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Coalgebras in Dependent Type Theory

Old Version of Coalgebras: Codata Types

I Idea of Codata Types:

codata Stream : Set where
cons : N→ Stream→ Stream

I Same definition as inductive data type but we are allowed to have
infinite chains of constructors

cons n0 (cons n1 (cons n2 · · · ))
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Coalgebras in Dependent Type Theory

Objects as Elements of Coalgebras

I Coalgebras are used for modelling various phenomena related
infinite sequences of computations.

I Correspond to non-well-founded trees.
I Arise when dealing with interactive programs.

I Interactive programs often don’t terminate unless terminated by the
user.

I Coalgebras arise as representations of real numbers.
I Examples: streams of digits, Cauchy sequences.
I In general approximations by finite values

I Coalgebraic programming is heavily used in
object-oriented Programming.

I See section on objects below.
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Coalgebras in Dependent Type Theory

Solution: Coalgebras Defined by Observations

I Problem of codata types: Non-normalisation and undecidability of
equality.

I Instead we define define coalgebras by their observations.
Tentative syntax

coalg Stream : Set where
head : Stream→ N
tail : Stream→ Stream

I Stream is the largest set of terms which allow arbitrary many
applications of tail followed by head to obtain a natural numbers.

I From this one can develop a general model for coalgebras (see our
paper [Set16]).

I Therefore no infinite expansion of streams:
– for each expansion of a stream one needs one application of tail.
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Coalgebras in Dependent Type Theory

Syntax in Agda

I In Agda the record type has been reused for defining coalgebras:

record Stream (A : Set) : Set where
coinductive
field

head : A
tail : Stream A
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Coalgebras in Dependent Type Theory

Principle of Guarded Recursion

I Define
f : A→ Stream
head (f a) = · · · : N
tail (f a) = · · · : Stream

where

tail (f a) = f a′ for some a′ : A
or
tail (f a) = s ′ for some s ′ : Stream given before

I No function can be applied to the corecursion hypothesis.
I Using sized types one can apply size preserving or size increasing

functions to co-IH (Abel).
I Above is example of copattern matching.
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Coalgebras in Dependent Type Theory

Example

I Constant stream of a, a, a, . . .

const : {A : Set} → A→ Stream A
head (const a) = a
tail (const a) = const a

I The increasing stream n, n + 1, n + 2, . . .

inc : N→ Stream N
head (inc n) = n
tail (inc n) = inc (n + 1)

I Cons is defined:

cons : X → Stream X → Stream X
head (cons x l) = x
tail (cons x l) = l

Anton Setzer OO in dependent type theory 9/ 34



Coalgebras in Dependent Type Theory

Nested Pattern/Copattern Matching

I We can even define functions by a combination of pattern and
copattern matching and nest those:
The following defines the stream

stutterDown n n = n, n, n − 1, n − 1, . . . 0, 0, n, n, n − 1, n − 1, . . .

stutterDown : N → N → Stream N
head (stutterDown n m) = m
head (tail (stutterDown n m)) = m
tail (tail (stutterDown n (suc m))) = stutterDown n m
tail (tail (stutterDown n 0)) = stutterDown n n
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Coalgebras in Dependent Type Theory

Hello World in Agda

We can develop IO programs based on coalgebras and get the following
hello world program:

module helloWorld where

open import ConsoleLib

main : ConsoleProg
main = run (WriteString "Hello World")
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Objects

Object-Oriented/Based Programming

I Object-oriented (OO) programming is currently main programming
paradigm.

I Means that the main programming paradigm is essentially
coalgebraic programming.

I Good for bundling operations into one objects, hiding implementations
and reuse of code.

I Here restriction to object-based programming.
I Only notion of an object covered.
I Steps towards full OO programming work in progress.

