
The Use of the Coinduction Hypothesis in Coinductive
Proofs

Anton Setzer
Swansea University

TYPES 2016, Novi Sad, Serbia

23 May 2016

Anton Setzer (Swansea) The Use of the Co-IH in Coinductive Proofs 1/ 19

http://www.cs.swan.ac.uk/~csetzer/index.html
http://www.swansea.ac.uk/compsci/


Transfer from Type Theory to Ordinary Mathematics

I When proving a property ∀n : N.ϕ(n) we don’t use directly that N is
least set closed under 0 and S.

I We don’t define
A := {n ∈ N | ϕ(n)}

and show that A is closed under 0 and S.

I Instead we use proofs by induction.
I Proofs by induction are essentially recursive proofs with

restrictions on the use of the IH.

I Goal of Talk
I Define proofs by coinduction as corecursive proofs with restrictions on

the use of the co-IH.
I Introduce methodology for carrying out proofs in ordinary

mathematics.
I Based on theory of coinductive proofs in type theory.

Anton Setzer (Swansea) The Use of the Co-IH in Coinductive Proofs 2/ 19



Desired Coinductive Proof

I Consider an unlabelled Transition system:

1 20 · · ·∗

I Textbook proof:
Define R := {(∗, n) | n ∈ N}.
Show that R is a bisimulation relation, i.e. closed under elimination.

I A proof of ∀n : N.∗ ∼ n by coinduction should be as follows:
I We show ∀n : N.∗ ∼ n by coinduction on ∼.

I Assume ∗ −→ x . We need to find y s.t. n −→ y and x ∼ y . Choose
y = n + 1. By co-IH ∗ ∼ n + 1.

I Assume n −→ y . We need to find x s.t. ∗ −→ x and x ∼ y . Choose
x = ∗. By co-IH ∗ ∼ n + 1.

I In essence same proof as textbook proof, but hopefully easier to teach
and use.

Anton Setzer (Swansea) The Use of the Co-IH in Coinductive Proofs 3/ 19



Iteration

I N is defined inductively by the introduction rules

0 : N
S : N→ N

I So we have an N-algebra

(N, 0,S) : (X : Set)× X × (X → X )

I Minimality of (N, 0,S) means:
I Assume another N-algebra (X , z , s), i.e.

z : X
s : X → X

I Then there exist a unique homomorphism g : (N, 0,S)→ (X , z , s),
i.e.

g : N→ X
g 0 = z
g (S n) = s (g n)

Anton Setzer (Swansea) The Use of the Co-IH in Coinductive Proofs 4/ 19



Iteration

I This means we can define uniquely

g : N→ X
g 0 = x for some x : X
g (S n) = x ′ for some x ′ : X depending on (g n)

I This is the principle of unique iteration.

I Definition by pattern matching.

I Can be strengthened to principle of unique primitive recursion:

I We can define uniquely

g : N→ X
g 0 = x for some x : X
g (S n) = x ′ for some x ′ : X depending on n, g n

Anton Setzer (Swansea) The Use of the Co-IH in Coinductive Proofs 5/ 19



Coiteration and Primitive Corecursion

I Dually, coinductive sets are given by their elimination rules i.e. by
observations or eliminators. Consider Stream given coinductively
by

head : Stream→ N
tail : Stream→ Stream

We obtain a Stream-coalgebra

(Stream,head, tail) : (X : Set)× (X → N)× (X → X )

I That (Stream, head, tail) is maximal can be given by:
I Assume another Stream-coalgebra (X , h, t): h : X → N

t : X → X
I Then there exist a unique homomorphism

g : (X , h, t)→ (Stream,head, tail), i.e.:

g : X → Stream
head (g x) = h x
tail (g x) = g (t x)

Anton Setzer (Swansea) The Use of the Co-IH in Coinductive Proofs 6/ 19



Unique Coiteration

I Means we can define uniquely

g : X → Stream
head (g x) = n for some n : N depending on x
tail (g x) = g x ′ for some x ′ : X depending on x

This is the principle of unique coiteration.
I Definition by copattern matching.
I Can be extended to the principle of unique primitive corecursion:
I We can define uniquely

g : X → Stream
head (g x) = n for some n : N depending on x
tail (g x) = g x ′ for some x ′ : X depending on x

or
= s for some s : Stream depending on x

Anton Setzer (Swansea) The Use of the Co-IH in Coinductive Proofs 7/ 19



Comparison

I When using iteration the instances of g we can use is restricted,
but we can apply an arbitrary function to it.

