The Use of the Coinduction Hypothesis in Coinductive Proofs

Anton Setzer Swansea University TYPES 2016, Novi Sad, Serbia

23 May 2016

Transfer from Type Theory to Ordinary Mathematics

- When proving a property ∀n : N.φ(n) we don't use directly that N is least set closed under 0 and S.
 - We don't define

$$A:=\{n\in\mathbb{N}\mid\varphi(n)\}$$

and show that A is closed under 0 and S.

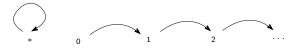
- Instead we use proofs by induction.
 - Proofs by induction are essentially recursive proofs with restrictions on the use of the IH.

Goal of Talk

- Define proofs by coinduction as corecursive proofs with restrictions on the use of the co-IH.
- Introduce methodology for carrying out proofs in ordinary mathematics.
- Based on theory of coinductive proofs in type theory.

Desired Coinductive Proof

• Consider an unlabelled Transition system:



- ► Textbook proof: Define R := {(*, n) | n ∈ N}. Show that R is a bisimulation relation, i.e. closed under elimination.
- ► A proof of $\forall n : \mathbb{N} . * \sim n$ by **coinduction** should be as follows:
 - We show $\forall n : \mathbb{N} . * \sim n$ by coinduction on \sim .
 - Assume * → x. We need to find y s.t. n → y and x ~ y. Choose y = n + 1. By co-IH * ~ n + 1.
 - Assume n → y. We need to find x s.t. * → x and x ~ y. Choose x = *. By co-lH * ~ n + 1.
- In essence same proof as textbook proof, but hopefully easier to teach and use.

Iteration

 \blacktriangleright $\mathbb N$ is defined inductively by the introduction rules

$$\begin{array}{rrr} 0 & : & \mathbb{N} \\ \mathrm{S} & : & \mathbb{N} \to \mathbb{N} \end{array}$$

► So we have an N-algebra

 $(\mathbb{N},0,\mathrm{S}):(X:\mathrm{Set})\times X\times (X\to X)$

- ▶ Minimality of (N, 0, S) means:
- Assume another \mathbb{N} -algebra (X, z, s), i.e.

$$\begin{array}{rrrr} z & : & X \\ s & : & X \to X \end{array}$$

► Then there exist a unique homomorphism g : (N,0,S) → (X,z,s), i.e.

$$egin{array}{rcl} g:\mathbb{N} o X \ g \ 0 & = & z \ g \ (\mathrm{S} \ n) & = & s \ (g \ n) \end{array}$$

Iteration

This means we can define uniquely

$$\begin{array}{rcl} g: \mathbb{N} \to X \\ g & 0 & = & x \\ g & (S & n) & = & x' \\ \end{array} \begin{array}{rcl} \text{for some } x: X \\ \text{for some } x': X \text{ depending on } (g & n) \end{array}$$

- This is the principle of unique iteration.
- Definition by **pattern matching**.
- Can be strengthened to principle of **unique primitive recursion**:
- ► We can define uniquely

Coiteration and Primitive Corecursion

 Dually, coinductive sets are given by their elimination rules i.e. by observations or eliminators. Consider Stream given coinductively by

We obtain a Stream-coalgebra

 $(\mathrm{Stream},\mathrm{head},\mathrm{tail}):(X:\mathrm{Set})\times(X\to\mathbb{N})\times(X\to X)$

► That (Stream, head, tail) is maximal can be given by:

- ► Assume another Stream-coalgebra (X, h, t): h : $X \to \mathbb{N}$ t · $X \to X$
- ▶ Then there exist a **unique homomorphism** $g: (X, h, t) \rightarrow (\text{Stream, head, tail}), \text{ i.e.}:$

$$g: X \to \text{Stream}$$

head $(g x) = h x$
tail $(g x) = g(t x)$

Unique Coiteration

Means we can define uniquely

 $g: X \to \text{Stream}$ head (g x) = n for some $n: \mathbb{N}$ depending on xtail (g x) = g x' for some x': X depending on x

This is the principle of unique coiteration.

- Definition by copattern matching.
- Can be extended to the principle of unique primitive corecursion:
- We can define uniquely

4

- When using iteration the instances of g we can use is restricted, but we can apply an arbitrary function to it.
- ▶ When using coiteration we can choose any instance a of g, but cannot apply any function to (g a).
- Product used in primitive recursion is dualised to disjoint union in primitive corecursion.

