How to Reason Informally Coinductively

Anton Setzer

Swansea University

Swansea PCV Seminar, 16 June 2015

With contributions from Peter Hancock, Thorsten Altenkirch, Andreas Abel, Brigitte Pientka and David Thibodeau.

Goal

Inductive Definition	
Determined by Introduction	$?$
Iteration	$?$
Primitive Recursion	$?$
Pattern matching	$?$
Induction	$?$
Induction-Hypothesis	$?$

[^0]
Introduction/Elimination of Inductive/Coinductive Sets

- Introduction rules for Natural numbers means that we have

$$
\begin{aligned}
& 0 \in \mathbb{N} \\
& S: \mathbb{N} \rightarrow \mathbb{N}
\end{aligned}
$$

- Dually, coinductive sets are given by their elimination rules i.e. by observations.
As an example we consider Stream:

$$
\begin{array}{ll}
\text { head }: & \text { Stream } \rightarrow \mathbb{N} \\
\text { tail } & : \\
\text { Stream } \rightarrow \text { Stream }
\end{array}
$$

Duality

Inductive Definition	Coinductive Definition
Determined by Introduction	Determined by Observation
Iteration	$?$
Primitive Recursion	$?$
Pattern matching	$?$
Induction	$?$
Induction-Hypothesis	$?$

Unique Iteration

- That $(\mathbb{N}, 0, S)$ are minimal can be given by:
- Assume another \mathbb{N}-structure (X, z, s), i.e.

$$
\begin{aligned}
& z \in X \\
& s: X \rightarrow X
\end{aligned}
$$

- Then there exist a unique homomorphism $g:(\mathbb{N}, 0, S) \rightarrow(X, z, s)$:

$$
\begin{aligned}
& g: \mathbb{N} \rightarrow X \\
& g(0)=z \\
& g(S(n))=s(g(n))
\end{aligned}
$$

- This means we can define uniquely

$$
\begin{aligned}
& g: \mathbb{N} \rightarrow X \\
& g(0) \quad=\quad x \quad \text { for some } x \in X \\
& g(S(n))=x^{\prime} \quad \text { for some } x^{\prime} \in X \text { depending on } g(n)
\end{aligned}
$$

Unique Coiteration

- Dually, that (Stream, head, tail) is maximal can be given by:
- Assume another Stream-structure (X, h, t) :

$$
\begin{aligned}
& h: X \rightarrow \mathbb{N} \\
& t:
\end{aligned}
$$

- Then there exist a unique homomorphism $g:(X, h, t) \rightarrow($ Stream, head, tail $):$

$$
\begin{aligned}
& g: X \rightarrow \text { Stream } \\
& \operatorname{head}(g(x))=h(x) \\
& \operatorname{tail}(g(x))=g(t(x))
\end{aligned}
$$

- Means we can define uniquely

$$
\begin{array}{ll}
g: X \rightarrow \text { Stream } & \\
\text { head }(g(x))=n & \text { for some } n \in \mathbb{N} \text { depending on } x \\
\operatorname{tail}(g(x))=g\left(x^{\prime}\right) & \text { for some } x^{\prime} \in X \text { depending on } x
\end{array}
$$

Comparison

- When using iteration the instance of g we can use is restricted, but we can apply an arbitrary function to it.
- When using coiteration we can choose which instance of g we want, but can use it only directly.

Duality

Inductive Definition	Coinductive Definition
Determined by Introduction	Determined by Observation
Iteration	Coiteration
Primitive Recursion	$?$
Pattern matching	$?$
Induction	$?$
Induction-Hypothesis	$?$

Unique Primitive Recursion

- From unique iteration we can derive principle of unique primitive recursion
- We can define uniquely

$$
\begin{aligned}
& g: \mathbb{N} \rightarrow X \\
& g(0) \quad=x \quad \text { for some } x \in X \\
& g(\mathrm{~S}(n))=x^{\prime} \quad \text { for some } x^{\prime} \in X \text { depending on } n, g(n)
\end{aligned}
$$

- Primitive pattern matching.