I When using coiteration we can choose any instance a of g , but
cannot apply any function to (g a).

I Product used in primitive recursion is dualised to disjoint union
in primitive corecursion.

‘

Anton Setzer (Swansea) The Use of the Co-IH in Coinductive Proofs 8/ 19



Induction

I Induction is in type theory dependent primitive recursion.
I We don’t know how to dualise this because that would require

something like “codependent primitive corecursion”.

I The rôle of induction is to have a principle which is essentially an
introduction principle, which allows to prove the uniqueness of
the functions defined by iteration and primitive recursion.

I So we need a proof principle for coinduction which is introductory in
nature and allows to prove the uniqueness of the functions defined
by coiteration and primitive corecursion.

I Remark: Uniqueness means that we have a final coalgebra.
I Therefore equality is undecidable,
I type checking becomes undecidable.
I For weakly final coalgebras as e.g. in Agda we need to omit this

conditions.

Anton Setzer (Swansea) The Use of the Co-IH in Coinductive Proofs 9/ 19



Coinduction

I Uniqueness in coiteration is equivalent to the principle:
Bisimulation implies equality

I Bisimulation on Stream is the largest relation ∼ on Stream s.t.

s ∼ s ′ → head s = head s ′ ∧ tail s ∼ tail s ′

I Largest can be expressed as ∼ being an indexed coinductively
defined set.

I Primitive corecursion over ∼ means:
We can prove

∀s, s ′.X s s ′ → s ∼ s ′

by showing the corecursive steps

∀s, s. X s s ′ → head s = head s ′

∀s, s. X s s ′ → X (tail s) (tail s ′) ∨ tail s ∼ tail s ′

Anton Setzer (Swansea) The Use of the Co-IH in Coinductive Proofs 10/ 19



Schema of Coinduction

I Combining
I bisimulation implies equality
I bisimulation can be shown corecursively

we obtain the following principle of coinduction:
I We can prove

∀s, s ′.X s s ′ → s = s ′

by showing

∀s, s ′.X s s ′ → head s = head s ′

∀s, s ′.X s s ′ → tail s = tail s ′

where tail s = tail s ′ can be derived
I directly or
I from a proof of

X (tail s) (tail s ′)

invoking the co-induction-hypothesis (which can be only used
directly)

X (tail s) (tail s ′)→ tail s = tail s ′

Anton Setzer (Swansea) The Use of the Co-IH in Coinductive Proofs 11/ 19



Coinduction Hypothesis

I When using iteration/primitive recursion/induction
I there are restrictions on the instances of the IH to be used.
I in case of iteration/primitive recursion we can

apply arbitrary functions to the IH
I in case of induction can use use arbitrary reasoning steps to

obtain the statement from the IH.

I When using coiteration/primitive corecursion/coinduction
I there are no restrictions on the instances of the coIH to be used.
I however can use the coIH only directly.

Anton Setzer (Swansea) The Use of the Co-IH in Coinductive Proofs 12/ 19



Example

I Define by primitive corecursion

s : Stream
head s = 0
tail s = s

s ′ : N→ Stream
head (s ′ n) = 0
tail (s ′ n) = s ′ (n + 1)

cons : N→ Stream→ Stream
head (cons n s) = n
tail (cons n s) = s

I We show ∀n : N.s = s ′ n by coinduction:

head s = 0 = head (s ′ n)

tail s = s
co-IH

= s ′ (n + 1) = tail (s ′ n)

I We show cons 0 s = s by coinduction:

head (cons 0 s) = 0 = head s
tail (cons 0 s) = s = tail s (no use of co-IH)

Anton Setzer (Swansea) The Use of the Co-IH in Coinductive Proofs 13/ 19



Equivalence

I (Co)iteration, primitive (co)recursion, (co)induction can be generalise
to (in the sense of Dybjer/AS) restricted indexed (co)inductively
defined sets, which can be reduced to
Petersson Synek Trees (PST)
(= fixed points of indexed containers).