Induction

- Induction is in type theory dependent primitive recursion.
 - ➤ We don't know how to dualise this because that would require something like "codependent primitive corecursion".
- The rôle of induction is to have a principle which is essentially an introduction principle, which allows to prove the uniqueness of the functions defined by iteration and primitive recursion.
- So we need a proof principle for coinduction which is introductory in nature and allows to prove the uniqueness of the functions defined by coiteration and primitive corecursion.
- Remark: Uniqueness means that we have a final coalgebra.
 - ► Therefore equality is undecidable,
 - type checking becomes undecidable.
 - ► For weakly final coalgebras as e.g. in Agda we need to omit this conditions.

Coinduction

- Uniqueness in coiteration is equivalent to the principle:
 Bisimulation implies equality
- \blacktriangleright Bisimulation on Stream is the largest relation \sim on Stream s.t.

$$s \sim s' \rightarrow ext{head} \ s = ext{head} \ s' \wedge ext{tail} \ s \sim ext{tail} \ s'$$

- ► Largest can be expressed as ~ being an indexed coinductively defined set.
- Primitive corecursion over ~ means:
 We can prove

$$\forall s, s'. X \ s \ s' \to s \sim s'$$

by showing the corecursive steps

$$\begin{array}{rcl} \forall s,s. & X \; s \; s' \; \to \; \mathrm{head} \; s = \mathrm{head} \; s' \\ \forall s,s. & X \; s \; s' \; \to \; X \; (\mathrm{tail} \; s) \; (\mathrm{tail} \; s') \lor \mathrm{tail} \; s \sim \mathrm{tail} \; s' \end{array}$$

Schema of Coinduction

- Combining
 - bisimulation implies equality
 - bisimulation can be shown corecursively
 - we obtain the following principle of **coinduction**:

We can prove

$$\forall s, s'. X \ s \ s'
ightarrow s = s'$$

by showing

$$\begin{array}{rcl} \forall s, s'. X \; s \; s' \; \to \; \mathrm{head} \; s \; = \; \mathrm{head} \; s' \\ \forall s, s'. X \; s \; s' \; \to \; \mathrm{tail} \; s \; = \; \mathrm{tail} \; s' \end{array}$$

where tail s = tail s' can be derived

- directly or
- from a proof of

X (tail s) (tail s')

invoking the **co-induction-hypothesis** (which can be only used directly)

$$X \text{ (tail } s) \text{ (tail } s') \rightarrow ext{tail } s = ext{tail } s'$$

- ► When using iteration/primitive recursion/induction
 - there are restrictions on the instances of the IH to be used.
 - in case of iteration/primitive recursion we can apply arbitrary functions to the IH
 - in case of induction can use use arbitrary reasoning steps to obtain the statement from the IH.
- ► When using coiteration/primitive corecursion/coinduction
 - there are no restrictions on the instances of the colH to be used.
 - however can use the colH only directly.

Example

Define by primitive corecursion

s: Streamhead s = 0tail s = scons: $\mathbb{N} \to \text{Stream} \to \text{Stream}$ head (cons n s) = ntail (cons n s) = s

$$\begin{array}{l} s':\mathbb{N}\rightarrow \mathrm{Stream}\\ \mathrm{head}\;(s'\;n)\;=\;0\\ \mathrm{tail}\;\;(s'\;n)\;=\;s'\;(n+1) \end{array}$$

• We show $\forall n : \mathbb{N}.s = s' n$ by **coinduction**:

head
$$s = 0$$
 = head $(s' n)$
tail $s = s \stackrel{\text{co-IH}}{=} s' (n+1)$ = tail $(s' n)$

• We show $\cos 0 s = s$ by **coinduction**:

head
$$(\cos 0 s) = 0 = \text{head } s$$

tail $(\cos 0 s) = s = \text{tail } s$ (no use of co-IH)

Equivalence

 (Co)iteration, primitive (co)recursion, (co)induction can be generalise to (in the sense of Dybjer/AS) restricted indexed (co)inductively defined sets, which can be reduced to
 Petersson Synek Trees (PST) (= fixed points of indexed containers).

Theorem

The following is equivalent for PST-(co)algebras:

- 1. The principle of unique (co)iteration.
- 2. The principle of unique primitive (co)recursion.
- 3. The principle of (co) iteration + (co) induction.
- 4. The principle of primitive (co)recursion + (co)induction.

