
Representing the Process Algebra CSP in Type
Theory

Bashar Igried and Anton Setzer

Swansea University, Swansea,Wales, UK

bashar.igried@yahoo.com , a.g.setzer@swansea.ac.uk

TYPES 2016, Novi Sad, Serbia, 26 May 2016

Overview

1. Why Agda?

2. Process Algebra

3. CSP

4. CSP-Agda

5. Choice Sets

6. Future Work

7. Conclusion

Why Agda?

I Agda supports induction-recursion.
Induction-Recursion allows to define universes.

I Agda supports definition of coalgebras by elimination rules
and defining their elements by combined pattern and
copattern matching.

I Using of copattern matching allows to define code which
looks close to normal mathematical proofs.

Overview Of Process Algebras

I “Process algebra” was initiated in 1982 by Bergstra and Klop
?, in order to provide a formal semantics to concurrent
systems.

I Baeten et. al. Process algebra is the study of distributed or
parallel systems by algebraic means.

I Three main process algebras theories were developed.

I Calculus of Communicating Systems (CCS).
Developed by Robin Milner in 1980.

I Communicating Sequential Processes (CSP).
Developed by Tony Hoare in 1978.

I Algebra of Communicating Processes (ACP).
Developed by Jan Bergstra and Jan Willem Klop, in 1982.

I Processes will be defined in Agda according to the operational
behaviour of the corresponding CSP processes.

CSP

I CSP considered as a formal specification language, developed
in order to describe concurrent systems.
By identifying their behaviour through their communications.

I CSP is a notation for studying processes which interact with
each other and their environment.

I In CSP we can describe a process by the way it can
communicate with its environment.

I A system contains one or more processes, which interact with
each other through their interfaces.

CSP Syntax

In the following table, we list the syntax of CSP processes:

Q ::= STOP STOP
| SKIP SKIP
| prefix a→ Q
| external choice Q 2 Q
| internal choice Q u Q
| hiding Q \ a
| renaming Q[R]
| parallel Q X‖Y Q
| interleaving Q ||| Q
| interrupt Q 4 Q
| composition Q ; Q

CSP-Agda

I We will represent the process algebra CSP in a coinductive
form in dependent type theory.

I Implement it in the Agda.

I CSP processes can proceed at any time both with labelled
transitions and with silent transitions.

I Therefore, processes in CSP-Agda have as well this possibility.

CSP-Agda

In Agda the corresponding code is as follows:

record Process : Set where
coinductive
field

E : Choice
Lab : ChoiceSet E → Label
PE : ChoiceSet E → Process
I : Choice
PI : ChoiceSet I → Process

CSP-Agda

So we have in case of a process progressing:

I an index set E of external choices and for each external choice
e a label (Lab e) and a next process (PE e);

I an index set of internal choices ı and for each internal choice i
a next process (PI i).

CSP-Agda

As an example the following Agda code describes the process
pictured below:

E P = code for {1, 2, 3}
Lab P 1 = a Lab P 2 = b Lab P 3 = c
PE P 1 = P1 PE P 2 = P2 PE P 3 = P3

I P = code for {4, 5}
PI P 4 = P4 PI P 5 = P5

P1 5
a

b τ τ

P2 P3 P4 P5P1

2
3 c

4

Choices Set

I Choice sets are modelled by a universe.

I Universes go back to Martin-Löf in order to formulate the
notion of a type consisting of types.

I Universes are defined in Agda by an inductive-recursive
definition.

Choices Set

We give here the code expressing that Choice is closed under Bool,
disjoint union + and subset.

mutual
data Choice : Set where

B̂ool : Choice
+̂ : Choice→ Choice→ Choice

subset : (E : Choice)→ (ChoiceSet E → Bool)→ Choice

ChoiceSet : Choice→ Set

ChoiceSet B̂ool = Bool
ChoiceSet (a +̂ b) = ChoiceSet a + ChoiceSet b
ChoiceSet (subset E f) = Subset (ChoiceSet E) f

Interleaving operator

I In this process, the components P and Q execute completely
independently of each other.

I Each event is performed by exactly one process.

I The operational semantics rules are straightforward:

P
l−→ P̄

P ||| Q l−→ P̄ ||| Q
Q

l−→ Q̄

P ||| Q l−→ P ||| Q̄

Interleaving operator

We represent interleaving operator in CSP-Agda as follows

||| : Process → Process → Process
E (P ||| Q) = E P +′ E Q
Lab (P ||| Q) (inl x) = Lab P x
Lab (P ||| Q) (inr x) = Lab Q x
PE (P ||| Q) (inl x) = PE P x ||| Q
PE (P ||| Q) (inr x) = P ||| PE Q x
I (P ||| Q) = I P +′ I Q
PI (P ||| Q) (inl x) = PI P x ||| Q
PI (P ||| Q) (inr x) = P ||| PI Q x

Traces

dataTr : List Label→ Process→ Set where
empty : {P : Process }

→ Tr [] P
trE : {P : Process }

→ (x : ChoiceSet (E P))
→ (l : List Label)
→ Tr l (PE P x)
→ Tr (Lab P x :: l) P

trI : {P : Process}
→ (x : ChoiceSet (I P))
→ (l : List Label)
→ Tr l (PI P x)
→ Tr l P

Traces Refinement

The refinement relation vT on process is defined by

P vT Q
if and only if

traces(Q) ⊆ traces(P)

I The subscript T indicates that we are working with traces.
The Agda definition is as follows:

vT : (P : Process)→ (P ′ : Process)→ Set
P vT P ′ = (l : List Label)→ Tr l P ′ → Tr l P

Proving Symmetry of Interleaving operator

Sym||| : (P Q : Process) → (P ||| Q) v (Q ||| P)
Sym|||P Q empty = empty
Sym|||P Q (trE (inl x) l tr) = trE (inr x) l (Sym||| P (PE Q x) tr)
Sym|||P Q (trE (inr x) l tr) = trE (inl x) l (Sym||| (PE P x) Q tr)
Sym|||P Q (trI (inl x) l tr) = trI (inr x) l (Sym||| P (PI Q x) tr)
Sym|||P Q (trI (inr x) l tr) = trI (inl x) l (Sym||| (PI P x) Q tr)

Future Work

I Looking to the future, we would like to model complex
systems in Agda.

I Model examples of processes occurring in the European Train
Management System (ERTMS) in Agda.

I Show correctness.

Further Work

I The other operations (external choice, internal choice, parallel
operations, hiding, renaming, etc.) are defined in a similar
way.

I Several laws of CSP have been shown with respect to traces
semantics and bisimulation.

I A simulator of CSP processes in Agda has been developed.

I Define approach using Sized types.

I For complex examples (e.g recursion) sized types are used to
allow application of functions to the co-IH.

Conclusion

I A formalisation of CSP in Agda has been developed using
coalgebra types and copattern matching.

I We have shown CSP-Agda supports refinement proofs over
CSP traces model.

The End