Theorem

The following is equivalent for PST-(co)algebras:

1. The principle of unique (co)iteration.

2. The principle of unique primitive (co)recursion.

3. The principle of (co)iteration + (co)induction.

4. The principle of primitive (co)recursion + (co)induction.

Anton Setzer (Swansea) The Use of the Co-IH in Coinductive Proofs 14/ 19



Duality

Inductive Definition Coinductive Definition

Determined by Introduction Determined by Observation/Elimination

Iteration Coiteration

Pattern matching Copattern matching

Primitive Recursion Primitive Corecursion

Induction Coinduction

Induction-Hypothesis Coinduction-Hypothesis

1

1This table is essentially due to Peter Hancock.
Anton Setzer (Swansea) The Use of the Co-IH in Coinductive Proofs 15/ 19



Coinduction over Coinductively Defined Predicates

I When carrying out practical proofs of properties of a coinductively
defined set I, one often doesn’t prove equalities (Question by
Schwichtenberg at PCC 2015).

I Instead one proves that a predicate P over the coinductively defined
set holds.

I Such predicates are often defined as an indexed coinductively
defined set, indexed over I which follow the coinductive definition of
I.

I Examples are bisimulation (indexed over a pair of elements of I), or the
predicate CoEven on N∞ (see my PCC 2015 talk)

I Proofs of such kind of predicates can be done by primitive
corecursion over the indexed coinductively defined set.

I A proof by corecursion can be considered as a proof by coinduction.

I We consider as example the predicate of increasing streams.

Anton Setzer (Swansea) The Use of the Co-IH in Coinductive Proofs 16/ 19



Example IncStream

I Define coinductively

IncStream : Stream→ Set by
∀s : Stream. IncStream s → head (tail s) < head s
∀s : Stream. IncStream s → IncStream (tail s)

I Define +str : Stream→ Stream→ Stream by primitive
corecursion:

head (s +str s ′) = head s + head s ′

tail (s +str s ′) = tail s +str head s ′

I Remark: We deviate from the abstract by defining IncStream as a
predicate on Stream rather than a directly defined indexed
coinductive set.

Anton Setzer (Swansea) The Use of the Co-IH in Coinductive Proofs 17/ 19



Example IncStream

I We prove

∀s, s ′.IncStream s → IncStream s ′ → IncStream (s +str s ′)

by coinduction on IncStream (s +str s ′):
I We need to show head (tail (s +str s ′)) < head (s +str s ′):

head (tail (s +str s ′)) = head (tail s) + head (tail s ′)
< head s + head s ′

= head (s +str s ′)

I We need to show IncStream (tail (s +str s ′)):

tail (s +str s ′) = tail s +str tail s ′

by co-IH IncStream (tail s +str tail s ′)
therefore IncStream (tail (s +str s ′))

Anton Setzer (Swansea) The Use of the Co-IH in Coinductive Proofs 18/ 19



Conclusion

I Coiteration, primitive corecursion, coinduction are the duals of
iteration, primitive recursion, induction.

I Coinduction is primitive corecursion over indexed coinductively
defined sets

I In case of bisimulation we obtain equality for final coalgebras.

I In iteration/primitive recursion/induction, the instances of the IH
used are restricted, but the result can be used in arbitrary functions
and formulas.

I In coiteration/primitive corecursion/coinduction, the instances of the
IH used are unrestricted, but the result can be only be used directly.

Anton Setzer (Swansea) The Use of the Co-IH in Coinductive Proofs 19/ 19



Generalisation: Petersson-Synek Trees
(or Fixed Points of Containers)

�������� ����

�������� ����

t ∈ Tree(i)

t′′ ∈ Tree(i ′′) (i ′′ = i(i ′, a′, b′))

t′ ∈ Tree(i ′) (i ′ = i(i, a, b))

a ∈ Label(i)

a′ ∈ Label(i ′)

a′′ ∈ Label(i ′′)

(b ∈ Deg(i, a))

(b′ ∈ Deg(i ′, a′))

Anton Setzer (Swansea) The Use of the Co-IH in Coinductive Proofs 20/ 19



Petersson-Synek Trees (PST)

I Strictly positive inductive definitions can be reduced to the PSTs
I Inductive PSTs are the data types

data Tree : I→ Set where
C : (i : I)
→ (a : Label i)
→ ((b : Deg i a)→ Tree (j i a b)
→ Tree i

I Coinductive PSTs are defined follows:

coalg Tree∞ : I→ Set where
label : (i : I)→ Tree∞ i → Label i
subtree : (i : I)

→ (t : Tree∞ i)
→ (b : Deg i (label i t))
→ Tree∞ (j i (label i t) b)