Coinductive Definition
Determined by Observation/Elimination
Coiteration
Copattern matching
Primitive Corecursion
Coinduction
Coinduction-Hypothesis

1

¹This table is essentially due to Peter Hancock.

Coinduction over Coinductively Defined Predicates

- When carrying out practical proofs of properties of a coinductively defined set I, one often doesn't prove equalities (Question by Schwichtenberg at PCC 2015).
- Instead one proves that a predicate P over the coinductively defined set holds.
- Such predicates are often defined as an indexed coinductively defined set, indexed over I which follow the coinductive definition of I.
 - ► Examples are bisimulation (indexed over a pair of elements of I), or the predicate CoEven on N[∞] (see my PCC 2015 talk)
- Proofs of such kind of predicates can be done by primitive corecursion over the indexed coinductively defined set.
- ► A proof by corecursion can be considered as a proof by coinduction.
- ► We consider as example the predicate of increasing streams.

Define coinductively

IncStream : Stream \rightarrow Set by $\forall s$: Stream. IncStream $s \rightarrow$ head (tail s) < head s $\forall s$: Stream. IncStream $s \rightarrow$ IncStream (tail s)

▶ Define _+str_ : Stream → Stream → Stream by primitive corecursion:

Remark: We deviate from the abstract by defining IncStream as a predicate on Stream rather than a directly defined indexed coinductive set.

Example IncStream

► We prove

 $\forall s, s'. \mathrm{IncStream} \ s \to \mathrm{IncStream} \ s' \to \mathrm{IncStream} \ (s + \mathrm{str} \ s')$

by coinduction on IncStream $(s + \operatorname{str} s')$:

• We need to show head (tail (s + str s')) < head (s + str s'):

• We need to show IncStream (tail (s + str s')):

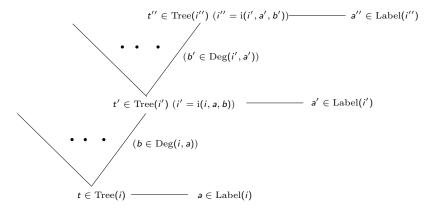
tail
$$(s + \text{str } s') = \text{tail } s + \text{str tail } s'$$

by co-IH IncStream (tail $s + \text{str tail } s')$
therefore IncStream (tail $(s + \text{str } s'))$

Conclusion

- Coiteration, primitive corecursion, coinduction are the duals of iteration, primitive recursion, induction.
- Coinduction is primitive corecursion over indexed coinductively defined sets
 - ► In case of bisimulation we obtain equality for final coalgebras.
- ► In iteration/primitive recursion/induction, the instances of the IH used are restricted, but the result can be used in arbitrary functions and formulas.
- In coiteration/primitive corecursion/coinduction, the instances of the IH used are unrestricted, but the result can be only be used directly.

Generalisation: Petersson-Synek Trees (or Fixed Points of Containers)



Petersson-Synek Trees (PST)

- Strictly positive inductive definitions can be reduced to the PSTs
- Inductive PSTs are the data types

data Tree : I
$$\rightarrow$$
 Set where
C : (i : I)
 \rightarrow (a : Label i)
 \rightarrow ((b : Deg i a) \rightarrow Tree (j i a b)
 \rightarrow Tree i

Coinductive PSTs are defined follows:

$$\begin{array}{rl} \text{coalg Tree}^{\infty}: \mathrm{I} \to \mathrm{Set \ where} \\ \text{label} & : & (i:\mathrm{I}) \to \mathrm{Tree}^{\infty} \ i \to \mathrm{Label} \ i \\ \text{subtree} & : & (i:\mathrm{I}) \\ & \to (t:\mathrm{Tree}^{\infty} \ i) \\ & \to (b:\mathrm{Deg} \ i \ (\mathrm{label} \ i \ t)) \\ & \to \mathrm{Tree}^{\infty} \ (j \ i \ (\mathrm{label} \ i \ t) \ b) \end{array}$$

Schema for Primitive Corecursion

Consider

coalg Tree^{∞} : I \rightarrow Set where label : (i : I) \rightarrow Tree^{∞} i \rightarrow Label i subtree: (i : I) \rightarrow (t : Tree^{∞} i) \rightarrow (b : Deg i (label i t)) \rightarrow Tree^{∞} (j i (label i t) b)

We can define a function

where a' i x: Label iand (t' i x b) can be defined

- as an element of Tree^{∞} *i'* defined before
- ► or corecursively defined as subtree i (f i x) b = f i' x' for some x' : X i'.

