is to create a proper queue.
I Idea: Develop and verify the networking protocols such as the Chord

protocol.

Anton Setzer OO in dependent type theory 32/ 34

Heap

Current Challenges

I What is the right language?
I At the moment in OO programs in Agda we need to introduce for

every new instance of an object a new variable.
I Can we write a library which hides these new variables?
I Do we need new language constructs in Agda or (preferred) can we

achieve this using the library?
I How to execute programs involving the heap efficiently.

I At the moment heap is implemented as a list of heap elements.
I Can we in a compiled version override this by calls to the “real” heap?
I Do we obtain good performance of a queue?
I Is it possible to write a true heap directly in Agda without overriding?

Anton Setzer OO in dependent type theory 33/ 34

Conclusion

Conclusion

I Definition of coinductive data types (coalgebras) by their
observations.

I Use of copattern matching

I Objects as examples of coalgebras.
I State dependent objects.
I Current work: Developing of heap and dynamic creation of objects

on the heap.

Anton Setzer OO in dependent type theory 34/ 34

Appendix: GUIs using Objects

Coalgebras in Dependent Type Theory

Objects

State Dependent Objects

Heap

Conclusion

Appendix: GUIs using Objects

Bibliography

Anton Setzer OO in dependent type theory 35/ 34

SpaceShip Example

Appendix: GUIs using Objects

Graphics Interface Level1

data GuiLev1Command : Set where
makeFrame : GuiLev1Command
makeButton : Frame → GuiLev1Command
addButton : Frame → Button → GuiLev1Command
drawBitmap : DC → Bitmap → Point → Bool

→ GuiLev1Command
repaint : Frame → GuiLev1Command

GuiLev1Response : GuiLev1Command → Set
GuiLev1Response makeFrame = Frame
GuiLev1Response (makeButton) = Button
GuiLev1Response = Unit

GuiLev1Interface : IOInterface
Command GuiLev1Interface = GuiLev1Command
Response GuiLev1Interface = GuiLev1Response
Anton Setzer OO in dependent type theory 37/ 34

Appendix: GUIs using Objects

Graphics Level2 Commands

GuiLev2State : Set1
GuiLev2State = VarList

data GuiLev2Command (s : GuiLev2State) : Set1 where
level1C : GuiLev1Command → GuiLev2Command s
createVar : {A : Set} → A → GuiLev2Command s
setButtonHandler : Button

→ List (prod s
→ IO GuiLev1Interface ∞ (prod s))

→ GuiLev2Command s
setOnPaint : Frame

→ List (prod s → DC → Rect
→ IO GuiLev1Interface ∞ (prod s))

→ GuiLev2Command s
Anton Setzer OO in dependent type theory 38/ 34

Appendix: GUIs using Objects

Graphics Level2 Response + Next

GuiLev2Response : (s : GuiLev2State) → GuiLev2Command s
→ Set

GuiLev2Response (level1C c) = GuiLev1Response c
GuiLev2Response (createVar {A} a) = Var A
GuiLev2Response = Unit

GuiLev2Next : (s : GuiLev2State) → (c : GuiLev2Command s)
→ GuiLev2Response s c
→ GuiLev2State

GuiLev2Next s (createVar {A} a) var = addVar A var s
GuiLev2Next s = s

Anton Setzer OO in dependent type theory 39/ 34

Appendix: GUIs using Objects

Graphics Level2 Interface

GuiLev2Interface : IOInterfaces

States GuiLev2Interface = GuiLev2State
Commands GuiLev2Interface = GuiLev2Command
Responses GuiLev2Interface = GuiLev2Response
nexts GuiLev2Interface = GuiLev2Next

Anton Setzer OO in dependent type theory 40/ 34

Appendix: GUIs using Objects

Action Handling Object

data ActionHandlerMethod : Set where
onPaintM : DC → Rect → ActionHandlerMethod
moveSpaceShipM : Frame → ActionHandlerMethod
callRepaintM : Frame → ActionHandlerMethod

ActionHandlerResult : ActionHandlerMethod → Set
ActionHandlerResult = Unit

ActionHandlerInterface : Interface
Method ActionHandlerInterface = ActionHandlerMethod
Result ActionHandlerInterface = ActionHandlerResult

ActionHandler : Set
ActionHandler = IOObject GuiLev1Interface ActionHandlerInterface

{-# TERMINATING #-}Anton Setzer OO in dependent type theory 41/ 34

Appendix: GUIs using Objects

Action Handling Object

actionHandler : Z → ActionHandler
method (actionHandler z) (onPaintM dc rect) =

do∞ (drawBitmap dc ship (z , (+ 150)) true) ń →
return∞ (unit , actionHandler z)

method (actionHandler z) (moveSpaceShipM fra) =
return∞ (unit , actionHandler (z + (+ 20)))

method (actionHandler z) (callRepaintM fra) =
do∞ (repaint fra) ń →
return∞ (unit , actionHandler z)

actionHandlerInit : ActionHandler
actionHandlerInit = actionHandler (+ 150)