Anton Setzer (Swansea) The Use of the Co-IH in Coinductive Proofs 21/ 19



Schema for Primitive Corecursion

I Consider

coalg Tree∞ : I→ Set where
label : (i : I)→ Tree∞ i → Label i
subtree: (i : I)→ (t : Tree∞ i)→ (b : Deg i (label i t))

→ Tree∞ (j i (label i t) b)

I We can define a function

f : (i : I)→ X i → Tree∞ i
label i (f i x) = a′ i x : Label i
subtree i (f i x) b = t ′ i x b : Tree∞ i ′ with i ′ := j i a′ b

where a′ i x : Label i
and (t ′ i x b) can be defined

I as an element of Tree∞ i ′ defined before
I or corecursively defined as subtree i (f i x) b = f i ′ x ′

for some x ′ : X i ′.
Here f (i ′, x ′) will be called the corecursion hypothesis.

Anton Setzer (Swansea) The Use of the Co-IH in Coinductive Proofs 22/ 19



Schema for Coinduction

I Assume
J : Set

î : J → I

x0, x1 : (j : J)→ Tree∞ (̂i j)

We can show ∀j : J.x0 j = x0 j
′ coinductively by showing

I label (̂i j) (x0 j) and label (̂i j) (x1 j) are equal
I and for all b that

subtree (̂i j) (x0 j) b and (subtree (̂i j) (x0 j) b are equal,
where we can use either the fact that

I this was shown before,
I or we can use the coinduction-hypothesis, which means using the

fact
subtree (̂i j) (x0 j) b = x0 j

′ and subtree (̂i j) (x1 j) b = x1 j
′ for some

j ′ : J.

Anton Setzer (Swansea) The Use of the Co-IH in Coinductive Proofs 23/ 19



N∞

coalg N∞ : Set where
shape : N∞ → (0 + S N∞)

I N∞ can be reduced to non-indexed PSTs:

coalg N∞ : Set where
label : N∞ → {0,S}
subtree : (n : N∞)→ Deg (label n)→ N∞

where Deg 0 = ∅
Deg S = {∗}

I Define + by primitive corecursion

+ : N∞ → N∞ → N∞

shape (n + m) = case (shape m) of
{ 0 −→ shape n

S m′ −→ S (n + m′) }
Anton Setzer (Swansea) The Use of the Co-IH in Coinductive Proofs 24/ 19



CoEven, CoOdd

I We define simultaneously coinductively

CoEven : N∞ → Set
CoEven n→ CoEvenCond (shape n)

CoOdd : N∞ → Set
CoOdd n→ CoOddCond (shape n)

where
CoEvenCond 0 is true
CoEvenCond (S m) = CoOdd m

CoOddCond 0 doesn’t hold
CoOddCond (S m) = CoEven m

Anton Setzer (Swansea) The Use of the Co-IH in Coinductive Proofs 25/ 19



CoEven, CoOdd as PSTs

I Define CoEven, CoOdd as one PST indexed over
I := {CoEven,CoOdd} × N∞ × N∞

coalg CoEvenOdd : I→ Set where
label : (i : I)→ CoEvenOdd i → Label; ı
subtree : (i : I)→ (p : CoEvenOdd i)→ Deg i (label i p)

→ CoEvenOdd (j i)
where

Label c n m =

{
∅ if shape m = 0 and c = CoOdd
{∗} otherwise

Deg c n m =

{
∅ if shape m = 0 and c = CoEven
{∗} otherwise

j (CoEven n m) = CoOdd n (pred m)
j (CoOdd n m) = CoEven n (pred m)

Anton Setzer (Swansea) The Use of the Co-IH in Coinductive Proofs 26/ 19



Closure of CoEven under +

I We show simultaneously

∀n,m : N∞.CoEven n→ CoEven m→ CoEven (n + m)
∀n,m : N∞.CoEven n→ CoOdd m→ CoOdd (n + m)

by coinduction on CoEven, CoOdd
I Assume n,m, (CoEven n), (CoEven m).

For showing (CoEven (n + m)) we have to show
CoEvenCond (shape (n + m)).

I If shape m = zero then shape (n + m) = shape n and by (CoEven n)
we have (CoEvenCond (shape n).

I If shape m = S m′ then shape (n + m) = S (n + m′),
CoEvenCond (shape (n + m)) = CoOdd (n + m′) which follows by the
coIH and CoOdd(m′).

I The proof of the second condition follows similarly

Anton Setzer (Swansea) The Use of the Co-IH in Coinductive Proofs 27/ 19


