
Unfolding Nested Patterns and Copatterns

Anton Setzer

(Swansea, UK)

Types 2013 Toulouse
Thursday, 25 April 2013

Anton Setzer Unfolding Nested (Co)Patterns 1/ 21



Codata types and Decidable Equality

Reduction of Mixed Pattern/Copattern Matching to Operators

Conclusion

Appendix: Full Details of Reduction to Primitive (Co)Recursion

Appendix: Defining Fibonacci Numbers by Copattern Matching

Appendix: Simulating Codata Types in Coalgebras

Anton Setzer Unfolding Nested (Co)Patterns 2/ 21



Codata types and Decidable Equality

Codata types and Decidable Equality

Reduction of Mixed Pattern/Copattern Matching to Operators

Conclusion

Appendix: Full Details of Reduction to Primitive (Co)Recursion

Appendix: Defining Fibonacci Numbers by Copattern Matching

Appendix: Simulating Codata Types in Coalgebras

Anton Setzer Unfolding Nested (Co)Patterns 3/ 21



Codata types and Decidable Equality

Theorem Regarding Undecidabilty of Equality

Theorem

Assume the following:

I There exists a decidable subset Stream ⊆ N,

I computable functions
head : Stream→ N, tail : Stream→ Stream,

I a decidable equality == on Stream which is congruence,

I the possibilty to define elements of Stream by guarded recursion
based on primitive recursive functions f , g : N→ N, such that the
standard equalities related to guarded recursion hold.

Then it is not possible to fulfil the following condition:

∀s, s ′ : Stream.head s = head s ′∧tail s == tail s ′ → s == s ′ (∗)

Anton Setzer Unfolding Nested (Co)Patterns 4/ 21



Codata types and Decidable Equality

Consequences for Codata Approach

Remark

Condition (∗) is fulfilled if we have an operation
cons : N→ Stream→ Stream preserving equalities s.t.

∀s : Stream.s = cons (head s) (tail s)

So we cannot have a type theory with streams, decidable type checking
and decidable equality on streams such that

∀s.∃n, s ′.s == cons n s ′

as assumed by the codata approach.

Anton Setzer Unfolding Nested (Co)Patterns 5/ 21



Codata types and Decidable Equality

Proof of Theorem

I Assume we had the above.

I By
s ≈ n0 :: n1 :: n2 :: · · · nk :: s ′

we mean the equations using head, tail expressing that s behaves as
the stream indicated on the right hand side.

I Define by guarded recursion l : Stream

l ≈ 1 :: 1 :: 1 :: · · ·

Anton Setzer Unfolding Nested (Co)Patterns 6/ 21



Codata types and Decidable Equality

Proof of Theorem

I For e code for a Turing machine define by guarded recursion based on
primitive recursion functions f , g s.t. if e terminates after n steps and
returns result k then

f e ≈ 0 :: 0 :: 0 :: · · · :: 0︸ ︷︷ ︸
n times

:: l

g e ≈


0 :: 0 :: 0 :: · · · :: 0︸ ︷︷ ︸

n times

:: l if k = 0

0 :: 0 :: 0 :: · · · :: 0︸ ︷︷ ︸
n+1 times

:: l if k > 0

Anton Setzer Unfolding Nested (Co)Patterns 7/ 21



Codata types and Decidable Equality

Proof of Theorem

f e ≈ 0 :: 0 :: 0 :: · · · :: 0︸ ︷︷ ︸
n times

:: l

g e ≈


0 :: 0 :: 0 :: · · · :: 0︸ ︷︷ ︸

n times

:: l if k = 0

0 :: 0 :: 0 :: · · · :: 0︸ ︷︷ ︸
n+1 times

:: l if k > 0

I If e terminates after n steps with result 0 then

f e == g e

I If e terminates after n steps with result > 0 then

¬(f e == g e)

Anton Setzer Unfolding Nested (Co)Patterns 8/ 21



Codata types and Decidable Equality

Proof of Theorem

I So
λe.(f e == g e)

separates the TM with result 0 from those with result > 0.

I But these two sets are inseparable.

