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Goal

Inductive Definition Coinductive Definition

Determined by Introduction ?

Iteration ?

Primitive Recursion ?

Pattern matching ?

Induction ?

Induction-Hypothesis ?

1

1Part of this table is due to Peter Hancock, see acknowledgements at the
end.
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Introduction/Elimination of Inductive/Coinductive Sets

I Introduction rules for Natural numbers means that we have

0 ∈ N
S : N→ N

I Dually, coinductive sets are given by their elimination rules i.e. by
observations.
As an example we consider Stream:

head : Stream→ N
tail : Stream→ Stream
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Duality

Inductive Definition Coinductive Definition

Determined by Introduction Determined by Observation

Iteration ?

Primitive Recursion ?

Pattern matching ?

Induction ?

Induction-Hypothesis ?
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Unique Iteration

I That (N, 0, S) are minimal can be given by:
I Assume another N-structure (X , z , s), i.e.

z ∈ X
s : X → X

I Then there exist a
unique homomorphism g : (N, 0, S)→ (X , z , s):

g : N→ X
g(0) = z
g(S(n)) = s(g(n))

I This means we can define uniquely

g : N→ X
g(0) = x for some x ∈ X
g(S(n)) = x ′ for some x ′ ∈ X depending on g(n)
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Unique Coiteration

I Dually, that (Stream, head, tail) is maximal can be given by:
I Assume another Stream-structure (X , h, t):

h : X → N
t : X → X

I Then there exist a
unique homomorphism g : (X , h, t)→ (Stream, head, tail):

g : X → Stream
head(g(x)) = h(x)
tail(g(x)) = g(t(x))

I Means we can define uniquely

g : X → Stream
head(g(x)) = n for some n ∈ N depending on x
tail(g(x)) = g(x ′) for some x ′ ∈ X depending on x
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Comparison

I When using iteration the instance of g we can use is restricted, but
we can apply an arbitrary function to it.

I When using coiteration we can choose which instance of g we want,
but can use it only directly.
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Duality

Inductive Definition Coinductive Definition

Determined by Introduction Determined by Observation

Iteration Coiteration

Primitive Recursion ?

Pattern matching ?

Induction ?

Induction-Hypothesis ?
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Unique Primitive Recursion

I From unique iteration we can derive principle of
unique primitive recursion

I We can define uniquely

g : N→ X
g(0) = x for some x ∈ X
g(S(n)) = x ′ for some x ′ ∈ X depending on n, g(n)

I Primitive pattern matching.
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Unique Primitive Corecursion

I From unique coiteration we can derive principle of
unique primitive corecursion

I We can define uniquely

g : X → Stream
head(g(x)) = n for some n ∈ N depending on x
tail(g(x))) = g(x ′) for some x ′ ∈ X depending on x

or
= s for some s ∈ Stream depending on x

I Note: No application of a function to g(x ′) allowed.
I Primitive copattern matching.
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Example

s ∈ Stream
head(s) = 0
tail(s) = s

s ′ : N→ Stream
head(s ′(n)) = 0
tail(s ′(n)) = s ′(n + 1)

cons : (N× Stream)→ Stream
head(cons(n, s)) = n
tail(cons(n, s)) = s
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Duality

Inductive Definition Coinductive Definition

Determined by Introduction Determined by Observation

Iteration Coiteration

Primitive Recursion Primitive Corecursion

Pattern matching Copattern matching

Induction ?

Induction-Hypothesis ?
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Induction

I From unique iteration one can derive principle of induction:

We can prove ∀n ∈ N.ϕ(n) by proving
ϕ(0)
∀n ∈ N.ϕ(n)→ ϕ(S(n))

I Using induction we can prove (assuming extensionality of functions)
uniqueness of iteration and primitive recursion.
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Equivalence

Theorem

Let (N, 0,S) be an N-algebra. The following is equivalent

1. The principle of unique iteration.

2. The principle of unique primitive recursion.

3. The principle of iteration + induction.

4. The principle of primitive recursion + induction.
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Coinduction

I Uniqueness in coiteration is equivalent to the principle:
Bisimulation implies equality

I Bisimulation on Stream is the largest relation ∼ on Stream s.t.

s ∼ s ′ → head(s) = head(s ′) ∧ tail(s) ∼ tail(s ′)

I Largest can be expressed as ∼ being an indexed coinductively defined
set.

