Unfolding Nested Patterns and Copatterns

Anton Setzer

(Swansea, UK)

Types 2013 Toulouse
Thursday, 25 April 2013

Codata types and Decidable Equality

Reduction of Mixed Pattern/Copattern Matching to Operators

Conclusion

Appendix: Full Details of Reduction to Primitive (Co)Recursion

Appendix: Defining Fibonacci Numbers by Copattern Matching

Appendix: Simulating Codata Types in Coalgebras

Codata types and Decidable Equality

Reduction of Mixed Pattern/Copattern Matching to Operators

Conclusion

Appendix: Full Details of Reduction to Primitive (Co)Recursion

Appendix: Defining Fibonacci Numbers by Copattern Matching

Appendix: Simulating Codata Types in Coalgebras

Theorem Regarding Undecidabilty of Equality

Theorem

Assume the following:

- There exists a decidable subset Stream $\subseteq \mathbb{N}$,
- computable functions head : Stream $\rightarrow \mathbb{N}$, tail : Stream \rightarrow Stream,
- a decidable equality ${ }_{\text {_ }}==_{\text {_ }}$ on Stream which is congruence,
- the possibilty to define elements of Stream by guarded recursion based on primitive recursive functions $f, g: \mathbb{N} \rightarrow \mathbb{N}$, such that the standard equalities related to guarded recursion hold.
Then it is not possible to fulfil the following condition:
$\forall s, s^{\prime}:$ Stream.head $s=$ head $s^{\prime} \wedge$ tail $s==$ tail $s^{\prime} \rightarrow s==s^{\prime}$

Consequences for Codata Approach

Remark

Condition $(*)$ is fulfilled if we have an operation cons : $\mathbb{N} \rightarrow$ Stream \rightarrow Stream preserving equalities s.t.

$$
\forall s: \text { Stream. } s=\text { cons }(\text { head } s)(\text { tail } s)
$$

So we cannot have a type theory with streams, decidable type checking and decidable equality on streams such that

$$
\forall s . \exists n, s^{\prime} . s==\operatorname{cons} n s^{\prime}
$$

as assumed by the codata approach.

Proof of Theorem

- Assume we had the above.
- By

$$
s \approx n_{0}:: n_{1}:: n_{2}:: \cdots n_{k}:: s^{\prime}
$$

we mean the equations using head, tail expressing that s behaves as the stream indicated on the right hand side.

- Define by guarded recursion I: Stream

$$
I \approx 1:: 1:: 1:: .
$$

Proof of Theorem

- For e code for a Turing machine define by guarded recursion based on primitive recursion functions f, g s.t. if e terminates after n steps and returns result k then

$$
\begin{aligned}
& f e \approx \begin{array}{ll}
\underbrace{0:: 0:: 0:: \cdots: 0}_{n \text { times }}:: I \\
g e & \approx \begin{cases}\underbrace{0:: 0:: 0:: \cdots:: 0}_{n \text { times }}:: l & \text { if } k=0 \\
\underbrace{0:: 0:: 0:: \cdots:: 0}_{n+1 \text { times }}:: l & \text { if } k>0\end{cases}
\end{array} \begin{array}{l}
\end{array}
\end{aligned}
$$

Proof of Theorem

$$
\begin{aligned}
& f e \approx \underbrace{0:: 0:: 0:: \cdots:: 0}_{n \text { times }}:: 1 \\
& g e \approx \begin{cases}\underbrace{0:: 0:: 0:: \cdots:: 0}_{n \text { times }}:: 1 & \text { if } k=0 \\
\underbrace{0:: 0:: 0:: \cdots:: 0}_{n+1 \text { times }}:: 1 & \text { if } k>0\end{cases}
\end{aligned}
$$

- If e terminates after n steps with result 0 then

$$
f e==g e
$$

- If e terminates after n steps with result >0 then

$$
\neg(f e==g e)
$$

Proof of Theorem

- So

$$
\lambda e .(f e==g e)
$$

separates the TM with result 0 from those with result >0.

- But these two sets are inseparable.

Codata types and Decidable Equality

Reduction of Mixed Pattern/Copattern Matching to Operators

Conclusion

Appendix: Full Details of Reduction to Primitive (Co)Recursion

Appendix: Defining Fibonacci Numbers by Copattern Matching

Appendix: Simulating Codata Types in Coalgebras

Operators for Primitive (Co)Recursion

$\mathrm{P}_{\mathbb{N}, A}: A \rightarrow(\mathbb{N} \rightarrow A \rightarrow A) \rightarrow \mathbb{N} \rightarrow A$
$\mathrm{P}_{\mathbb{N}, A}$ step $_{0}$ step $_{\mathrm{S}} 0=$ step $_{0}$
$\mathrm{P}_{\mathbb{N}, A} \operatorname{step}_{0} \operatorname{step}_{\mathrm{S}}(\mathrm{S} n)=\operatorname{step}_{\mathrm{S}} n\left(\mathrm{P}_{\mathbb{N}, A}\right.$ step $\left._{0} \operatorname{step}_{\mathrm{S}} n\right)$
$\operatorname{coP}_{\text {Stream }, A}:(A \rightarrow \mathbb{N}) \rightarrow(A \rightarrow($ Stream $+A)) \rightarrow A \rightarrow$ Stream
head $\left(\operatorname{coP}_{\text {Stream }, A}\right.$ step $_{\text {head }}$ step $\left._{\text {tail }} a\right)=\operatorname{step}_{\text {head }} a$
tail $\left(\mathrm{coP}_{\text {Stream }, A}\right.$ step $_{\text {head }}$ step $\left._{\text {tail }} a\right)=$
case $_{\text {Stream }, A, \text { Stream }}$ id $\left(\operatorname{coP}_{\text {Stream }, A}\right.$ step $\left._{\text {head }} \operatorname{step}_{\text {tail }}\right)\left(\right.$ step $\left._{\text {tail }} a\right)$