Unique Primitive Corecursion

- From unique coiteration we can derive principle of unique primitive corecursion
- We can define uniquely

$$
\begin{aligned}
& g: X \rightarrow \text { Stream } \\
& \begin{aligned}
\text { head }(g(x))= & n \text { for some } n \in \mathbb{N} \text { depending on } x \\
\operatorname{tail}(g(x)))= & g\left(x^{\prime}\right) \text { for some } x^{\prime} \in X \text { depending on } x \\
& \text { or } \\
= & s \text { for some } s \in \text { Stream depending on } x
\end{aligned}
\end{aligned}
$$

- Note: No application of a function to $g\left(x^{\prime}\right)$ allowed.
- Primitive copattern matching.

Example

$$
\begin{aligned}
& s \in \operatorname{Stream} \\
& \operatorname{head}(s)=0 \\
& \operatorname{tail}(s)=s \\
& s^{\prime}: \mathbb{N} \rightarrow \text { Stream } \\
& \operatorname{head}\left(s^{\prime}(n)\right)=0 \\
& \operatorname{tail}\left(s^{\prime}(n)\right)=s^{\prime}(n+1) \\
& \operatorname{cons}:(\mathbb{N} \times \text { Stream }) \rightarrow \text { Stream } \\
& \operatorname{head}(\operatorname{cons}(n, s))=n \\
& \operatorname{tail}(\operatorname{cons}(n, s))=s
\end{aligned}
$$

Duality

Inductive Definition	Coinductive Definition
Determined by Introduction	Determined by Observation
Iteration	Coiteration
Primitive Recursion	Primitive Corecursion
Pattern matching	Copattern matching
Induction	$?$
Induction-Hypothesis	$?$

Induction

- From unique iteration one can derive principle of induction:

$$
\begin{aligned}
& \text { We can prove } \forall n \in \mathbb{N} . \varphi(n) \text { by proving } \\
& \varphi(0) \\
& \forall n \in \mathbb{N} . \varphi(n) \rightarrow \varphi(\mathrm{S}(n))
\end{aligned}
$$

- Using induction we can prove (assuming extensionality of functions) uniqueness of iteration and primitive recursion.

Equivalence

Theorem
Let $(\mathbb{N}, 0, \mathrm{~S})$ be an \mathbb{N}-algebra. The following is equivalent

1. The principle of unique iteration.
2. The principle of unique primitive recursion.
3. The principle of iteration + induction.
4. The principle of primitive recursion + induction.

Coinduction

- Uniqueness in coiteration is equivalent to the principle: Bisimulation implies equality
- Bisimulation on Stream is the largest relation \sim on Stream s.t.

$$
s \sim s^{\prime} \rightarrow \operatorname{head}(s)=\operatorname{head}\left(s^{\prime}\right) \wedge \operatorname{tail}(s) \sim \operatorname{tail}\left(s^{\prime}\right)
$$

- Largest can be expressed as \sim being an indexed coinductively defined set.
- Primitive corecursion over \sim means:

We can prove

$$
\forall s, s^{\prime} . X\left(s, s^{\prime}\right) \rightarrow s \sim s^{\prime}
$$

by showing

$$
\begin{aligned}
& X\left(s, s^{\prime}\right) \rightarrow \operatorname{head}(s)=\operatorname{head}\left(s^{\prime}\right) \\
& X\left(s, s^{\prime}\right) \rightarrow X\left(\operatorname{tail}(s), \operatorname{tail}\left(s^{\prime}\right)\right) \vee \operatorname{tail}(s) \sim \operatorname{tail}\left(s^{\prime}\right)
\end{aligned}
$$

Coinduction

- Combining
- bisimulation implies equality
- bisimulation can be shown corecursively we obtain the following principle of coinduction

Schema of Coinduction

- We can prove

$$
\forall s, s^{\prime} . X\left(s, s^{\prime}\right) \rightarrow s=s^{\prime}
$$

by showing

$$
\begin{aligned}
& \forall s, s^{\prime} . X\left(s, s^{\prime}\right) \rightarrow \operatorname{head}(s)=\operatorname{head}\left(s^{\prime}\right) \\
& \forall s, s^{\prime} . X\left(s, s^{\prime}\right) \rightarrow \operatorname{tail}(s)=\operatorname{tail}\left(s^{\prime}\right)
\end{aligned}
$$

where $\operatorname{tail}(s)=\operatorname{tail}\left(s^{\prime}\right)$ can be derived

- directly or
- from a proof of

$$
X\left(\operatorname{tail}(s), \operatorname{tail}\left(s^{\prime}\right)\right)
$$

invoking the co-induction-hypothesis

$$
X\left(\operatorname{tail}(s), \operatorname{tail}\left(s^{\prime}\right)\right) \rightarrow \operatorname{tail}(s)=\operatorname{tail}\left(s^{\prime}\right)
$$

- Note: Only direct use of co-IH allowed.