I Primitive corecursion over ∼ means:
We can prove

∀s, s ′.X (s, s ′)→ s ∼ s ′

by showing

X (s, s ′) → head(s) = head(s ′)
X (s, s ′) → X (tail(s), tail(s ′)) ∨ tail(s) ∼ tail(s ′)
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Coinduction

I Combining
I bisimulation implies equality
I bisimulation can be shown corecursively

we obtain the following principle of coinduction
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Schema of Coinduction

I We can prove
∀s, s ′.X (s, s ′)→ s = s ′

by showing

∀s, s ′.X (s, s ′) → head(s) = head(s ′)
∀s, s ′.X (s, s ′) → tail(s) = tail(s ′)

where tail(s) = tail(s ′) can be derived
I directly or
I from a proof of

X (tail(s), tail(s ′))

invoking the co-induction-hypothesis

X (tail(s), tail(s ′))→ tail(s) = tail(s ′)

I Note: Only direct use of co-IH allowed.
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Indexed Coinduction

I For using coinduction, one typically wants to show for some
f , g : X → Stream

∀x ∈ X .f (x) = g(x)

I Using X (s, s ′) = {x | f (x) = s ∧ g(x) = s ′} we obtain the principle of
indexed coinduction
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Schema Indexed Coinduction

I We can prove
∀x ∈ X .f (x) = g(x)

by showing
∀x ∈ X .head(f (x)) = head(g(x))
∀x ∈ X .tail(f (x)) = tail(g(x))

where tail(f (x)) = tail(g(x)) can be derived
I directly or
I by

tail(f (x)) = f (x ′) tail(g(x)) = g(x ′)

and using the co-induction-hypothesis

f (x ′) = g(x ′)

I Again only direct use of co-IH allowed
(otherwise you can derive tail(f (x)) = tail(g(x)) from f (x) = g(x)).

I In fact the above is the same as uniqueness of corecursion.
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Equivalence

Theorem

Let (Stream,head, tail) be a Stream-coalgebra. The following is
equivalent

1. The principle of unique coiteration.

2. The principle of unique primitive corecursion.

3. The principle of coiteration + coinduction

4. The principle of primitive corecursion + coinduction

5. The principle of coiteration + indexed coinduction.

6. The principle of primitive corecursion + indexed coinduction.
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Example

I Remember

head(s) = 0 head(s ′(n)) = 0
tail (s) = s tail (s ′(n)) = s ′(n + 1)

I We show ∀n ∈ N.s = s ′(n) by indexed coinduction:

I head(s) = 0 = head(s ′(n)).

I tail(s) = s
co-IH

= s ′(n + 1) = tail(s ′(n)).
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Example

head(s) = 0
tail (s) = s

I We show s = cons(0, s) by indexed coinduction:

I head(s) = 0 = head(cons(0, s)).
I tail(s) = s = tail(cons(0, s))

(no use of co-IH).
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Proofs of Other Bisimilarity Relations

I The above can be used as well for proving other bisimilarity relations.

I Consider the following (unlabelled) transition system:

x x x

p q r

I Bisimilarity is the final coalgebra

p ∼ q → (∀p′.p −→ p′

→ ∃q′.q −→ q′ ∧ p′ ∼ q′)
∧ · · · symmetric case · · · }
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Proof using the Definition of ∼

x x x

p q r

I We show p ∼ q ∧ p ∼ r by indexed coinduction:
I Coinduction step for p ∼ q:

I Assume p −→ p′. Then p′ = p.
We have q −→ r and by co-IH p ∼ r .

I Assume q −→ q′. Then q′ = r .
We have p −→ p and by co-IH p ∼ r .

I Coinduction step for p ∼ r :
I Assume p −→ p′. Then p′ = p.

We have r −→ q and by co-IH p ∼ q.
I Assume r −→ r ′. Then r ′ = q.

We have p −→ p and by co-IH p ∼ q.
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General Coinduction

I Schwichtenberg: I have done lots of coinductive proofs but it was
never a proof of an equality.

I Answer:
I What happens is that the predicate proved was defined coinductively.
I The corecursion principle for this predicate corresponds to coinductive

proofs of this formula.
I Again the corecursion hypothesis forms the coinduction principles.

I It is necessary to do it like this because coinduction/corecursion is an
introduction principle, not an elimination principle.
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Conclusion

Inductive Definition Coinductive Definition

Determined by Introduction Determined by Observation

Iteration Coiteration

Primitive Recursion Primitive Corecursion

Pattern matching Copattern matching

Induction Coinduction (?)

Induction-Hypothesis Coinduction-Hypothesis
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Appendix
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Difficulty defining Pred Using Iteration

I Using iteration pred, the inverse of 0,S is inefficient:

pred : N→ {−1} ∪ N
pred(0) = −1
pred(S(n)) = S′(pred(n))

where
S′ : {−1} ∪ N→ N
S′(−1) = 0
S(n) = S(n) if n ∈ N

pred(2) = S′(pred(1)) = S′(S′(pred(0)))
= S′(S′(−1)) = S′(0) = S(0) = 1
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Difficulty defining Cons Using Coiteration

I Using coiteration cons, the inverse of head, tail is difficult to define

cons : (N× Stream)→ Stream
head(cons(n, s)) = n
tail(cons(n, s)) = cons(head(s), tail(s))

e.g .tail(tail(cons(n, s))) = cons(head(tail(s)), tail(tail(s)))

Anton Setzer (Swansea) How to Reason Informally Coinductively 31/ 26