Anton Setzer OO in dependent type theory 42/ 34

Appendix: GUIs using Objects

Action Handlers

onPaint : ActionHandler → DC → Rect
→ IO GuiLev1Interface ActionHandler

onPaint obj dc rect = mapIO proj2 (method obj (onPaintM dc rect))

moveSpaceShip : Frame → ActionHandler
→ IO GuiLev1Interface ActionHandler

moveSpaceShip fra obj = mapIO proj2
(method obj (moveSpaceShipM fra))

Anton Setzer OO in dependent type theory 43/ 34

Appendix: GUIs using Objects

Action Handlers

callRepaint : Frame → ActionHandler
→ IO GuiLev1Interface ActionHandler

callRepaint fra obj = mapIO proj2 (method obj (callRepaintM fra))

buttonHandler : Frame → List (ActionHandler
→ IO GuiLev1Interface ActionHandler)

buttonHandler fra = moveSpaceShip fra :: [callRepaint fra]

Anton Setzer OO in dependent type theory 44/ 34

Appendix: GUIs using Objects

Spaceship Program

program : IOs GuiLev2Interface (ń → Unit) []
program = dos (level1C makeFrame) ń fra →

dos (level1C (makeButton fra)) ń bt →
dos (level1C (addButton fra bt)) ń →
dos (createVar actionHandlerInit) ń →
dos (setButtonHandler bt (moveSpaceShip fra

:: [callRepaint fra])) ń →
dos (setOnPaint fra [onPaint])
returns

main : NativeIO Unit
main = start (translateLev2 program)

Anton Setzer OO in dependent type theory 45/ 34

Bibliography

Bibliography I

Andreas Abel, Stephan Adelsberger, and Anton Setzer.
Interactive programming in Agda – objects and graphical user
interfaces.
To appear in Journal of Functional Programming. Preprint available at
http://www.cs.swan.ac.uk/~csetzer/articles/ooAgda.pdf,
2016.

Andreas Abel, Stephan Adelsberger, and Anton Setzer.
ooAgda.
Agda Library. Available from https://github.com/agda/ooAgda,
2016.

Anton Setzer OO in dependent type theory 46/ 34

http://www.cs.swan.ac.uk/~csetzer/articles/ooAgda.pdf
https://github.com/agda/ooAgda

Bibliography

Bibliography II

Bashar Igried and Anton Setzer.
Programming with monadic CSP-style processes in dependent type
theory.
In Proceedings of the 1st International Workshop on Type-Driven
Development, TyDe 2016, pages 28–38, New York, NY, USA, 2016.
ACM.
http://doi.acm.org/10.1145/2976022.2976032.

Bashar Igried and Anton Setzer.
CSP-Agda.
Agda library. Available at
https://github.com/csetzer/cspagdaPublic, 2017.

Anton Setzer OO in dependent type theory 47/ 34

http://doi.acm.org/10.1145/2976022.2976032
https://github.com/csetzer/cspagdaPublic

Bibliography

Bibliography III

Anton Setzer.
Object-oriented programming in dependent type theory.
In Conference Proceedings of TFP 2006, 2006.
Available from http:
//www.cs.nott.ac.uk/~nhn/TFP2006/TFP2006-Programme.html
and http://www.cs.swan.ac.uk/\simcsetzer/index.html.

Anton Setzer.
How to reason coinductively informally.
In Reinhard Kahle, Thomas Strahm, and Thomas Studer, editors,
Advances in Proof Theory, pages 377–408. Springer, 2016.
Doi page http://link.springer.com/chapter/10.1007%
2F978-3-319-29198-7_12, authors copy at http://www.cs.swan.
ac.uk/~csetzer/articles/jaeger60Birthdaymain.pdf.

Anton Setzer OO in dependent type theory 48/ 34

http://www.cs.nott.ac.uk/~nhn/TFP2006/TFP2006-Programme.html
http://www.cs.nott.ac.uk/~nhn/TFP2006/TFP2006-Programme.html
http://www.cs.swan.ac.uk/$\sim $csetzer/index.html
http://link.springer.com/chapter/10.1007%2F978-3-319-29198-7_12
http://link.springer.com/chapter/10.1007%2F978-3-319-29198-7_12
http://www.cs.swan.ac.uk/~csetzer/articles/jaeger60Birthdaymain.pdf
http://www.cs.swan.ac.uk/~csetzer/articles/jaeger60Birthdaymain.pdf

	Coalgebras in Dependent Type Theory
	Objects
	State Dependent Objects
	Heap
	Conclusion
	Appendix: GUIs using Objects
	Bibliography

