Anton Setzer

Swansea University
Swansea PCV Seminar, 16 June 2015

With contributions from Peter Hancock, Thorsten Altenkirch, Andreas
Abel, Brigitte Pientka and David Thibodeau.

«0O0» «Fr» «=)r» « » Q>

http://www.cs.swan.ac.uk/~csetzer/index.html
http://www.swansea.ac.uk/compsci/
http://www.swansea.ac.uk/compsci/research-2011/seminars/pcvseminars.php

Goal

Inductive Definition

Coinductive Definition

Determined by Introduction

Iteration

Primitive Recursion

Pattern matching

Induction

Induction-Hypothesis

?
?
?
?
7
?

!Part of this table is due to Peter Hancock, see acknowledgements at the

end.

Anton Setzer (Swansea) How to Reason Informally Coinductively

2/ 26

Introduction/Elimination of Inductive/Coinductive Sets

» Introduction rules for Natural numbers means that we have

0eN
S:N— N

» Dually, coinductive sets are given by their elimination rules i.e. by
observations.
As an example we consider Stream:

head : Stream — N
tail : Stream — Stream

Anton Setzer (Swansea) How to Reason Informally Coinductively 3/ 26

Inductive Definition

Coinductive Definition

Determined by Introduction

Determined by Observation

Iteration

?

Primitive Recursion

Pattern matching

Induction

Induction-Hypothesis

?
?
?
?

«0O0» «F»r <«

Unique lteration

» That (N,0,S) are minimal can be given by:
» Assume another N-structure (X, z,s), i.e.

ze X
s: X=X

» Then there exist a
unique homomorphism g : (N,0,S) — (X, z, s):
g: N> X
g(0) z
g(S(n) = s(g(n)

» This means we can define uniquely

g:N—=>X
g(0) x
g(8(n) = X

for some x € X
for some x’ € X depending on g(n)

Anton Setzer (Swansea) How to Reason Informally Coinductively

5/ 26

Unique Coiteration
» Dually, that (Stream, head, tail) is maximal can be given by:
» Assume another Stream-structure (X, h, t):

h : X—=N
t . X=X

» Then there exist a

unique homomorphism g : (X, h, t) — (Stream, head, tail):

g : X — Stream
head(g(x)) = h(x)
tail(g(x)) = g(t(x))

» Means we can define uniquely

g : X — Stream
head(g(x)) = n for some n € N depending on x
tail(g(x)) = g(x’) for some x’ € X depending on x

Anton Setzer (Swansea) How to Reason Informally Coinductively

6/ 26

» When using iteration the instance of g we can use is restricted, but
we can apply an arbitrary function to it.

» When using coiteration we can choose which instance of g we want,
but can use it only directly.

«O0> «F>» «=)r» «=)» = Q>

Duality

Inductive Definition Coinductive Definition

Determined by Introduction | Determined by Observation

[teration Coiteration

Primitive Recursion ?

Pattern matching

5
Induction ?
>

Induction-Hypothesis

Anton Setzer (Swansea) How to Reason Informally Coinductively 8/ 26

Unique Primitive Recursion

» From unique iteration we can derive principle of
unique primitive recursion

» We can define uniquely

g N—=X
g(0) = x forsome x e X
g(S(n)) = x’ for some x’ € X depending on n, g(n)

» Primitive pattern matching.

Anton Setzer (Swansea) How to Reason Informally Coinductively 9/ 26

Unique Primitive Corecursion

» From unique coiteration we can derive principle of
unique primitive corecursion

» We can define uniquely

g : X — Stream

head(g(x)) = n for some n € N depending on x
tail(g(x))) = g(x’) for some x’ € X depending on x
or

= s for some s € Stream depending on x

» Note: No application of a function to g(x’) allowed.
» Primitive copattern matching.

Anton Setzer (Swansea) How to Reason Informally Coinductively

10/ 26

s € Stream
head(s) = 0
tail(s) = s

s’ : N — Stream
head(s’(n)) = 0
tail(s'(n)) = s'(n+1)

cons : (N x Stream) — Stream

head(cons(n,s)) = n
tail(cons(n,s)) = s

«O0)>» «F» «=)» 4«

it
it
N)
¥l
i)

Duality

Inductive Definition

Coinductive Definition

Determined by Introduction

Determined by Observation

[teration

Coiteration

Primitive Recursion

Primitive Corecursion

Pattern matching

Copattern matching

Induction

?

Induction-Hypothesis

?

Anton Setzer (Swansea)

How to Reason Informally Coinductively

12/ 26

» From unique iteration one can derive principle of induction:

We can prove Vn € N.g(n) by proving
(0)

Vn € N.p(n) — ¢(S(n))

» Using induction we can prove (assuming extensionality of functions)
uniqueness of iteration and primitive recursion.