Anton Setzer Unfolding Nested (Co)Patterns 9/ 21



Reduction of Mixed Pattern/Copattern Matching to Operators

Codata types and Decidable Equality

Reduction of Mixed Pattern/Copattern Matching to Operators

Conclusion

Appendix: Full Details of Reduction to Primitive (Co)Recursion

Appendix: Defining Fibonacci Numbers by Copattern Matching

Appendix: Simulating Codata Types in Coalgebras

Anton Setzer Unfolding Nested (Co)Patterns 10/ 21



Reduction of Mixed Pattern/Copattern Matching to Operators

Operators for Primitive (Co)Recursion

PN,A : A→ (N→ A→ A)→ N→ A
PN,A step0 stepS 0 = step0

PN,A step0 stepS (S n) = stepS n (PN,A step0 stepS n)

coPStream,A : (A→ N)→ (A→ (Stream + A))→ A→ Stream
head (coPStream,A stephead steptail a) = stephead a
tail (coPStream,A stephead steptail a) =

caseStream,A,Stream id (coPStream,A stephead steptail) (steptail a)

Anton Setzer Unfolding Nested (Co)Patterns 11/ 21



Reduction of Mixed Pattern/Copattern Matching to Operators

Example of Mixed Pattern and Copattern Matching

f : N→ Stream
head (f 0 ) = 0
head (tail (f 0 )) = 0
tail (tail (f 0 )) = f N
head (f (S n)) = S n
head (tail (f (S n)))= S n
tail (tail (f (S n)))= f n

This example can be reduced to primitive (co)recursion.
Step 1: Following the development of the (co)pattern matching definition,
unfold it into simulteneous non-nested (co)pattern matching definitions.

Anton Setzer Unfolding Nested (Co)Patterns 12/ 21



f : N→ Stream
head (f n) = g n
tail (f n) = h n

g : N→ N
(head (f 0) =) g 0 = 0
(head (f (S n)) =) g (S n) = S n

h : N→ Stream
(tail (f 0) =) h 0 = b0

(tail (f (S n)) =) h (S n) = h0 n

b0 : Stream
(head (tail (f 0)) =) head b0 = 0
(tail (tail (f 0)) =) tail b0 = f N

h0 : N→ Stream
(head (tail (f (S n))) =) head (h0 n) = S n
(tail (tail (f (S n))) =) tail (h0 n) = f n



Reduction of Mixed Pattern/Copattern Matching to Operators

Step 2: Reduction to Primitive (Co)recursion

I We can always after step 2 replace the recursion by full (co)recursion
operators.

I Reduction to primitive (co)recursion – if it is possible – requires more
work:

I First the functions f , b0, h0 defined by copattern matching can be
defined simultaneously:

Anton Setzer Unfolding Nested (Co)Patterns 14/ 21



f : N→ Stream
f n = (f + b0 + h0) (f n)

(f + b0 + h0) : (f(N) + b0 + h0(N))→ Stream
head ((f + b0 + h0) (f n)) = g n
head ((f + b0 + h0) b0) = 0
head ((f + b0 + h0) (h0 n)) = S n
tail ((f + b0 + h0) (f n)) = h n
tail ((f + b0 + h0) b0) = (f + b0 + h0) (f N)
tail ((f + b0 + h0) (h0 n)) = (f + b0 + h0) (f n)

g : N→ N
g 0 = 0
g (S n) = S n

h : N→ Stream
h 0 = (f + b0 + h0) (b0)
h (S n) = (f + b0 + h0) (h0 n)



Reduction of Mixed Pattern/Copattern Matching to Operators

Unfolding of the Pattern Matchings

I h has recursive calls allowed by primitive corecursion on Stream.
We replace h by a function h′ return the argument for the recursive
call.

Anton Setzer Unfolding Nested (Co)Patterns 16/ 21



f : N→ Stream
f n = (f + b0 + h0) (f n)

(f + b0 + h0) : (f(N) + b0 + h0(N))→ Stream
head ((f + b0 + h0) (f n)) = g n
head ((f + b0 + h0) b0) = 0
head ((f + b0 + h0) (h0 n)) = S n
tail ((f + b0 + h0) (f n)) = (id + (f + b0 + h0)) (h′ n)
tail ((f + b0 + h0) b0) = (f + b0 + h0) (f N)
tail ((f + b0 + h0) (h0 n)) = (f + b0 + h0) (f n)

g : N→ N
g 0 = 0
g (S n) = S n

h′ : N→ (return(Stream) + (f(N) + b0 + h0(N)))
h′ 0 = b0

h′ (S n) = h0 n



Reduction of Mixed Pattern/Copattern Matching to Operators

Replacement by Combinators

Anton Setzer Unfolding Nested (Co)Patterns 18/ 21



f : N→ Stream
f = λn.(f + b0 + h0) (f n)

