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Abstract

For inductively defined sets proofs by induction are carried out using the induction
hypothesis. We demonstrate how such a methodology can be applied as well to proofs by
coinduction, which can make use of the coinduction hypothesis. We show as well how to
apply this methodology to proofs of bisimilarity on transition systems.

The goal of this talk is to transfer the way of carrying out coinductive proofs in type theoretic
theorem provers to reasoning in ordinary mathematics. We will use standard set theoretic
notion, however use n : N instead of n ∈ N.
When reasoning about inductively defined sets we are used to argue informally while referring
to the induction hypothesis. When for instance showing ∀x, y, z : N.(x + y) + z = x + (y + z),
we do not first define a set R := {z : N | ∀x, y.(x + y) + z = x + (y + z)} and then argue
that R is closed under 0 and successor. Instead we show (x + y) + 0 = x + (y + 0) and prove
(x + y) + S(z) = x + (y + S(z)) by using the induction hypothesis (x + y) + z = x + (y + z).
Both forms of reasoning are equivalent, but the latter is more light weight and easier to use.
When proving properties about coinductively defined sets, i.e. final coalgebras, we are currently
usually following principles which are similar to using for natural numbers the set R being closed
under 0,S as above. For instance when showing that two elements of a labelled transition system
are bisimilar, one defines a relation on pairs of states of the transition system and shows that
it is a bisimulation relation. This makes coinductive reasoning difficult to use.
In [2] we have introduced very general schemata for reasoning corecursively and coinductively
by using a coinduction hypothesis in a similar way as one reasons primitive recursively and
inductively. The theory was developed for the coinductive version of the Petersson Synek Trees,
which capture using containerisation a large class of strictly positive indexed coinductively
defined sets. In this talk we will present some examples of how to apply this to more simple
examples. The use of the coinduction hypothesis is simplified by making use of the definition
of coinductively defined sets as given by their elimination rules [1].
Consider the example of the set of increasing streams IncStream(n), which is the coinductively
defined set indexed over N given by the eliminators (observations)

head : (n : N)→ IncStream(n)→ N≥n
tail : (n : N)→ (s : IncStream(n))→ IncStream(head(n, s) + 1)

where N≥n := {m : N | m ≥ n}.
The schema for corecursion expresses that we can define, assuming a set X and i : X → N a
function f : (x : X)→ IncStream(i(x)), provided we define for x : X

head(i(x), f(x)) = m : N≥i(x)
tail(i(x), f(x)) = s : IncStream(m + 1)

where m and s depend on x, and s can be defined either as an element of IncStream(m + 1)
known before defining f or s can be given by the corecursion hypothesis f(x′) for some x′ s.t.
i(x′) = m + 1.
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For instance we can define

inc, inc′, inc′′ : (n : N)→ IncStream(n)
head(n, inc(n)) = head(n, inc′(n)) = head(n, inc′′(n)) = n
tail(n, inc(n)) = inc(n + 1)
tail(n, inc′(n)) = inc′′(n + 1)
tail(n, inc′′(n)) = inc′(n + 1)

This definition can be made to confirm with the schema by replacing the simultaneous definition
of inc, inc′, inc′′ by one function combined : ((n : N)× {inc, inc′, inc′′})→ IncStream(n).
When we have final coalgebras, then we get as well the schema of coinduction. In case of
IncStream it is as follows: Assume i : X → N and f, g : (x : X) → IncStream(i(x)). We can
prove ∀x : X.f(x) = g(x) by showing the following:

∀x : X. head(i(x), f(x)) = head(i(x), g(x))
∀x : X. tail(i(x), f(x)) = tail(i(x), g(x))

where for proving tail(i(x), f(x)) = tail(i(x), g(x)) we can use the fact that tail(i(x), f(x)) =
f(x′) and tail(i(x), g(x)) = g(x′) for some x′ s.t. i(x′) = head(i(x), f(x)) + 1, and by using the
coinduction hypothesis f(x′) = g(x′).
For instance we can prove by coinduction on IncStream

(∀n : N.inc(n) = inc′(n)) ∧ (∀n : N.inc(n) = inc′′(n))

as follows:

head(inc(n)) = n = head(inc′(n)) = n = head(inc′′(n))

tail(inc(n)) = inc(n + 1)
co−IH

= inc′′(n + 1) = tail(inc′(n))

tail(inc(n)) = inc(n + 1)
co−IH

= inc′(n + 1) = tail(inc′′(n))

The above principle applies as well to proofs of bisimilarity ∼ for labelled transition systems.
Restricting ourselves to the unlabelled case, let a transition system be given by a set T and a
relation −→⊆ T × T. The schema for proving bisimilarity on (T,−→) is as follows: Assume
f, g : X → T. We can prove ∀x ∈ X.f(x) ∼ g(x) by giving:

• for f(x) −→ t a t′ s.t. g(x) −→ t′ and t ∼ t′,

• for g(x) −→ t′ a t s.t. f(x) −→ t and t ∼ t′.

where in case t = f(x′) and t′ = g(x′) for some x′ we are allowed to use for proving t ∼ t′ the
coinduction-hypothesis f(x′) ∼ g(x′).
For instance, let T := {∗} ∪ N, −→ given by ∗ −→ ∗, n −→ n + 1.
We show ∀n ∈ N.∗ ∼ n:

• Assume ∗ −→ x. Then x = ∗. n −→ n + 1 and by co-IH ∗ ∼ n + 1.

• Assume n −→ x. Then x = n + 1. ∗ −→ ∗ and by co-IH ∗ ∼ n + 1.
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