Modelling Bitcoins in Agda

Anton Setzer

Dept. of Computer Science, Swansea University, Swansea, UK
a.g.setzer@swan.ac.uk

Abstract

We present a model of a block chain in Agda. We deal with Cryptographic operations
and their correctness by postulating corresponding operations and their correctness. We
determine correctness of blockchain transactions and show how to translate the blockchain
back into a traditional ledger of a bank.

Since its introduction in November 2008, the market capitalisation of bitcoins has risen to over
18 Billion US-$. Other bitcoins such as Ethereum are following its lead. Cryptocurrencies have
been proposed for introducing smart contracts. In its simplest form the buyer reserves money
for the seller on the blockchain, and the seller only receives it once the seller has signed on
time that she has received the goods. Bitcoins can be considered as the true cloud: whereas in
normal cloud applications, data is stored on one server, and therefore everything relies on that
service, Cryptocurrencies allow to store data on a peer-to-peer network. The block chain can
then be used to certify which data is genuine, and determine the order and times when data
was added.

In this project we use Agda as a modelling language for modelling the block chain. The goal
is to obtain a deeper understanding of how the block chain operates and to prove correctness
of certain aspects of the block chain. This project is the result of a series of third year and
MSc projects supervised by the author at Swansea University. We follow the brown-bag talk
by Warner [1], in which he shows how to obtain the blockchain starting from simple ledger.

In order to avoid having to introduce and verify cryptographic functions in Agda, we axiomatise
those functions and their properties using Agda’s postulates:

postulate Message : Set

postulate PublicKey : Set

postulate checkKey : (m : Message) (p : PublicKey) — Bool
postulate Names : Set

postulate messageToNat : (m : Message) — N

postulate nameToPublicKey : (n : Names) — PublicKey

A message is here supposed to be a message with a signature and containing a value, namely the
amount of bitcoins being represented in this message. checkKey checks whether a message has
been signed by the private key corresponding to the public key of the name, and messageToNat
determines the number contained in a message.

A bitcoin transaction consists of sequence of messages, and public keys, together with a proof
that the messages have been signed by the private keys of the public keys:

data Input : Set where
input : (message : Message) (publicKey : PublicKey)
(cor : IsTrue (checkKey message publicKey)) — Input



Modelling Bitcoins in Agda Anton Setzer

similarly one can define outputs of a transaction. A transaction is now given by a list of inputs
and a list of outputs:

data Transaction : Set where
transaction : (input : List Input)(output : List Output) — Transaction

Time and amount of bitcoins are defined as natural numbers and the ledger is a function which
assigns for every time and name the amount amount of bitcoins attributed to that person:

Time =N
Amount = N
Ledger = (¢ : Time)(n : Names) — Amount

We can now express the correctness of a transaction w.r.t. the state of the ledger before it is
executed:

correctSingleTransaction : (oldLedger : Names — Amount)(trans : Transaction) — Set
correctSingleTransaction oldLedger (transaction inputlist outputlist)
= IsTrue (checkKeysInlnput inputlist)
A ((name : Names) —
IsTrue (oldLedger name > sumOflnputs inputlist (nameToPublicKey name)))
A IsTrue (sumOflnputsTotal inputlist > sumOfOutputsTotal outputlist )
A inputPublicKeysAreProper inputlist
A outputPublicKeysAreProper outputlist

We can compute now the ledger after one transaction:

updateSingleTransaction : (oldLedger : Names — Amount)(¢rans : Transaction)
(n : Names) — Amount
updateSingleTransaction oldLedger (transaction inputlist outputlist) n =
oldLedger n - sumOflnputs inputlist (nameToPublicKey n)
+ sumOfOutputs outputlist (nameToPublicKey n)

and can compute from this the complete ledger from a sequence of transactions:

transactionsTolLedger : (initialLedger : Names — Amount)(trans : Time — Transaction)
— Ledger

Modifications are needed in order to deal with mining and fees. We are currently working on
extending this model to adding smart contracts. Modelling simple smart contracts is straight-
forward, the challenge is to introduce a language for more generalised smart contracts.

References

[1] B. Warner. Bitcoin: A technical introdution. Available from
http://www.lothar.com/presentations/bitcoin-brownbag/, July 2011.