(f + b0 + h0) : (f(N) + b0 + h0(N))→ Stream
(f + b0 + h0) =

coPStream,(f(N)+b0+h0(N)) (case(f(N)+(b0+h0(N)))
g
(caseb0+h0(N) (λ .0) S)))

(case(f(N)+(b0+h0(N)))
h′

(caseb0+h0(N) (λ .f N) f))

g : N→ N
g = PN,N 0 (λn, ih.S n)

h′ : N→ (return(N) + f(N) + b0 + h0(N))
h′ = PN,(return(N)+f(N)+b0+h0(N)) b0 (λn, ih.h0 n)



Conclusion

Codata types and Decidable Equality

Reduction of Mixed Pattern/Copattern Matching to Operators

Conclusion

Appendix: Full Details of Reduction to Primitive (Co)Recursion

Appendix: Defining Fibonacci Numbers by Copattern Matching

Appendix: Simulating Codata Types in Coalgebras

Anton Setzer Unfolding Nested (Co)Patterns 20/ 21



Conclusion

Conclusion

I Codata types make the assumption

∀s : Stream.∃n, s ′.s = cons n s ′

which cannot be combined with a decidable equality.
I One can reduce certain cases of recursive nested (co)pattern

matching to primitive (co)recursion.
I Systematic treatment needs still to be done.
I Cases which can be reduced should be those to be accepted by a

termination checker.
I If the reduction succeeds we get a normalising version (by Mendler and

Geuvers).
I Therefore a termination checked version of the calculus is normalising.

Anton Setzer Unfolding Nested (Co)Patterns 21/ 21



Appendix: Full Details of Reduction to Primitive (Co)Recursion

Codata types and Decidable Equality

Reduction of Mixed Pattern/Copattern Matching to Operators

Conclusion

Appendix: Full Details of Reduction to Primitive (Co)Recursion

Appendix: Defining Fibonacci Numbers by Copattern Matching

Appendix: Simulating Codata Types in Coalgebras

Anton Setzer Unfolding Nested (Co)Patterns 22/ 21



Appendix: Full Details of Reduction to Primitive (Co)Recursion

Example of Mixed Pattern and Copattern Matching

We consider operators for full and primitive (co)recursion:

PN,A : A→ (N→ A→ A)→ N→ A
PN,A step0 stepS 0 = step0

PN,A step0 stepS (S n) = stepS n (PN,A step0 stepS n)

RN,A : ((N→ A)→ A)→ ((N→ A)→ N→ A)→ N→ A
RN,A step0 stepS 0 = step0 (RN,A step0 stepS)
RN,A step0 stepS (S n) = stepS (RN,A step0 stepS) n

Anton Setzer Unfolding Nested (Co)Patterns 23/ 21



Appendix: Full Details of Reduction to Primitive (Co)Recursion

Operators for full/primitive (co)recursion

coPStream,A : (A→ N)→ (A→ (Stream + A))→ A→ Stream
head (coPStream,A stephead steptail a) = stephead a
tail (coPStream,A stephead steptail a) =

caseStream,A,Stream id (coPStream,A stephead steptail) (steptail a)

coRStream,A : ((A→ Stream)→ A→ N)
→ ((A→ Stream)
→ A→ Stream)→ Stream

head (coRStream,A stephead steptail a) = stephead

(coRStream,A stephead steptail) a
tail (coRStream,A stephead steptail a) = steptail

(coRStream,A stephead steptail) a

Anton Setzer Unfolding Nested (Co)Patterns 24/ 21



Appendix: Full Details of Reduction to Primitive (Co)Recursion

Step 1: Unnesting of Nested (Co)Pattern Matching

We follow the steps in the pattern matching:
We start with

f : N→ Stream
head (f n) = ?
tail (f n) = ?

Anton Setzer Unfolding Nested (Co)Patterns 25/ 21



Pattern matching on first n:

f : N→ Stream
head (f 0) = ?
head (f (S n)) = ?
tail (f n) = ?

corresponds to

f : N→ Stream
head (f n) = g n
tail (f n) = ?

g : N→ N
(head (f 0) =) g 0 = ?
(head (f (S n)) =) g (S n) = ?