Example of Mixed Pattern and Copattern Matching

$\mathbb{N} \rightarrow$ Stream
head ($f 0$) $=0$
head $\left(\operatorname{tail}\left(\begin{array}{ll}f 0 &)\end{array}\right)=0\right.$
head $\quad(f(\mathrm{~S} n))=\mathrm{S} n$
head $(\operatorname{tail}(f(\mathrm{~S} n))$) $\mathrm{S} n$
tail (tail ($f(\mathrm{~S} n)$) $=$

This example can be reduced to primitive (co)recursion.
Step 1: Following the development of the (co)pattern matching definition, unfold it into simulteneous non-nested (co)pattern matching definitions.
$f: \mathbb{N} \rightarrow$ Stream
head $(f n)=g n$
tail $(f n)=h n$
$g: \mathbb{N} \rightarrow \mathbb{N}$
(head (f0)
(head (f (S n))
$=) \quad g 0$
$=) \quad g(\mathrm{~S} n)$

$$
=0
$$

$=) \quad g(\mathrm{~S} n)=\mathrm{S} n$
$h: \mathbb{N} \rightarrow$ Stream
(tail $(f 0)=) h 0=b_{0}$
$(\operatorname{tail}(f(\mathrm{~S} n)) \quad=) \quad h(\mathrm{~S} n)=h_{0} n$
b_{0} : Stream
$($ head $(\operatorname{tail}(f 0))=)$ head $b_{0}=0$
(tail (tail $(f 0))=$ tail $b_{0}=f N$
$h_{0}: \mathbb{N} \rightarrow$ Stream
$($ head $(\operatorname{tail}(f(S n)))=)$ head $\left(h_{0} n\right)=S n$
$($ tail $(\operatorname{tail}(f(\mathrm{~S} n)))=)$ tail $\left(h_{0} n\right)=f n$

Step 2: Reduction to Primitive (Co)recursion

- We can always after step 2 replace the recursion by full (co)recursion operators.
- Reduction to primitive (co)recursion - if it is possible - requires more work:
- First the functions f, b_{0}, h_{0} defined by copattern matching can be defined simultaneously:

$$
\begin{aligned}
& f: \mathbb{N} \rightarrow \text { Stream } \\
& f n
\end{aligned}
$$

$$
=\left(f+b_{0}+h_{0}\right)(\underline{\mathrm{f}} n)
$$

$\left(f+b_{0}+h_{0}\right):\left(\underline{\mathrm{f}}(\mathbb{N})+\underline{\mathrm{b}_{0}}+\underline{\mathrm{h}_{0}}(\mathbb{N})\right) \rightarrow$ Stream
head $\left(\left(f+b_{0}+h_{0}\right)(\overline{\mathrm{f} n})\right)=g n$
head $\left(\left(f+b_{0}+h_{0}\right) \underline{\mathrm{b}_{0}}\right)=0$
head $\left(\left(f+b_{0}+h_{0}\right)\left(\underline{h_{0}} n\right)\right)=\mathrm{S} n$
tail $\quad\left(\left(f+b_{0}+h_{0}\right)(\overline{\mathrm{f}} n)\right)=h n$
tail $\left(\left(f+b_{0}+h_{0}\right) \underline{\mathrm{b}_{0}}\right)=\left(f+b_{0}+h_{0}\right)(\underline{\mathrm{f}} N)$
tail $\left(\left(f+b_{0}+h_{0}\right)\left(\underline{h_{0}} n\right)\right)=\left(f+b_{0}+h_{0}\right)(\underline{\mathrm{f}} n)$
$g: \mathbb{N} \rightarrow \mathbb{N}$
g 0
$g(\mathrm{~S} n)$

$$
\begin{aligned}
& =0 \\
& =S n
\end{aligned}
$$

$h: \mathbb{N} \rightarrow$ Stream $h 0$

$$
h(\mathrm{~S} n)
$$

$$
\begin{aligned}
& =\left(f+b_{0}+h_{0}\right)\left(\underline{\mathrm{b}_{0}}\right) \\
& =\left(f+b_{0}+h_{0}\right)\left(\underline{\mathrm{h}_{0}} n\right)
\end{aligned}
$$

Unfolding of the Pattern Matchings

- h has recursive calls allowed by primitive corecursion on Stream. We replace h by a function h^{\prime} return the argument for the recursive call.