Here f(i', x') will be called the **corecursion hypothesis**.

Schema for Coinduction

Assume

$$\begin{array}{rcl} J & : & \mathrm{Set} \\ \widehat{i} & : & J \to \mathrm{I} \\ x_0, x_1 & : & (j:J) \to \mathrm{Tree}^\infty \ (\widehat{i} \ j) \end{array}$$

We can show $\forall j : J.x_0 \ j = x_0 \ j'$ coinductively by showing

- ▶ label $(\hat{i} j) (x_0 j)$ and label $(\hat{i} j) (x_1 j)$ are equal
- ► and for all b that subtree (i j) (x₀ j) b and (subtree (i j) (x₀ j) b are equal, where we can use either the fact that
 - this was shown before,
 - ▶ or we can use the coinduction-hypothesis, which means using the fact subtree (*i* j) (x₀ j) b = x₀ j' and subtree (*i* j) (x₁ j) b = x₁ j' for some i' : J.

coalg \mathbb{N}^{∞} : Set where shape : $\mathbb{N}^{\infty} \to (0 + S \mathbb{N}^{\infty})$

 \blacktriangleright \mathbb{N}^∞ can be reduced to non-indexed PSTs:

Define + by primitive corecursion

$$\begin{array}{c} -+ : \mathbb{N}^{\infty} \to \mathbb{N}^{\infty} \to \mathbb{N}^{\infty} \\ \text{shape } (n+m) = \text{case (shape } m) \text{ of} \\ \left\{ \begin{array}{c} 0 & \longrightarrow & \text{shape } n \\ & & \text{S} \ m' \ \longrightarrow \ & \text{S} \ (n+m') \end{array} \right\} \end{array}$$

We define simultaneously coinductively

CoEven : $\mathbb{N}^{\infty} \to \text{Set}$ CoEven $n \to \text{CoEvenCond}$ (shape n)

 $\begin{array}{l} \operatorname{CoOdd}: \mathbb{N}^{\infty} \to \operatorname{Set} \\ \operatorname{CoOdd} n \to \operatorname{CoOddCond} (\operatorname{shape} n) \end{array}$

where

CoEvenCond 0 is true CoEvenCond (S m) = CoOdd m

CoOddCond 0 doesn't hold CoOddCond (S m) = CoEven m

CoEven, CoOdd as PSTs

► Define CoEven, CoOdd as one PST indexed over $I := {CoEven, CoOdd} \times \mathbb{N}^{\infty} \times \mathbb{N}^{\infty}$

 $\begin{array}{ll} \text{coalg CoEvenOdd}: \mathbf{I} \to \text{Set where} \\ \text{label} & : & (i:\mathbf{I}) \to \text{CoEvenOdd} \ i \to \text{Label}; \mathbf{i} \\ \text{subtree} & : & (i:\mathbf{I}) \to (p:\text{CoEvenOdd} \ i) \to \text{Deg} \ i \ (\text{label} \ i \ p) \\ & \to \text{CoEvenOdd} \ (\mathbf{j} \ i) \end{array}$

where

Label
$$c n m$$
 =

$$\begin{cases}
\emptyset & \text{if shape } m = 0 \text{ and } c = \text{CoOdd} \\
\{*\} & \text{otherwise}
\end{cases}$$
Deg $c n m$ =

$$\begin{cases}
\emptyset & \text{if shape } m = 0 \text{ and } c = \text{CoEven} \\
\{*\} & \text{otherwise}
\end{cases}$$
j (CoEven $n m$) = CoOdd n (pred m)
j (CoOdd $n m$) = CoEven n (pred m)

We show simultaneously

 $\forall n, m : \mathbb{N}^{\infty}.$ CoEven $n \to$ CoEven $m \to$ CoEven (n + m) $\forall n, m : \mathbb{N}^{\infty}.$ CoEven $n \to$ CoOdd $m \to$ CoOdd (n + m)

by coinduction on CoEven, CoOdd

- ► Assume n, m, (CoEven n), (CoEven m). For showing (CoEven (n + m)) we have to show CoEvenCond (shape (n + m)).
 - If shape m = zero then shape (n + m) = shape n and by (CoEven n) we have (CoEvenCond (shape n).
 - If shape m = S m' then shape (n + m) = S (n + m'), CoEvenCond (shape (n + m)) = CoOdd (n + m') which follows by the colH and CoOdd(m').
- The proof of the second condition follows similarly