Indexed Coinduction

- For using coinduction, one typically wants to show for some $f, g: X \rightarrow$ Stream

$$
\forall x \in X . f(x)=g(x)
$$

- Using $X\left(s, s^{\prime}\right)=\left\{x \mid f(x)=s \wedge g(x)=s^{\prime}\right\}$ we obtain the principle of indexed coinduction

Schema Indexed Coinduction

- We can prove

$$
\forall x \in X . f(x)=g(x)
$$

by showing

$$
\begin{array}{ll}
\forall x \in X \cdot \operatorname{head}(f(x)) & =\operatorname{head}(g(x)) \\
\forall x \in X \cdot \operatorname{tail}(f(x)) & =\operatorname{tail}(g(x))
\end{array}
$$

where $\operatorname{tail}(f(x))=\operatorname{tail}(g(x))$ can be derived

- directly or
- by

$$
\operatorname{tail}(f(x))=f\left(x^{\prime}\right) \quad \operatorname{tail}(g(x))=g\left(x^{\prime}\right)
$$

and using the co-induction-hypothesis

$$
f\left(x^{\prime}\right)=g\left(x^{\prime}\right)
$$

- Again only direct use of co-IH allowed (otherwise you can derive tail $(f(x))=\operatorname{tail}(g(x))$ from $f(x)=g(x)$).
- In fact the above is the same as uniqueness of corecursion.

Equivalence

Theorem

Let (Stream, head, tail) be a Stream-coalgebra. The following is equivalent

1. The principle of unique coiteration.
2. The principle of unique primitive corecursion.
3. The principle of coiteration + coinduction
4. The principle of primitive corecursion + coinduction
5. The principle of coiteration + indexed coinduction.
6. The principle of primitive corecursion + indexed coinduction.

Example

- Remember

$$
\begin{array}{lll}
\operatorname{head}(s)=0 & \operatorname{head}\left(s^{\prime}(n)\right) & =0 \\
\text { tail }(s)=s & \operatorname{tail}\left(s^{\prime}(n)\right) & =s^{\prime}(n+1)
\end{array}
$$

- We show $\forall n \in \mathbb{N} . s=s^{\prime}(n)$ by indexed coinduction:
- $\operatorname{head}(s)=0=\operatorname{head}\left(s^{\prime}(n)\right)$.
- $\operatorname{tail}(s)=s \stackrel{\text { co-IH }}{=} s^{\prime}(n+1)=\operatorname{tail}\left(s^{\prime}(n)\right)$.

Example

$$
\begin{aligned}
& \text { head }(s)=0 \\
& \text { tail }(s)=s
\end{aligned}
$$

- We show $s=\operatorname{cons}(0, s)$ by indexed coinduction:
- head $(s)=0=$ head $(\operatorname{cons}(0, s))$.
- $\operatorname{tail}(s)=s=\operatorname{tail}(\operatorname{cons}(0, s))$ (no use of co-IH).

Proofs of Other Bisimilarity Relations

- The above can be used as well for proving other bisimilarity relations.
- Consider the following (unlabelled) transition system:

- Bisimilarity is the final coalgebra

$$
\begin{aligned}
p \sim q \rightarrow & \left(\forall p^{\prime} \cdot p \longrightarrow p^{\prime}\right. \\
& \left.\rightarrow \exists q^{\prime} \cdot q \longrightarrow q^{\prime} \wedge p^{\prime} \sim q^{\prime}\right) \\
& \wedge \cdots \text { symmetric case } \cdots\}
\end{aligned}
$$