$$
\begin{aligned}
& f: \mathbb{N} \rightarrow \text { Stream } \\
& f n \\
& =\left(f+b_{0}+h_{0}\right)(\underline{f} n) \\
& \left(f+b_{0}+h_{0}\right):\left(\underline{\mathrm{f}}(\mathbb{N})+\underline{\mathrm{b}_{0}}+\underline{\mathrm{h}_{0}}(\mathbb{N})\right) \rightarrow \text { Stream } \\
& \text { head }\left(\left(f+b_{0}+h_{0}\right)(\underline{\mathrm{f}} n)\right)=g n \\
& \text { head }\left(\left(f+b_{0}+h_{0}\right) \underline{\mathrm{b}_{0}}\right)=0 \\
& \text { head }\left(\left(f+b_{0}+h_{0}\right){\left.\left.\overline{\left(\mathrm{h}_{0}\right.} n\right)\right)=\mathrm{S} n}_{n}\right. \\
& \text { tail } \quad\left(\left(f+b_{0}+h_{0}\right)(\overline{\mathrm{f}} n)\right)=\left(\mathrm{id}+\left(f+b_{0}+h_{0}\right)\right)\left(h^{\prime} n\right) \\
& \text { tail }\left(\left(f+b_{0}+h_{0}\right) \underline{\mathrm{b}_{0}}\right)=\left(f+b_{0}+h_{0}\right)(\underline{\mathrm{f}} N) \\
& \text { tail }\left(\left(f+b_{0}+h_{0}\right)\left(\underline{\mathrm{h}_{0}} n\right)\right)=\left(f+b_{0}+h_{0}\right)(\underline{\mathrm{f}} n) \\
& g: \mathbb{N} \rightarrow \mathbb{N} \\
& \begin{array}{ll}
g 0 & =0 \\
g(\mathrm{~S} n) & =\mathrm{S} n
\end{array} \\
& h^{\prime}: \mathbb{N} \rightarrow\left(\underline{\text { return }}(\text { Stream })+\left(\underline{\mathrm{f}}(\mathbb{N})+\underline{\mathrm{b}_{0}}+\underline{\mathrm{h}_{0}}(\mathbb{N})\right)\right) \\
& h^{\prime} 0 \\
& h^{\prime}(\mathrm{S} n) \\
& \begin{array}{l}
=\underline{\mathrm{b}_{0}} \\
=\underline{\mathrm{h}_{0}} n
\end{array}
\end{aligned}
$$

Replacement by Combinators

$$
\begin{aligned}
& f: \mathbb{N} \rightarrow \text { Stream } \\
& f=\lambda n .\left(f+b_{0}+h_{0}\right)(\underline{\mathrm{f}} n) \\
& \left(f+b_{0}+h_{0}\right):\left(\underline{\mathrm{f}}(\mathbb{N})+\underline{\mathrm{b}_{0}}+\underline{\mathrm{h}_{0}}(\mathbb{N})\right) \rightarrow \text { Stream } \\
& \left(f+b_{0}+h_{0}\right)= \\
& \operatorname{coP}_{\text {Stream },\left(\underline{f}(\mathbb{N})+\underline{\mathrm{b}_{0}}+\underline{\mathrm{h}_{0}}(\mathbb{N})\right)}\left(\operatorname{case}_{\left(\underline{\mathrm{f}}(\mathbb{N})+\left(\underline{\mathrm{b}_{0}}+\underline{\mathrm{h}_{0}}(\mathbb{N})\right)\right)}\right. \\
& g \\
& \left.\left.\left(\operatorname{case}_{\underline{b_{0}}+\underline{h_{0}}(\mathbb{N})}\left(\lambda_{-} .0\right) S\right)\right)\right) \\
& \left.\left(\operatorname{case}_{(\underline{f}(\mathbb{N})}\right)\left(\underline{\mathrm{b}_{0}}+\underline{\mathrm{h}_{0}}(\mathbb{N})\right)\right) \\
& h^{\prime} \\
& \left.\left(\operatorname{case}_{\underline{b_{0}}+\underline{h_{0}}(\mathbb{N})}\left(\lambda_{-} \underline{\mathrm{f}} N\right) \underline{\mathrm{f}}\right)\right) \\
& g: \mathbb{N} \rightarrow \mathbb{N} \\
& g=\mathrm{P}_{\mathbb{N}, \mathbb{N}} 0(\lambda n, i h . \mathrm{S} n) \\
& h^{\prime}: \mathbb{N} \rightarrow\left(\underline{\text { return }}(\mathbb{N})+\underline{\mathrm{f}}(\mathbb{N})+\underline{\mathrm{b}_{0}}+\underline{\mathrm{h}_{0}}(\mathbb{N})\right)
\end{aligned}
$$

Codata types and Decidable Equality

Reduction of Mixed Pattern/Copattern Matching to Operators

Conclusion

Appendix: Full Details of Reduction to Primitive (Co)Recursion

Appendix: Defining Fibonacci Numbers by Copattern Matching

Appendix: Simulating Codata Types in Coalgebras

Conclusion

- Codata types make the assumption

$$
\forall s: \text { Stream. } \exists n, s^{\prime} \cdot s=\operatorname{cons} n s^{\prime}
$$

which cannot be combined with a decidable equality.

- One can reduce certain cases of recursive nested (co)pattern matching to primitive (co)recursion.
- Systematic treatment needs still to be done.
- Cases which can be reduced should be those to be accepted by a termination checker.
- If the reduction succeeds we get a normalising version (by Mendler and Geuvers).
- Therefore a termination checked version of the calculus is normalising.

