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Introduction/Elimination of Inductive/Coinductive Sets

» Introduction rules for Natural numbers means that we have

0eN
S:N— N

» Dually, coinductive sets are given by their elimination rules i.e. by
observations.
As an example we consider Stream:

head : Stream — N
tail : Stream — Stream
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Unique lteration

» That (N,0,S) are minimal can be given by:
» Assume another N-structure (X, z,s), i.e.

ze X
s: X=X

» Then there exist a
unique homomorphism g : (N,0,S) — (X, z, s):
g: N> X
g(0) z
g(S(n) = s(g(n)

» This means we can define uniquely

g:N—=>X
g(0) x
g(8(n) = X

for some x € X
for some x’ € X depending on g(n)
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Unique Coiteration
» Dually, that (Stream, head, tail) is maximal can be given by:
» Assume another Stream-structure (X, h, t):

h : X—=N
t . X=X

» Then there exist a

unique homomorphism g : (X, h, t) — (Stream, head, tail):

g : X — Stream
head(g(x)) = h(x)
tail(g(x)) = g(t(x))

» Means we can define uniquely

g : X — Stream
head(g(x)) = n for some n € N depending on x
tail(g(x)) = g(x’) for some x’ € X depending on x
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» When using iteration the instance of g we can use is restricted, but
we can apply an arbitrary function to it.

» When using coiteration we can choose which instance of g we want,
but can use it only directly.
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Unique Primitive Recursion

» From unique iteration we can derive principle of
unique primitive recursion

» We can define uniquely

g N—=X
g(0) = x forsome x e X
g(S(n)) = x’ for some x’ € X depending on n, g(n)

» Primitive pattern matching.
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Unique Primitive Corecursion

» From unique coiteration we can derive principle of
unique primitive corecursion

» We can define uniquely

g : X — Stream

head(g(x)) = n for some n € N depending on x
tail(g(x))) = g(x’) for some x’ € X depending on x
or

= s for some s € Stream depending on x

» Note: No application of a function to g(x’) allowed.
» Primitive copattern matching.
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s € Stream
head(s) = 0
tail(s) = s

s’ : N — Stream
head(s’(n)) = 0
tail(s'(n)) = s'(n+1)

cons : (N x Stream) — Stream

head(cons(n,s)) = n
tail(cons(n,s)) = s
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» From unique iteration one can derive principle of induction:

We can prove Vn € N.g(n) by proving
(0)

Vn € N.p(n) — ¢(S(n))

» Using induction we can prove (assuming extensionality of functions)
uniqueness of iteration and primitive recursion.
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Let (N,0,S) be an N-algebra. The following is equivalent
1. The principle of unique iteration.

= W

The principle of unique primitive recursion.
The principle of iteration + induction.

The principle of primitive recursion + induction.
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Coinduction

» Uniqueness in coiteration is equivalent to the principle:
Bisimulation implies equality
» Bisimulation on Stream is the largest relation ~ on Stream s.t.

s ~ s’ — head(s) = head(s’) A tail(s) ~ tail(s")

» Largest can be expressed as ~ being an indexed coinductively defined
set.

» Primitive corecursion over ~ means:
We can prove
/
Vs,s'. X(s,s') = s~s

by showing

X(s,s’) — head(s) = head(s')
X(s,s') — X(tail(s), tail(s")) V tail(s) ~ tail(s")
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» Combining

» bisimulation implies equality
» bisimulation can be shown corecursively

we obtain the following principle of coinduction
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Schema of Coinduction

» We can prove
Vs, s’ X(s,s') - s=¢

by showing

Vs,s'.X(s,s’) — head(s) = head(s')
Vs,s' X(s,s') — tail(s) = tail(s’)

where tail(s) = tail(s’) can be derived

» directly or
» from a proof of
X(tail(s), tail(s"))

invoking the co-induction-hypothesis
X(tail(s), tail(s")) — tail(s) = tail(s")
» Note: Only direct use of co-IH allowed.
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» For using coinduction, one typically wants to show for some
f,g: X — Stream