I Ultimate goal: use objects in order to organise proofs in a better
way.
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Objects

Example: cell in Java

class cell <A> {

/∗ Instance Variable ∗/
A content;

/∗ Constructor ∗/
cell (A s) { content = s; }

/∗ Method put ∗/
public void put (A s) { content = s; }

/∗ Method get ∗/
public A get () { return content; }

}
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Objects

Modelling Methods as Objects

I The Type (interface) cell modelled as a coalgebra Cell.
I A method

B m (A x)

is modelled as observation
m : Cell → A → B × Cell

I Return type void is modelled as Unit (one element type).
I A constructor with argument A modelled as a function defined by

guarded recursion
cell : A → Cell
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Objects

Cell in Agda

record Cell (X : Set) : Set where
coinductive
field

put : X → ( Unit × Cell X )
get : Unit → ( X × Cell X )

cell : {X : Set} → X → Cell X
put (cell x) y = (unit , cell y)
get (cell x) = (x , cell x)
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Objects

Generic Version

An interface for an object consist of methods and the result type:

record Interface : Set1 where
field Method : Set

Result : Method → Set

An Object of an interface I has a method which for every method returns
an element of the result type and the updated object:

record Object (I : Interface) : Set where
coinductive
field objectMethod : (m : Method I) → Result I m × Object I

Anton Setzer OO in dependent type theory 17/ 34



Objects

Example: A Cell

A cell contains one element.
The methods allow to get its content and put a new value into the cell:

data CellMethod A : Set where
get : CellMethod A
put : A → CellMethod A

CellResult : ∀{A} → CellMethod A → Set
CellResult {A} get = A
CellResult (put ) = Unit

cellI : (A : Set) → Interface
Method (cellI A) = CellMethod A
Result (cellI A) m = CellResult m
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Objects

Definition of Cell

The cell object is defined as follows:

Cell : Set → Set
Cell A = Object (cellI A)

cell : {A : Set} → A → Cell A
objectMethod (cell a) get = ( a , cell a )
objectMethod (cell a) (put b) = ( unit , cell b )
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State Dependent Objects

State Dependent Interface

record Interfaces : Set1 where
field

States : Set
Methods : States → Set
Results : (s : States) → (m : Methods s) → Set
nexts : (s : States) → (m : Methods s) → Results s m

→ States
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State Dependent Objects

State Dependent Object

Assuming I : Interfaces we define the set of state dependent objects:

record Objects (I : Interfaces) (s : States I) : Set where
coinductive
field

objectMethod : (m : Methods I s)
→ Σ[ r ∈ Results I s m ] Objects I (nexts I s m r)
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State Dependent Objects

Example Safe Stack

StackStates = N

data StackMethods (A : Set) : StackStates → Set where
push : {n : StackStates} → A → StackMethods A n
pop : {n : StackStates} → StackMethods A (suc n)

StackResults : (A : Set) → (s : StackStates) → StackMethods A s
→ Set

StackResults A .n (push { n } x1) = Unit
StackResults A (suc .n) (pop {n} ) = A

ns : (A : Set) → (s : StackStates) → (m : StackMethods A s)
→ (r : StackResults A s m) → StackStates

ns A .n (push { n } x) r = suc n
ns A (suc .n) (pop { n }) r = n
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State Dependent Objects

Safe Stack

StackInterfaces : (A : Set) → Interfaces

States (StackInterfaces A) = StackStates

Methods (StackInterfaces A) = StackMethods A
Results (StackInterfaces A) = StackResults A
nexts (StackInterfaces A) = ns A

stackO : ∀{E : Set} {n : N} (v : Vec E n)
→ Objects (StackInterfaces E) n

objectMethod (stackO es) (push e) = ( , stackO (e :: es))
objectMethod (stackO (e :: es)) pop = (e , stackO es)
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State Dependent Objects

Example Fibonacci Stack

data FibState : Set where
fib : N → FibState
val : N → FibState

data FibStackEl : Set where
+· : N → FibStackEl
·+fib : N → FibStackEl

FibStack : N → Set
FibStack = Objects (StackInterfaces FibStackEl)

emptyFibStack : FibStack 0
emptyFibStack = stackO []