Codata types and Decidable Equality

Reduction of Mixed Pattern/Copattern Matching to Operators

Conclusion

Appendix: Full Details of Reduction to Primitive (Co)Recursion

Appendix: Defining Fibonacci Numbers by Copattern Matching

Appendix: Simulating Codata Types in Coalgebras

Example of Mixed Pattern and Copattern Matching

We consider operators for full and primitive (co)recursion:

$$
\begin{aligned}
& \mathrm{P}_{\mathbb{N}, A}: A \rightarrow(\mathbb{N} \rightarrow A \rightarrow A) \rightarrow \mathbb{N} \rightarrow A \\
& \mathrm{P}_{\mathbb{N}, A} \operatorname{step}_{0} \operatorname{step}_{\mathrm{S}} 0=\operatorname{step}_{0} \\
& \mathrm{P}_{\mathbb{N}, A} \operatorname{step}_{0} \operatorname{step}_{\mathrm{S}}(\mathrm{~S} n)=\operatorname{step}_{\mathrm{S}} n\left(\mathrm{P}_{\mathbb{N}, A} \operatorname{step}_{0} \operatorname{step}_{\mathrm{S}} n\right) \\
& \mathrm{R}_{\mathbb{N}, A}:((\mathbb{N} \rightarrow A) \rightarrow A) \rightarrow((\mathbb{N} \rightarrow A) \rightarrow \mathbb{N} \rightarrow A) \rightarrow \mathbb{N} \rightarrow A \\
& \mathrm{R}_{\mathbb{N}, A} \operatorname{step}_{0} \operatorname{step}_{\mathrm{S}} 0=\operatorname{step}_{0}\left(\mathrm{R}_{\mathbb{N}, A} \text { step }_{0} \operatorname{step}_{\mathrm{S}}\right) \\
& \mathrm{R}_{\mathbb{N}, A} \operatorname{step}_{0} \operatorname{step}_{\mathrm{S}}(\mathrm{~S} n)=\operatorname{step}_{\mathrm{S}}\left(\mathrm{R}_{\mathbb{N}, A} \text { step }_{0} \operatorname{step}_{\mathrm{S}}\right) n
\end{aligned}
$$

Operators for full/primitive (co)recursion

$\operatorname{coP}_{\text {Stream }, A}:(A \rightarrow \mathbb{N}) \rightarrow(A \rightarrow($ Stream $+A)) \rightarrow A \rightarrow$ Stream head $\left(\operatorname{coP}_{\text {Stream }, A}\right.$ step $_{\text {head }}$ step $\left._{\text {tail }} a\right)=\operatorname{step}_{\text {head }} a$
tail $\left(\mathrm{coP}_{\text {Stream }, A}\right.$ step $_{\text {head }}$ step $\left._{\text {tail }} a\right)=$
case $_{\text {Stream }, A, S \text { Stream }}$ id $\left(\operatorname{coP}_{\text {Stream }, A}\right.$ step $_{\text {head }}$ step $\left._{\text {tail }}\right)\left(\right.$ step $\left._{\text {tail }} a\right)$
$\operatorname{coR}_{\text {Stream }, A}:((A \rightarrow$ Stream $) \rightarrow A \rightarrow \mathbb{N})$
$\rightarrow((A \rightarrow$ Stream $)$
$\rightarrow A \rightarrow$ Stream $) \rightarrow$ Stream
head $\left(\operatorname{coR}_{\text {Stream }, A}\right.$ step $_{\text {head }}$ step $\left._{\text {tail }} a\right)=\operatorname{step}_{\text {head }}$
$\left(\operatorname{coR}_{\text {Stream }, A}\right.$ step $_{\text {head }}$ step $\left._{\text {tail }}\right) a$
tail $\left(\operatorname{coR}_{\text {Stream }, A}\right.$ step $_{\text {head }}$ step $\left._{\text {tail }} a\right)=$ step $_{\text {tail }}$
$\left(\operatorname{coR}_{\text {Stream }, A}\right.$ step $_{\text {head }}$ step $\left._{\text {tail }}\right)$ a

Step 1: Unnesting of Nested (Co)Pattern Matching

We follow the steps in the pattern matching: We start with

$$
\begin{aligned}
& f: \mathbb{N} \rightarrow \text { Stream } \\
& \text { head }(f n)=? \\
& \text { tail }(f n)=?
\end{aligned}
$$

Pattern matching on first n :

$$
\begin{array}{ll}
f: \mathbb{N} \rightarrow \text { Stream } & \\
\text { head }(f 0) & =? \\
\text { head }(f(\mathrm{~S} \mathrm{n})) & =? \\
\text { tail }(f n) & =?
\end{array}
$$

corresponds to

$$
\begin{aligned}
& \quad \begin{array}{l}
f: \mathbb{N} \rightarrow \text { Stream } \\
\text { head }(f n)=g n \\
\text { tail }(f n)=?
\end{array} \\
& g(\operatorname{head}(f 0)=\mathbb{N} \rightarrow \mathbb{N} \\
& (\operatorname{head}(f(\mathrm{~S} n))=) \\
& g 0 \\
& g(\mathrm{~S} n)=?
\end{aligned}
$$

$$
\begin{array}{ll}
f: \mathbb{N} \rightarrow \text { Stream } & \\
\text { head }(f 0) & =? \\
\text { head }(f(S n)) & =? \\
\text { tail }(f 0) & =? \\
\text { tail }(f(S n)) & =?
\end{array}
$$