«0O0» «Fr» «=)r» « Q>

it
-

Let (N,0,S) be an N-algebra. The following is equivalent
1. The principle of unique iteration.

= W

The principle of unique primitive recursion.
The principle of iteration + induction.

The principle of primitive recursion + induction.

«40>» «F»r « =) «

Coinduction

» Uniqueness in coiteration is equivalent to the principle:
Bisimulation implies equality
» Bisimulation on Stream is the largest relation ~ on Stream s.t.

s ~ s’ — head(s) = head(s’) A tail(s) ~ tail(s")

» Largest can be expressed as ~ being an indexed coinductively defined
set.

» Primitive corecursion over ~ means:
We can prove
/
Vs,s'. X(s,s') = s~s

by showing

X(s,s’) — head(s) = head(s')
X(s,s') — X(tail(s), tail(s")) V tail(s) ~ tail(s")

Anton Setzer (Swansea) How to Reason Informally Coinductively 15/ 26

» Combining

» bisimulation implies equality
» bisimulation can be shown corecursively

we obtain the following principle of coinduction

«0O)» «F)» « =>» Q>

Schema of Coinduction

» We can prove
Vs, s’ X(s,s') - s=¢

by showing

Vs,s'.X(s,s’) — head(s) = head(s')
Vs,s' X(s,s') — tail(s) = tail(s’)

where tail(s) = tail(s’) can be derived

» directly or
» from a proof of
X(tail(s), tail(s"))

invoking the co-induction-hypothesis
X(tail(s), tail(s")) — tail(s) = tail(s")
» Note: Only direct use of co-IH allowed.

Anton Setzer (Swansea) How to Reason Informally Coinductively 17/ 26

» For using coinduction, one typically wants to show for some
f,g: X — Stream

Vx € X.f(x) = g(x)
» Using X(s,s’) = {x | f(x) =s A g(x) =s'} we obtain the principle of
indexed coinduction

«0O0» «Fr» «=)r» « Q>

it
-

Schema Indexed Coinduction

» We can prove
Vx € X.f(x) = g(x)
by showing
Vx € X.head(f(x)) = head(g(x))
Vx € X.tail(f(x)) = tail(g(x))
where tail(f(x)) = tail(g(x)) can be derived
» directly or
> by
tail(f(x)) = f(x') tail(g(x)) = g(x’)
and using the co-induction-hypothesis
f(x') = g(x')
» Again only direct use of co-IH allowed
(otherwise you can derive tail(f(x)) = tail(g(x)) from f(x) = g(x)).
» In fact the above is the same as uniqueness of corecursion.

Anton Setzer (Swansea) How to Reason Informally Coinductively 19/ 26

Equivalence

Theorem

Let (Stream, head, tail) be a Stream-coalgebra. The following is
equivalent

The principle of unique coiteration.

The principle of unique primitive corecursion.

The principle of coiteration + coinduction

The principle of primitive corecursion + coinduction

The principle of coiteration + indexed coinduction.

e & o> W =

The principle of primitive corecursion + indexed coinduction.

Anton Setzer (Swansea) How to Reason Informally Coinductively 20/ 26

» Remember

head(s) = 0 head(s'(n))
tail (s) = s

=0
tail (s'(n)) = s'(n+1)
» We show Vn € N.s = s’(n) by indexed coinduction:
» head(s) = 0 = head(s'(n)).

> tail(s) =s coIH

s'(n+ 1) = tail(s'(n)).

«O0>» «Fr «=» « =) = Q>

head(s)

=0
tail (s)

S

» We show s = cons(0, s) by indexed coinduction:
» head(s) = 0 = head(cons(0, s)).

» tail(s) = s = tail(cons(0, 5))
(no use of co-IH).

«4O0)>» «Fr «=» « = Q>

it
-

Proofs of Other Bisimilarity Relations

» The above can be used as well for proving other bisimilarity relations.

» Consider the following (unlabelled) transition system:

XP X‘l/_\'\xr
D ~—
» Bisimilarity is the final coalgebra
p~q— (Vp'p—p

=399 —d AP ~{q)
A---symmetric case- - - }

Anton Setzer (Swansea) How to Reason Informally Coinductively 23/ 26

Proof using the Definition of ~

» a T R
Q ~_

» We show p ~ g A p ~ r by indexed coinduction:

» Coinduction step for p ~ g:
» Assume p — p’. Then p’ = p.
We have ¢ — r and by co-IH p ~ r.
» Assume g — q'. Then ¢’ = r.
We have p — p and by co-IlH p ~ r.
» Coinduction step for p ~ r:
» Assume p — p’. Then p’ = p.
We have r — g and by co-IH p ~ q.
» Assume r — r’. Then r' = q.
We have p — p and by co-IH p ~ gq.