Stackmachine : Set
Stackmachine = Σ[ n ∈ N ] (FibState × FibStack n)
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State Dependent Objects

Reduce

reduce : Stackmachine → Stackmachine ] N
reduce (n , fib 0 , stack) = inj1 (n , val 1 , stack)
reduce (n , fib 1 , stack) = inj1 (n , val 1 , stack)
reduce (n , fib (suc (suc m)) , stack) =

objectMethod stack (push (·+fib m)) B ń { ( , stack1) →
inj1 ( suc n , fib (suc m) , stack1) }

reduce (0 , val m , ) = inj2 m
reduce (suc n , val m , stack) =

objectMethod stack pop B ń { (k +· , stack1) →
inj1 (n , val (k + m) , stack1) ;

(·+fib k , stack1) →
objectMethod stack1 (push (m +·)) B ń {( , stack2) →
inj1 (suc n , fib k , stack2) } }

Anton Setzer OO in dependent type theory 26/ 34



State Dependent Objects

Fibonacci Function

{-# NON TERMINATING #-}
iter : Stackmachine → N
iter stack with reduce stack
... | inj1 s’ = iter s’
... | inj2 m = m

fibUsingStack : N → N
fibUsingStack n = iter (0 , fib n , emptyFibStack)
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State Dependent Objects

Paper to appear in JFP [AAS16a]
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State Dependent Objects

Results in [AAS16a]

I Development of GUIs in Agda.
I Based on server-side programmings.
I Use of action listeners which are part of an object

I Verification of laws of a safe and equivalences of implementations of
stacks using bisimilarity.

I Library ooAgda on github [AAS16b].

I Remark: Library CSP-Agda for the process algebra CSP in Agda is
now on github, see [IS17], article: [IS16].
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Heap

Dynamic Creation of Objects

I Idea is to create a set Heap, and pointers on the heap which
dereference as objects.

I We have a state dependent object heap
I depending on the size of the heap,
I and methods for

I dereferencing pointers,
I updating pointers,
I creating new pointers (which increases the size

I Currently working on linked and double linked lists built on the heap.
I Goal is to create a proper queue.
I Idea: Develop and verify the networking protocols such as the Chord

protocol.
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Heap

Current Challenges

I What is the right language?
I At the moment in OO programs in Agda we need to introduce for

every new instance of an object a new variable.
I Can we write a library which hides these new variables?
I Do we need new language constructs in Agda or (preferred) can we

achieve this using the library?
I How to execute programs involving the heap efficiently.

I At the moment heap is implemented as a list of heap elements.
I Can we in a compiled version override this by calls to the “real” heap?
I Do we obtain good performance of a queue?
I Is it possible to write a true heap directly in Agda without overriding?
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Conclusion

Conclusion

I Definition of coinductive data types (coalgebras) by their
observations.

I Use of copattern matching

I Objects as examples of coalgebras.
I State dependent objects.
I Current work: Developing of heap and dynamic creation of objects

on the heap.
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Appendix: GUIs using Objects

Graphics Interface Level1

data GuiLev1Command : Set where
makeFrame : GuiLev1Command
makeButton : Frame → GuiLev1Command
addButton : Frame → Button → GuiLev1Command
drawBitmap : DC → Bitmap → Point → Bool

→ GuiLev1Command
repaint : Frame → GuiLev1Command

GuiLev1Response : GuiLev1Command → Set
GuiLev1Response makeFrame = Frame
GuiLev1Response (makeButton ) = Button
GuiLev1Response = Unit

GuiLev1Interface : IOInterface
Command GuiLev1Interface = GuiLev1Command
Response GuiLev1Interface = GuiLev1Response
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Appendix: GUIs using Objects

Graphics Level2 Commands

GuiLev2State : Set1
GuiLev2State = VarList

data GuiLev2Command (s : GuiLev2State) : Set1 where
level1C : GuiLev1Command → GuiLev2Command s
createVar : {A : Set} → A → GuiLev2Command s
setButtonHandler : Button