corresponds to

Copattern matching on tail (f0) : Stream

$$
\left.\begin{array}{rl}
f: \mathbb{N} \rightarrow \text { Stream } \\
\text { head } \quad(f 0 &)
\end{array}\right)=?
$$

which corresponds to

Copattern matching on tail ($f(\mathrm{~S} n)$) : Stream:

$$
\begin{aligned}
& f: \mathbb{N} \rightarrow \text { Stream } \\
& \text { head } \quad\left(\begin{array}{ll}
f & 0
\end{array}\right)=\text { ? } \\
& \text { head } \quad(f(\mathrm{~S} n))=\text { ? } \\
& \text { head }\left(\operatorname{tail}\left(\begin{array}{ll}
f & 0
\end{array}\right)\right)=\text { ? } \\
& \text { tail }\left(\text { tail }\left(\begin{array}{ll}
f & 0
\end{array}\right)\right)=\text { ? } \\
& \text { head }(\operatorname{tail}(f(\mathrm{~S} n)))=\text { ? } \\
& \text { tail } \quad(\text { tail }(f(\mathrm{~S} n)))=\text { ? }
\end{aligned}
$$

which corresponds to
$f: \mathbb{N} \rightarrow$ Stream
head $(f n)=g n$
tail $(f n)=h n$
$g: \mathbb{N} \rightarrow \mathbb{N}$
(head (f0)
(head (f (S n))
$\begin{array}{ll}=) & g 0 \\ =) & g(\mathrm{~S} n)\end{array}$
$h: \mathbb{N} \rightarrow$ Stream
(tail $(f 0)=) h 0=b_{0}$
$(\operatorname{tail}(f(\mathrm{~S} n)) \quad=) \quad h(\mathrm{~S} n)=h_{0} n$
b_{0} : Stream
$($ head $(\operatorname{tail}(f 0)) \quad=)$ head $b_{0}=$?
$($ tail $($ tail $(f 0)) \quad=)$ tail $b_{0}=$?
$h_{0}: \mathbb{N} \rightarrow$ Stream
$($ head $(\operatorname{tail}(f(S n)))=)$ head $\left(h_{0} n\right)=$?
$($ tail $(\operatorname{tail}(f(\mathrm{~S} n)))=)$ tail $\left(h_{0} n\right)=$?

Resolving the goals:

$f: \mathbb{N} \rightarrow$ Stream
$\left.\begin{array}{ll}\text { head } \quad(f 0 &)\end{array}\right)=0$
tail $(\operatorname{tail}(f 0))=f N$
head $\quad(f(\mathrm{~S} n))=\mathrm{S} n$
head $(\operatorname{tail}(f(\mathrm{~S} n)))=\mathrm{S} n$
tail $(\operatorname{tail}(f(S n)))=f n$
which corresponds to
$f: \mathbb{N} \rightarrow$ Stream
head $(f n)=g n$
tail $(f n)=h n$
$g: \mathbb{N} \rightarrow \mathbb{N}$
(head (f0)
(head (f (S n))
$=) \quad g 0$
$=) \quad g(\mathrm{~S} n)$

$$
=0
$$

$=) \quad g(\mathrm{~S} n)=\mathrm{S} n$
$h: \mathbb{N} \rightarrow$ Stream
(tail $(f 0)=) h 0=b_{0}$
$(\operatorname{tail}(f(\mathrm{~S} n)) \quad=) \quad h(\mathrm{~S} n)=h_{0} n$
b_{0} : Stream
$($ head $(\operatorname{tail}(f 0))=)$ head $b_{0}=0$
(tail (tail $(f 0))=$ tail $b_{0}=f N$
$h_{0}: \mathbb{N} \rightarrow$ Stream
$($ head $(\operatorname{tail}(f(S n)))=)$ head $\left(h_{0} n\right)=S n$
$($ tail $(\operatorname{tail}(f(\mathrm{~S} n)))=)$ tail $\left(h_{0} n\right)=f n$

Step 2: Reduction to Primitive (Co)recursion

- This can now easily be reduced to full (co)recursion.
- In this example we can reduce it to primitive (co)recursion:
- First all functions which are defined by copattern matching on Stream can be defined simultaneously:

$$
\begin{aligned}
& f: \mathbb{N} \rightarrow \text { Stream } \\
& \text { head }(f n)= \\
& \text { tail } \quad(f n)=
\end{aligned}
$$

$$
b_{0}: \text { Stream }
$$

$$
\begin{array}{ll}
\text { head } b_{0} & =0 \\
\text { tail } & b_{0}
\end{array}=f N
$$

$$
h_{0}: \mathbb{N} \rightarrow \text { Stream }
$$

$$
\text { head }\left(h_{0} n\right)=\mathrm{S} n
$$

$$
\text { tail } \quad\left(h_{0} n\right)=f n
$$

$$
\begin{array}{ll}
g: \mathbb{N} \rightarrow \mathbb{N} & \\
g 0 & =0 \\
g(\mathrm{~S} n) & =\mathrm{S} n
\end{array}
$$

$$
h: \mathbb{N} \rightarrow \text { Stream }
$$

$$
\begin{array}{ll}
h 0 & =b_{0} \\
h(\mathrm{~S} n) & =h_{0} n
\end{array}
$$

Appendix: Full Details of Reduction to Primitive (Co)Recursion

Reduction to Primitive (Co)recursion

- Now these functions can be defined as one function:

$$
\begin{aligned}
& f: \mathbb{N} \rightarrow \text { Stream } \\
& f n
\end{aligned}
$$

$$
=\left(f+b_{0}+h_{0}\right)(\underline{\mathrm{f}} n)
$$

$\left(f+b_{0}+h_{0}\right):\left(\underline{\mathrm{f}}(\mathbb{N})+\underline{\mathrm{b}_{0}}+\underline{\mathrm{h}_{0}}(\mathbb{N})\right) \rightarrow$ Stream
head $\left(\left(f+b_{0}+h_{0}\right)(\overline{\mathrm{f} n})\right)=g n$
head $\left(\left(f+b_{0}+h_{0}\right) \underline{\mathrm{b}_{0}}\right)=0$
head $\left(\left(f+b_{0}+h_{0}\right)\left(\underline{h_{0}} n\right)\right)=\mathrm{S} n$
tail $\quad\left(\left(f+b_{0}+h_{0}\right)(\overline{\mathrm{f}} n)\right)=h n$
tail $\left(\left(f+b_{0}+h_{0}\right) \underline{\mathrm{b}_{0}}\right)=\left(f+b_{0}+h_{0}\right)(\underline{\mathrm{f}} N)$
tail $\left(\left(f+b_{0}+h_{0}\right)\left(\underline{h_{0}} n\right)\right)=\left(f+b_{0}+h_{0}\right)(\underline{\mathrm{f}} n)$
$g: \mathbb{N} \rightarrow \mathbb{N}$
g 0
$g(\mathrm{~S} n)$

$$
\begin{aligned}
& =0 \\
& =S n
\end{aligned}
$$

$h: \mathbb{N} \rightarrow$ Stream $h 0$

$$
h(\mathrm{~S} n)
$$

$$
\begin{aligned}
& =\left(f+b_{0}+h_{0}\right)\left(\underline{\mathrm{b}_{0}}\right) \\
& =\left(f+b_{0}+h_{0}\right)\left(\underline{\mathrm{h}_{0}} n\right)
\end{aligned}
$$

Unfolding of the Pattern Matchings

- g can be defined by primitive recursion.
- The call of h has result always of the form $\left(f+b_{0}+h_{0}\right)(n)$. So we can replace the recursive call $h n$ by $\left(f+b_{0}+h_{0}\right)\left(h^{\prime} n\right)$.
- However, since primitive corecursion allows as well escaping we replace it by a recursive call

$$
\left(\mathrm{id}+\left(f+b_{0}+h_{0}\right)\right)\left(h^{\prime} n\right)
$$

with

$$
h^{\prime}: \mathbb{N} \rightarrow \underline{\operatorname{return}}(\operatorname{Stream})+\left(\underline{\mathrm{f}}(\mathbb{N})+\underline{\mathrm{b}_{0}}+\underline{\mathrm{h}_{0}}(\mathbb{N})\right)
$$

- In general one would need of course continue
- nested pattern matching needs to be replaced by simultaneous primitive recursion,
$f: \mathbb{N} \rightarrow$ Stream

$$
f n \quad=\left(f+b_{0}+h_{0}\right)(\underline{\mathrm{f}} n)
$$

$\left(f+b_{0}+h_{0}\right):\left(\underline{\mathrm{f}}(\mathbb{N})+\underline{\mathrm{b}_{0}}+\underline{\mathrm{h}_{0}}(\mathbb{N})\right) \rightarrow$ Stream
head $\left(\left(f+b_{0}+h_{0}\right)(\underline{\mathrm{f} n})\right)=g n$
head $\left(\left(f+b_{0}+h_{0}\right) \underline{\mathrm{b}_{0}}\right)=0$
head $\left(\left(f+b_{0}+h_{0}\right)\left(\overline{\mathrm{h}}_{0} n\right)\right)=\mathrm{S} n$
tail $\quad\left(\left(f+b_{0}+h_{0}\right)(\underline{\mathrm{f}} n)\right)=\left(\mathrm{id}+\left(f+b_{0}+h_{0}\right)\right)\left(h^{\prime} n\right)$
tail $\left(\left(f+b_{0}+h_{0}\right) \underline{\mathrm{b}_{0}}\right)=\left(f+b_{0}+h_{0}\right)(\underline{\mathrm{f}} N)$
tail $\left.\left(\left(f+b_{0}+h_{0}\right) \overline{(\underline{h}}_{0} n\right)\right)=\left(f+b_{0}+h_{0}\right)(\underline{\mathrm{f}} n)$

$$
\begin{aligned}
& g: \mathbb{N} \rightarrow \mathbb{N} \\
& g=\mathrm{P}_{\mathbb{N}, \mathbb{N}} 0(\lambda n, i h . \mathrm{S} n)
\end{aligned}
$$

$$
h^{\prime}: \mathbb{N} \rightarrow\left(\underline{\text { return }}(\text { Stream })+\left(\underline{\mathrm{f}}(\mathbb{N})+\underline{\mathrm{b}_{0}}+\underline{\mathrm{h}_{0}}(\mathbb{N})\right)\right)
$$

$$
h^{\prime} 0
$$

$h^{\prime}(\mathrm{S} n)$

$$
\begin{aligned}
& =\underline{\mathrm{b}_{0}} \\
& =\underline{\mathrm{h}_{0}} n
\end{aligned}
$$