Pattern matching on second n : N:

f : N→ Stream
head (f 0) = ?
head (f (S n)) = ?
tail (f 0) = ?
tail (f (S n)) = ?

corresponds to

f : N→ Stream
head (f n) = g n
tail (f n) = h n

g : N→ N
(head (f 0) =) g 0 = ?
(head (f (S n)) =) g (S n) = ?

h : N→ Stream
(tail (f 0) =) h 0 = ?
(tail (f (S n)) =) h (S n) = ?



Copattern matching on tail (f 0) : Stream

f : N→ Stream
head (f 0 ) = ?
head (f (S n))= ?
head (tail (f 0 ))= ?
tail (tail (f 0 ))= ?
tail (f (S n ))= ?

which corresponds to



f : N→ Stream
head (f n) = g n
tail (f n) = h n

g : N→ N
(head (f 0) =) g 0 = ?
(head (f (S n)) =) g (S n) = ?

h : N→ Stream
(tail (f 0) =) h 0 = b0

(tail (f (S n)) =) h (S n) = ?

b0 : Stream
(head (tail (f 0)) =) head b0 = ?
(tail (tail (f 0)) =) tail b0 = ?



Copattern matching on tail (f (S n)) : Stream:

f : N→ Stream
head (f 0 ) = ?
head (f (S n)) = ?
head (tail (f 0 )) = ?
tail (tail (f 0 )) = ?
head (tail (f (S n)))= ?
tail (tail (f (S n)))= ?

which corresponds to



f : N→ Stream
head (f n) = g n
tail (f n) = h n

g : N→ N
(head (f 0) =) g 0 = ?
(head (f (S n)) =) g (S n) = ?

h : N→ Stream
(tail (f 0) =) h 0 = b0

(tail (f (S n)) =) h (S n) = h0 n

b0 : Stream
(head (tail (f 0)) =) head b0 = ?
(tail (tail (f 0)) =) tail b0 = ?

h0 : N→ Stream
(head (tail (f (S n))) =) head (h0 n) = ?
(tail (tail (f (S n))) =) tail (h0 n) = ?



Resolving the goals:

f : N→ Stream
head (f 0 ) = 0
head (tail (f 0 )) = 0
tail (tail (f 0 )) = f N
head (f (S n)) = S n
head (tail (f (S n)))= S n
tail (tail (f (S n)))= f n

which corresponds to



f : N→ Stream
head (f n) = g n
tail (f n) = h n

g : N→ N
(head (f 0) =) g 0 = 0
(head (f (S n)) =) g (S n) = S n

h : N→ Stream
(tail (f 0) =) h 0 = b0

(tail (f (S n)) =) h (S n) = h0 n

b0 : Stream
(head (tail (f 0)) =) head b0 = 0
(tail (tail (f 0)) =) tail b0 = f N

h0 : N→ Stream
(head (tail (f (S n))) =) head (h0 n) = S n
(tail (tail (f (S n))) =) tail (h0 n) = f n



Appendix: Full Details of Reduction to Primitive (Co)Recursion

Step 2: Reduction to Primitive (Co)recursion

I This can now easily be reduced to full (co)recursion.

I In this example we can reduce it to primitive (co)recursion:

I First all functions which are defined by copattern matching on
Stream can be defined simultaneously:

Anton Setzer Unfolding Nested (Co)Patterns 34/ 21



f : N→ Stream
head (f n) = g n
tail (f n) = h n

b0 : Stream
head b0 = 0
tail b0 = f N

h0 : N→ Stream
head (h0 n) = S n
tail (h0 n) = f n

g : N→ N
g 0 = 0
g (S n) = S n

h : N→ Stream
h 0 = b0

h (S n) = h0 n



Appendix: Full Details of Reduction to Primitive (Co)Recursion

Reduction to Primitive (Co)recursion

I Now these functions can be defined as one function:

Anton Setzer Unfolding Nested (Co)Patterns 36/ 21



f : N→ Stream
f n = (f + b0 + h0) (f n)

(f + b0 + h0) : (f(N) + b0 + h0(N))→ Stream
head ((f + b0 + h0) (f n)) = g n
head ((f + b0 + h0) b0) = 0
head ((f + b0 + h0) (h0 n)) = S n
tail ((f + b0 + h0) (f n)) = h n
tail ((f + b0 + h0) b0) = (f + b0 + h0) (f N)
tail ((f + b0 + h0) (h0 n)) = (f + b0 + h0) (f n)

g : N→ N
g 0 = 0
g (S n) = S n

h : N→ Stream
h 0 = (f + b0 + h0) (b0)
h (S n) = (f + b0 + h0) (h0 n)



Appendix: Full Details of Reduction to Primitive (Co)Recursion

Unfolding of the Pattern Matchings

I g can be defined by primitive recursion.