Vx € X.f(x) = g(x)
» Using X(s,s’) = {x | f(x) =s A g(x) =s'} we obtain the principle of
indexed coinduction
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Schema Indexed Coinduction

» We can prove
Vx € X.f(x) = g(x)
by showing
Vx € X.head(f(x)) = head(g(x))
Vx € X.tail(f(x)) = tail(g(x))
where tail(f(x)) = tail(g(x)) can be derived
» directly or
> by
tail(f(x)) = f(x') tail(g(x)) = g(x’)
and using the co-induction-hypothesis
f(x') = g(x')
» Again only direct use of co-IH allowed
(otherwise you can derive tail(f(x)) = tail(g(x)) from f(x) = g(x)).
» In fact the above is the same as uniqueness of corecursion.
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Equivalence

Theorem

Let (Stream, head, tail) be a Stream-coalgebra. The following is
equivalent

The principle of unique coiteration.

The principle of unique primitive corecursion.

The principle of coiteration + coinduction

The principle of primitive corecursion + coinduction

The principle of coiteration + indexed coinduction.

e & o> W =

The principle of primitive corecursion + indexed coinduction.
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» Remember

head(s) = 0  head(s'(n))
tail (s) = s

=0
tail (s'(n)) = s'(n+1)
» We show Vn € N.s = s’(n) by indexed coinduction:
» head(s) = 0 = head(s'(n)).

> tail(s) =s coIH

s'(n+ 1) = tail(s'(n)).
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head(s)

=0
tail (s)

S

» We show s = cons(0, s) by indexed coinduction:
» head(s) = 0 = head(cons(0, s)).

» tail(s) = s = tail(cons(0, 5))
(no use of co-IH).
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Proofs of Other Bisimilarity Relations

» The above can be used as well for proving other bisimilarity relations.

» Consider the following (unlabelled) transition system:

XP X‘l/_\'\xr
D ~—
» Bisimilarity is the final coalgebra
p~q— (Vp'p—p

=399 —d AP ~{q)
A---symmetric case- - - }
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Proof using the Definition of ~

» a T R
Q ~_

» We show p ~ g A p ~ r by indexed coinduction:

» Coinduction step for p ~ g:
» Assume p — p’. Then p’ = p.
We have ¢ — r and by co-IH p ~ r.
» Assume g — q'. Then ¢’ = r.
We have p — p and by co-IlH p ~ r.
» Coinduction step for p ~ r:
» Assume p — p’. Then p’ = p.
We have r — g and by co-IH p ~ q.
» Assume r — r’. Then r' = q.
We have p — p and by co-IH p ~ gq.
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General Coinduction

» Schwichtenberg: | have done lots of coinductive proofs but it was
never a proof of an equality.
» Answer:

» What happens is that the predicate proved was defined coinductively.

» The corecursion principle for this predicate corresponds to coinductive
proofs of this formula.

» Again the corecursion hypothesis forms the coinduction principles.

» It is necessary to do it like this because coinduction/corecursion is an
introduction principle, not an elimination principle.
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Difficulty defining Pred Using Iteration

» Using iteration pred, the inverse of 0,S is inefficient:

pred : N — {-1} UN
pred(0) = -1
pred(S(n)) = S'(pred(n))

where
S":{-1}UN—=N
S'(-1) =0
S(n) = S(n)ifneN

pred(2) = S'(pred(1)) = S'(S'(pred(0)))
= S'(S'(-1)) = S(0)=S(0)=1
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Difficulty defining Cons Using Coiteration

» Using coiteration cons, the inverse of head, tail is difficult to define

cons : (N x Stream) — Stream
head(cons(n,s)) = n
tail(cons(n,s)) = cons(head(s), tail(s))

e.g.tail(tail(cons(n, s))) = cons(head(tail(s)), tail(tail(s)))
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