Unfolding of the Pattern Matchings

- h^{\prime} can now be defined by primitive recursion.
- $\left(f+b_{0}+h_{0}\right)$ can be defined by primitive corecursion.

$$
\begin{aligned}
& f: \mathbb{N} \rightarrow \text { Stream } \\
& f n=\left(f+b_{0}+h_{0}\right)(\underline{f} n) \\
& \left(f+b_{0}+h_{0}\right):\left(\underline{\mathrm{f}}(\mathbb{N})+\underline{\mathrm{b}_{0}}+\underline{\mathrm{h}_{0}}(\mathbb{N})\right) \rightarrow \text { Stream } \\
& \left(f+b_{0}+h_{0}\right)= \\
& \operatorname{coP}_{\text {Stream },\left(\underline{f}(\mathbb{N})+\underline{\mathrm{b}_{0}}+\underline{\mathrm{h}_{0}}(\mathbb{N})\right)}\left(\lambda x \cdot \operatorname{case}_{r}(x)\right. \text { of } \\
& (\underline{f} n) \longrightarrow g n \\
& \left(\underline{\mathrm{~b}_{0}}\right) \longrightarrow 0 \\
& \left(\underline{\left.\mathrm{~h}_{0} n\right)} \longrightarrow \mathrm{S} n\right) \\
& \text { (} \lambda x \cdot \operatorname{case}_{r}(x) \text { of } \\
& (\underline{\mathrm{f}} n) \quad \longrightarrow \quad h^{\prime} n \\
& \begin{array}{lll}
\left(\underline{\mathrm{b}_{0}}\right) & \longrightarrow & \underline{\mathrm{f}} N \\
\left(\underline{\mathrm{~h}_{0}} n\right) & \longrightarrow & \underline{f} n)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& g: \mathbb{N} \rightarrow \mathbb{N} \\
& g=\mathrm{P}_{\mathbb{N}, \mathbb{N}} 0(\lambda n, i h . S n) \\
& h^{\prime}: \mathbb{N} \rightarrow\left(\underline{\operatorname{return}}(\mathbb{N})+\underline{\mathrm{f}}(\mathbb{N})+\underline{\mathrm{b}_{0}}+\underline{\mathrm{h}_{0}}(\mathbb{N})\right) \\
& \left.h^{\prime}=\mathrm{P}_{\mathbb{N},\left(\underline{\text { return }}(\mathbb{N})+\underline{\mathrm{f}}(\mathbb{N})+\underline{\mathrm{b}_{0}}+\underline{\mathrm{h}_{0}}(\mathbb{N})\right) \underline{\mathrm{b}_{0}}\left(\lambda n, i h . \underline{\mathrm{h}_{0}} n\right)}^{n}\right)
\end{aligned}
$$

Appendix: Full Details of Reduction to Primitive (Co)Recursion

Reduction to Primitive (Co)Recursion

- The case distinction can be trivially replaced by the case distinction operator.

$$
\begin{aligned}
& f: \mathbb{N} \rightarrow \text { Stream } \\
& f n=\left(f+b_{0}+h_{0}\right)(\underline{f} n) \\
& \left(f+b_{0}+h_{0}\right):\left(\underline{f}(\mathbb{N})+\underline{\mathrm{b}_{0}}+\underline{\mathrm{h}_{0}}(\mathbb{N})\right) \rightarrow \text { Stream } \\
& \left(f+b_{0}+h_{0}\right)= \\
& \operatorname{coP}_{\text {Stream },\left(\underline{f}(\mathbb{N})+\underline{\mathrm{b}_{0}}+\underline{\mathrm{h}_{\mathbf{h}}}(\mathbb{N})\right)}\left(\operatorname{case}_{\left(\underline{f}(\mathbb{N})+\left(\underline{\mathrm{b}_{0}}+\underline{\mathrm{h}_{0}}(\mathbb{N})\right)\right)}\right. \\
& g \\
& \left.\left.\left(\operatorname{case}_{\underline{b_{0}}+\underline{h_{0}}(\mathbb{N})}\left(\lambda_{-} .0\right) S\right)\right)\right) \\
& \left(\operatorname{case}_{(\underline{f}(\mathbb{N})}+\left(\underline{\mathrm{b}_{0}}+\underline{\mathrm{h}_{0}}(\mathbb{N})\right)\right) \\
& h^{\prime} \\
& \left.\left(\operatorname{case}_{\underline{\mathrm{b}_{0}}+\underline{\mathrm{h}_{0}}(\mathbb{N})}\left(\lambda_{-} . \underline{\mathrm{f}} N\right) \underline{\mathrm{f}}\right)\right) \\
& g: \mathbb{N} \rightarrow \mathbb{N} \\
& g=\mathrm{P}_{\mathbb{N}, \mathbb{N}} 0(\lambda n, i h . \mathrm{S} n) \\
& h^{\prime}: \mathbb{N} \rightarrow\left(\underline{\text { return }}(\mathbb{N})+\underline{\mathrm{f}}(\mathbb{N})+\underline{\mathrm{b}_{0}}+\underline{\mathrm{h}_{0}}(\mathbb{N})\right)
\end{aligned}
$$