Proof using the Definition of \sim

- We show $p \sim q \wedge p \sim r$ by indexed coinduction:
- Coinduction step for $p \sim q$:
- Assume $p \longrightarrow p^{\prime}$. Then $p^{\prime}=p$. We have $q \longrightarrow r$ and by co-IH $p \sim r$.
- Assume $q \longrightarrow q^{\prime}$. Then $q^{\prime}=r$. We have $p \longrightarrow p$ and by co-IH $p \sim r$.
- Coinduction step for $p \sim r$:
- Assume $p \longrightarrow p^{\prime}$. Then $p^{\prime}=p$. We have $r \longrightarrow q$ and by co-IH $p \sim q$.
- Assume $r \longrightarrow r^{\prime}$. Then $r^{\prime}=q$. We have $p \longrightarrow p$ and by co-IH $p \sim q$.

General Coinduction

- Schwichtenberg: I have done lots of coinductive proofs but it was never a proof of an equality.
- Answer:
- What happens is that the predicate proved was defined coinductively.
- The corecursion principle for this predicate corresponds to coinductive proofs of this formula.
- Again the corecursion hypothesis forms the coinduction principles.
- It is necessary to do it like this because coinduction/corecursion is an introduction principle, not an elimination principle.

Conclusion

Inductive Definition	Coinductive Definition
Determined by Introduction	Determined by Observation
Iteration	Coiteration
Primitive Recursion	Primitive Corecursion
Pattern matching	Copattern matching
Induction	Coinduction (?)
Induction-Hypothesis	Coinduction-Hypothesis

Acknowledgements

- To look at iteration, recursion, induction in parallel with coiteration, corecursion, coinduction I learned from Peter Hancock, although we didn't resolve in our discussions what coinduction is and what the precise formulation of corecursion would be.
- How to derive from iteration recursion I learned from Thorsten Altenkirch, however that seems to be a well-known fact.

Bibliography

- Anton Setzer, Andreas Abel, Brigitte Pientka and David Thibodeau: Unnesting of Copatterns. In Gilles Dowek (Ed): Rewriting and Typed Lambda Calculi. Proceedings RTA-TLCA 2014. LNCS 8560, 2014, pp. 31-45. Doi 10.1007/978-3-319-08918-8_3. Bibtex.
- Andreas Abel, Brigitte Pientka, David Thibodeau and Anton Setzer: Copatterns: programming infinite structures by observations. Proceedings of POPL 2013, 2013, pp. 27-38. Doi 10.1145/2429069.2429075. Bibtex.
- Anton Setzer: Coalgebras as Types determined by their Elimination Rules. In: Peter Dybjer, Sten Lindström, Erik Palmgren, Göran Sundholm: Epistemology versus ontology: Essays on the foundations of mathematics in honour of Per Martin-Löf. Springer, 2012, pp. 351 - 369, Doi: 10.1007/978-94-007-4435-6_16. Bibtex

Appendix

Difficulty defining Pred Using Iteration

- Using iteration pred, the inverse of $0, S$ is inefficient:

$$
\begin{aligned}
& \operatorname{pred}: \mathbb{N} \rightarrow\{-1\} \cup \mathbb{N} \\
& \operatorname{pred}(0) \quad=-1 \\
& \operatorname{pred}(\mathrm{~S}(n))
\end{aligned} \quad=\mathrm{S}^{\prime}(\operatorname{pred}(n)) .
$$

Difficulty defining Cons Using Coiteration

- Using coiteration cons, the inverse of head, tail is difficult to define

$$
\begin{aligned}
& \text { cons }:(\mathbb{N} \times \text { Stream }) \rightarrow \text { Stream } \\
& \text { head }(\operatorname{cons}(n, s))=n \\
& \operatorname{tail}(\operatorname{cons}(n, s))=\operatorname{cons}(\operatorname{head}(s), \operatorname{tail}(s)) \\
& \text { e.g.tail }(\operatorname{tail}(\operatorname{cons}(n, s)))=\operatorname{cons}(\operatorname{head}(\operatorname{tail}(s)), \operatorname{tail}(\operatorname{tail}(s)))
\end{aligned}
$$

[^0]: ${ }^{1}$ Part of this table is due to Peter Hancock, see acknowledgements at the end.