I The call of h has result always of the form (f + b0 + h0)(n).
So we can replace the recursive call h n by (f + b0 + h0)(h′ n).

I However, since primitive corecursion allows as well escaping we
replace it by a recursive call

(id + (f + b0 + h0))(h′ n)

with
h′ : N→ return(Stream) + (f(N) + b0 + h0(N))

I In general one would need of course continue
I nested pattern matching needs to be replaced by simultaneous

primitive recursion,

Anton Setzer Unfolding Nested (Co)Patterns 38/ 21



f : N→ Stream
f n = (f + b0 + h0) (f n)

(f + b0 + h0) : (f(N) + b0 + h0(N))→ Stream
head ((f + b0 + h0) (f n)) = g n
head ((f + b0 + h0) b0) = 0
head ((f + b0 + h0) (h0 n)) = S n
tail ((f + b0 + h0) (f n)) = (id + (f + b0 + h0)) (h′ n)
tail ((f + b0 + h0) b0) = (f + b0 + h0) (f N)
tail ((f + b0 + h0) (h0 n)) = (f + b0 + h0) (f n)

g : N→ N
g = PN,N 0 (λn, ih.S n)

h′ : N→ (return(Stream) + (f(N) + b0 + h0(N)))
h′ 0 = b0

h′ (S n) = h0 n



Appendix: Full Details of Reduction to Primitive (Co)Recursion

Unfolding of the Pattern Matchings

I h′ can now be defined by primitive recursion.

I (f + b0 + h0) can be defined by primitive corecursion.

Anton Setzer Unfolding Nested (Co)Patterns 40/ 21



f : N→ Stream
f n = (f + b0 + h0) (f n)

(f + b0 + h0) : (f(N) + b0 + h0(N))→ Stream
(f + b0 + h0) =

coPStream,(f(N)+b0+h0(N)) (λx .caser (x) of
(f n) −→ g n
(b0) −→ 0
(h0 n) −→ S n)

(λx .caser (x) of
(f n) −→ h′ n
(b0) −→ f N
(h0 n) −→ f n)

g : N→ N
g = PN,N 0 (λn, ih.S n)

h′ : N→ (return(N) + f(N) + b0 + h0(N))
h′ = PN,(return(N)+f(N)+b0+h0(N)) b0 (λn, ih.h0 n)



Appendix: Full Details of Reduction to Primitive (Co)Recursion

Reduction to Primitive (Co)Recursion

I The case distinction can be trivially replaced by the case distinction
operator.

Anton Setzer Unfolding Nested (Co)Patterns 42/ 21



f : N→ Stream
f n = (f + b0 + h0) (f n)

(f + b0 + h0) : (f(N) + b0 + h0(N))→ Stream
(f + b0 + h0) =

coPStream,(f(N)+b0+h0(N)) (case(f(N)+(b0+h0(N)))
g
(caseb0+h0(N) (λ .0) S)))

(case(f(N)+(b0+h0(N)))
h′

(caseb0+h0(N) (λ .f N) f))

g : N→ N
g = PN,N 0 (λn, ih.S n)

h′ : N→ (return(N) + f(N) + b0 + h0(N))
h′ = PN,(return(N)+f(N)+b0+h0(N)) b0 (λn, ih.h0 n)



Appendix: Defining Fibonacci Numbers by Copattern Matching

Codata types and Decidable Equality

Reduction of Mixed Pattern/Copattern Matching to Operators

Conclusion

Appendix: Full Details of Reduction to Primitive (Co)Recursion

Appendix: Defining Fibonacci Numbers by Copattern Matching

Appendix: Simulating Codata Types in Coalgebras

Anton Setzer Unfolding Nested (Co)Patterns 44/ 21



Appendix: Defining Fibonacci Numbers by Copattern Matching

Fibonacci Numbers

Efficient Haskell version adapted to our codata notation:

codata Stream : Set where
cons : N→ Stream→ Stream

tail : Stream→ Stream
tail (cons n l) = l

addStream : Stream→ Stream→ Stream
addStream (cons n l) (cons n′ l ′) = cons (n + n′) (addStream l l ′)

fib : Stream
fib = cons 1 (cons 1 (addStream fib (tail fib)))

Requires lazy evaluation.