Codata types and Decidable Equality

Reduction of Mixed Pattern/Copattern Matching to Operators

Conclusion

Appendix: Full Details of Reduction to Primitive (Co)Recursion

Appendix: Defining Fibonacci Numbers by Copattern Matching

Fibonacci Numbers

Efficient Haskell version adapted to our codata notation:

```
codata Stream : Set where
    cons: \mathbb{N}->\mathrm{ Stream }->\mathrm{ Stream}
tail : Stream }->\mathrm{ Stream
tail (cons nl)}=
addStream : Stream }->\mathrm{ Stream }->\mathrm{ Stream
addStream (cons n I) (cons n' I')= cons (n+ n') (addStream I I')
fib:Stream
fib = cons 1 (cons 1 (addStream fib (tail fib)))
Requires lazy evaluation.
```


Fibonacci Numbers using Coalgebras

```
coalg Stream : Set where
    head : Stream }->\mathbb{N
    tail : Stream }->\mathrm{ Stream
addStream : Stream }->\mathrm{ Stream }->\mathrm{ Stream
head (addStream I I') = head I + head I'
tail (addStream / I') = addStream (tail I) (tail I')
fib:Stream
head fib = 1
head (tail fib) = 1
tail (tail fib) = addStream fib (tail fib)
```

No laziness required. Requires full corecursion (but terminates).

Codata types and Decidable Equality

Reduction of Mixed Pattern/Copattern Matching to Operators

Conclusion

Appendix: Full Details of Reduction to Primitive (Co)Recursion

Appendix: Defining Fibonacci Numbers by Copattern Matching

Appendix: Simulating Codata Types in Coalgebras

Multiple Constructors in Algebras and Coalgebras

- Having more than one constructor in algebras correspond to disjoint union:

$$
\begin{aligned}
& \text { data } \mathbb{N} \text { : Set where } \\
& 0 \text { : } \mathbb{N} \\
& \mathrm{S}: \mathbb{N} \rightarrow \mathbb{N}
\end{aligned}
$$

corresponds to

$$
\begin{aligned}
& \text { data } \mathbb{N}: \text { Set where } \\
& \text { intro }:(1+\mathbb{N}) \rightarrow \mathbb{N}
\end{aligned}
$$

Multiple Constructors in Algebras and Coalgebras

- Dual of disjoint union is products, and therefore multiple destructors correspond to product:

$$
\begin{aligned}
& \text { coalg Stream : Set where } \\
& \text { head }: \\
& \text { tail } \quad \text { Stream } \rightarrow \mathbb{N} \\
& \\
& \text { tream } \rightarrow \text { Stream }
\end{aligned}
$$

corresponds to

$$
\begin{aligned}
& \text { coalg Stream : Set where } \\
& \text { case : Stream } \rightarrow(\mathbb{N} \times \text { Stream })
\end{aligned}
$$

Codata Types Correspond to Disjoint Union

- Consider
codata coList : Set where
nil $\quad:$ coList
cons $\quad: \mathbb{N} \rightarrow$ coList \rightarrow coList
- Cannot be simulated by using several destructors.

Simulating Codata Types by Simultaneous Algebras/Coalgebras

- Represent Codata as follows

```
mutual
    coalg coList: Set where
        unfold : coList }->\mathrm{ coListShape
    data coListShape : Set where
        nil : coListShape
        cons : \mathbb{N}->\mathrm{ coList }->\mathrm{ coListShape}
```


Definition of Append

append : coList \rightarrow coList \rightarrow coList append $I I^{\prime}=$?

Definition of Append

append : coList \rightarrow coList \rightarrow coList append $/ I^{\prime}=$?

We copattern match on append $I I^{\prime}$: coList:

> append : coList \rightarrow coList \rightarrow coList unfold $\left(\right.$ append $\left./ I^{\prime}\right)=$?

Definition of Append

> append : coList \rightarrow coList \rightarrow coList
> unfold $\left(\right.$ append $\left./ I^{\prime}\right)=$?

We cannot pattern match on I.
But we can do so on (unfold I):

$$
\begin{aligned}
& \text { append : coList } \rightarrow \text { coList } \rightarrow \text { coList } \\
& \text { unfold (append } \left.I I^{\prime}\right)= \\
& \text { case (unfold } I \text {) of } \\
& \quad \text { nil } \quad \rightarrow \text { ? } \\
& \quad(\text { cons } n I) \rightarrow ?
\end{aligned}
$$

Definition of Append

$$
\begin{aligned}
& \text { append : coList } \rightarrow \text { coList } \rightarrow \text { coList } \\
& \text { unfold (append } \left.I I^{\prime}\right)= \\
& \text { case (unfold } I \text {) of } \\
& \quad \text { nil } \quad \rightarrow \text { ? } \quad \rightarrow
\end{aligned}
$$

We resolve the goals:

$$
\begin{aligned}
& \text { append : coList } \rightarrow \text { coList } \rightarrow \text { coList } \\
& \text { unfold (append } / I^{\prime} \text {) }= \\
& \text { case (unfold } I \text {) of } \\
& \text { nil } \quad \rightarrow \text { unfold } I^{\prime} \\
& \text { (cons } n / \text {) } \rightarrow \text { cons } n \text { (append } / I^{\prime} \text {) }
\end{aligned}
$$