Anton Setzer (Swansea) How to Reason Informally Coinductively

24/ 26

General Coinduction

» Schwichtenberg: | have done lots of coinductive proofs but it was
never a proof of an equality.
» Answer:

» What happens is that the predicate proved was defined coinductively.

» The corecursion principle for this predicate corresponds to coinductive
proofs of this formula.

» Again the corecursion hypothesis forms the coinduction principles.

» It is necessary to do it like this because coinduction/corecursion is an
introduction principle, not an elimination principle.

Anton Setzer (Swansea) How to Reason Informally Coinductively 25/ 26

Conclusion

Inductive Definition

Coinductive Definition

Determined by Introduction

Determined by Observation

[teration

Coiteration

Primitive Recursion

Primitive Corecursion

Pattern matching

Copattern matching

Induction

Coinduction (?)

Induction-Hypothesis

Coinduction-Hypothesis

Anton Setzer (Swansea)

How to Reason Informally Coinductively

26/ 26

Acknowledgements

» To look at iteration, recursion, induction in parallel with coiteration,
corecursion, coinduction | learned from Peter Hancock, although we
didn’t resolve in our discussions what coinduction is and what the
precise formulation of corecursion would be.

» How to derive from iteration recursion | learned from Thorsten
Altenkirch, however that seems to be a well-known fact.

Anton Setzer (Swansea) How to Reason Informally Coinductively 27/ 26

Bibliography

» Anton Setzer, Andreas Abel, Brigitte Pientka and David Thibodeau:
Unnesting of Copatterns. In Gilles Dowek (Ed): Rewriting and Typed
Lambda Calculi. Proceedings RTA-TLCA 2014. LNCS 8560, 2014,
pp. 31 - 45. Doi 10.1007/978-3-319-08918-8_3. Bibtex.

» Andreas Abel, Brigitte Pientka, David Thibodeau and Anton Setzer:
Copatterns: programming infinite structures by observations.
Proceedings of POPL 2013, 2013, pp. 27 - 38. Doi
10.1145/2429069.2429075. Bibtex.

» Anton Setzer: Coalgebras as Types determined by their Elimination
Rules. In: Peter Dybjer, Sten Lindstrom, Erik Palmgren, Goran
Sundholm: Epistemology versus ontology: Essays on the foundations
of mathematics in honour of Per Martin-Lof. Springer, 2012, pp. 351
— 369, Doi: 10.1007/978-94-007-4435-6_16. Bibtex

Anton Setzer (Swansea) How to Reason Informally Coinductively 28/ 26

http://www.cs.swan.ac.uk/~csetzer/articles/setzerEtAlRTATLCA2014.pdf
http://dx.doi.org/10.1007/978-3-319-08918-8_3
http://www.cs.swan.ac.uk/~csetzer/articles/setzerEtAlRTATLCA2014.bib
http://www.cs.swan.ac.uk/~csetzer/articles/popl13Draft.pdf
http://dx.doi.org/10.1145/2429069.2429075
http://dx.doi.org/10.1145/2429069.2429075
http://www.cs.swan.ac.uk/~csetzer/articles/popl2013.bib
http://www.cs.swan.ac.uk/~csetzer/articles/setzerMartinLoefFestschrift.pdf
http://www.cs.swan.ac.uk/~csetzer/articles/setzerMartinLoefFestschrift.pdf
http://dx.doi.org/10.1007/978-94-007-4435-6_16
http://www.cs.swan.ac.uk/~csetzer/articles/setzerMartinLoefFestschrift.bib

o = N

Difficulty defining Pred Using Iteration

» Using iteration pred, the inverse of 0,S is inefficient:

pred : N — {-1} UN
pred(0) = -1
pred(S(n)) = S'(pred(n))

where
S":{-1}UN—=N
S'(-1) =0
S(n) = S(n)ifneN

pred(2) = S'(pred(1)) = S'(S'(pred(0)))
= S'(S'(-1)) = S(0)=S(0)=1

Anton Setzer (Swansea) How to Reason Informally Coinductively 30/ 26

Difficulty defining Cons Using Coiteration

» Using coiteration cons, the inverse of head, tail is difficult to define

cons : (N x Stream) — Stream
head(cons(n,s)) = n
tail(cons(n,s)) = cons(head(s), tail(s))

e.g.tail(tail(cons(n, s))) = cons(head(tail(s)), tail(tail(s)))

Anton Setzer (Swansea) How to Reason Informally Coinductively 31/ 26