→ List (prod s
→ IO GuiLev1Interface ∞ (prod s))

→ GuiLev2Command s
setOnPaint : Frame

→ List (prod s → DC → Rect
→ IO GuiLev1Interface ∞ (prod s))

→ GuiLev2Command s
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Appendix: GUIs using Objects

Graphics Level2 Response + Next

GuiLev2Response : (s : GuiLev2State) → GuiLev2Command s
→ Set

GuiLev2Response (level1C c) = GuiLev1Response c
GuiLev2Response (createVar {A} a) = Var A
GuiLev2Response = Unit

GuiLev2Next : (s : GuiLev2State) → (c : GuiLev2Command s)
→ GuiLev2Response s c
→ GuiLev2State

GuiLev2Next s (createVar {A} a) var = addVar A var s
GuiLev2Next s = s
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Appendix: GUIs using Objects

Graphics Level2 Interface

GuiLev2Interface : IOInterfaces

States GuiLev2Interface = GuiLev2State
Commands GuiLev2Interface = GuiLev2Command
Responses GuiLev2Interface = GuiLev2Response
nexts GuiLev2Interface = GuiLev2Next
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Appendix: GUIs using Objects

Action Handling Object

data ActionHandlerMethod : Set where
onPaintM : DC → Rect → ActionHandlerMethod
moveSpaceShipM : Frame → ActionHandlerMethod
callRepaintM : Frame → ActionHandlerMethod

ActionHandlerResult : ActionHandlerMethod → Set
ActionHandlerResult = Unit

ActionHandlerInterface : Interface
Method ActionHandlerInterface = ActionHandlerMethod
Result ActionHandlerInterface = ActionHandlerResult

ActionHandler : Set
ActionHandler = IOObject GuiLev1Interface ActionHandlerInterface
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Appendix: GUIs using Objects

Action Handling Object

actionHandler : Z → ActionHandler
method (actionHandler z) (onPaintM dc rect) =

do∞ (drawBitmap dc ship (z , (+ 150)) true) ń →
return∞ (unit , actionHandler z)

method (actionHandler z) (moveSpaceShipM fra) =
return∞ (unit , actionHandler (z + (+ 20)))

method (actionHandler z) (callRepaintM fra) =
do∞ (repaint fra) ń →
return∞ (unit , actionHandler z)

actionHandlerInit : ActionHandler
actionHandlerInit = actionHandler (+ 150)
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Appendix: GUIs using Objects

Action Handlers

onPaint : ActionHandler → DC → Rect
→ IO GuiLev1Interface ActionHandler

onPaint obj dc rect = mapIO proj2 (method obj (onPaintM dc rect))

moveSpaceShip : Frame → ActionHandler
→ IO GuiLev1Interface ActionHandler

moveSpaceShip fra obj = mapIO proj2
(method obj (moveSpaceShipM fra))
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Appendix: GUIs using Objects

Action Handlers

callRepaint : Frame → ActionHandler
→ IO GuiLev1Interface ActionHandler

callRepaint fra obj = mapIO proj2 (method obj (callRepaintM fra))

buttonHandler : Frame → List (ActionHandler
→ IO GuiLev1Interface ActionHandler)

buttonHandler fra = moveSpaceShip fra :: [ callRepaint fra ]

Anton Setzer OO in dependent type theory 44/ 34



Appendix: GUIs using Objects

Spaceship Program

program : IOs GuiLev2Interface (ń → Unit) []
program = dos (level1C makeFrame) ń fra →

dos (level1C (makeButton fra)) ń bt →
dos (level1C (addButton fra bt)) ń →
dos (createVar actionHandlerInit) ń →
dos (setButtonHandler bt (moveSpaceShip fra

:: [ callRepaint fra ])) ń →
dos (setOnPaint fra [ onPaint ])
returns

main : NativeIO Unit
main = start (translateLev2 program)
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