Anton Setzer Unfolding Nested (Co)Patterns 45/ 21



Appendix: Defining Fibonacci Numbers by Copattern Matching

Fibonacci Numbers using Coalgebras

coalg Stream : Set where
head : Stream→ N
tail : Stream→ Stream

addStream : Stream→ Stream→ Stream
head (addStream l l ′) = head l + head l ′

tail (addStream l l ′) = addStream (tail l) (tail l ′)

fib : Stream
head fib = 1
head (tail fib) = 1
tail (tail fib) = addStream fib (tail fib)

No laziness required. Requires full corecursion (but terminates).

Anton Setzer Unfolding Nested (Co)Patterns 46/ 21



Appendix: Simulating Codata Types in Coalgebras

Codata types and Decidable Equality

Reduction of Mixed Pattern/Copattern Matching to Operators

Conclusion

Appendix: Full Details of Reduction to Primitive (Co)Recursion

Appendix: Defining Fibonacci Numbers by Copattern Matching

Appendix: Simulating Codata Types in Coalgebras

Anton Setzer Unfolding Nested (Co)Patterns 47/ 21



Appendix: Simulating Codata Types in Coalgebras

Multiple Constructors in Algebras and Coalgebras

I Having more than one constructor in algebras correspond to disjoint
union:

data N : Set where
0 : N
S : N→ N

corresponds to
data N : Set where

intro : (1 + N)→ N

Anton Setzer Unfolding Nested (Co)Patterns 48/ 21



Appendix: Simulating Codata Types in Coalgebras

Multiple Constructors in Algebras and Coalgebras

I Dual of disjoint union is products, and therefore multiple destructors
correspond to product:

coalg Stream : Set where
head : Stream→ N
tail : Stream→ Stream

corresponds to

coalg Stream : Set where
case : Stream→ (N× Stream)

Anton Setzer Unfolding Nested (Co)Patterns 49/ 21



Appendix: Simulating Codata Types in Coalgebras

Codata Types Correspond to Disjoint Union

I Consider
codata coList : Set where

nil : coList
cons : N→ coList→ coList

I Cannot be simulated by using several destructors.

Anton Setzer Unfolding Nested (Co)Patterns 50/ 21



Appendix: Simulating Codata Types in Coalgebras

Simulating Codata Types by Simultaneous
Algebras/Coalgebras

I Represent Codata as follows

mutual
coalg coList : Set where

unfold : coList→ coListShape

data coListShape : Set where
nil : coListShape
cons : N→ coList→ coListShape

Anton Setzer Unfolding Nested (Co)Patterns 51/ 21



Appendix: Simulating Codata Types in Coalgebras

Definition of Append

append : coList→ coList→ coList
append l l ′ =?

Anton Setzer Unfolding Nested (Co)Patterns 52/ 21



Appendix: Simulating Codata Types in Coalgebras

Definition of Append

append : coList→ coList→ coList
append l l ′ =?

We copattern match on append l l ′ : coList:

append : coList→ coList→ coList
unfold (append l l ′) =?

Anton Setzer Unfolding Nested (Co)Patterns 52/ 21



Appendix: Simulating Codata Types in Coalgebras

Definition of Append

append : coList→ coList→ coList
unfold (append l l ′) =?

We cannot pattern match on l .
But we can do so on (unfold l):

append : coList→ coList→ coList
unfold (append l l ′) =

case (unfold l) of
nil → ?
(cons n l) → ?

Anton Setzer Unfolding Nested (Co)Patterns 52/ 21



Appendix: Simulating Codata Types in Coalgebras

Definition of Append

append : coList→ coList→ coList
unfold (append l l ′) =

case (unfold l) of
nil → ?
(cons n l) → ?

We resolve the goals:

append : coList→ coList→ coList
unfold (append l l ′) =

case (unfold l) of
nil → unfold l ′

(cons n l) → cons n (append l l ′)

Anton Setzer Unfolding Nested (Co)Patterns 52/ 21


	Codata types and Decidable Equality
	Reduction of Mixed Pattern/Copattern Matching to Operators
	Conclusion
	Appendix: Full Details of Reduction to Primitive (Co)Recursion
	Appendix: Defining Fibonacci Numbers by Copattern Matching
	Appendix: Simulating Codata Types in Coalgebras

