
How to Reason Informally Coinductively

Anton Setzer

Swansea University

Swansea PCV Seminar, 16 June 2015

With contributions from Peter Hancock, Thorsten Altenkirch, Andreas
Abel, Brigitte Pientka and David Thibodeau.

Anton Setzer (Swansea) How to Reason Informally Coinductively 1/ 26

http://www.cs.swan.ac.uk/~csetzer/index.html
http://www.swansea.ac.uk/compsci/
http://www.swansea.ac.uk/compsci/research-2011/seminars/pcvseminars.php


Goal

Inductive Definition Coinductive Definition

Determined by Introduction ?

Iteration ?

Primitive Recursion ?

Pattern matching ?

Induction ?

Induction-Hypothesis ?

1

1Part of this table is due to Peter Hancock, see acknowledgements at the
end.

Anton Setzer (Swansea) How to Reason Informally Coinductively 2/ 26



Introduction/Elimination of Inductive/Coinductive Sets

I Introduction rules for Natural numbers means that we have

0 ∈ N
S : N→ N

I Dually, coinductive sets are given by their elimination rules i.e. by
observations.
As an example we consider Stream:

head : Stream→ N
tail : Stream→ Stream

Anton Setzer (Swansea) How to Reason Informally Coinductively 3/ 26



Duality

Inductive Definition Coinductive Definition

Determined by Introduction Determined by Observation

Iteration ?

Primitive Recursion ?

Pattern matching ?

Induction ?

Induction-Hypothesis ?

Anton Setzer (Swansea) How to Reason Informally Coinductively 4/ 26



Unique Iteration

I That (N, 0, S) are minimal can be given by:
I Assume another N-structure (X , z , s), i.e.

z ∈ X
s : X → X

I Then there exist a
unique homomorphism g : (N, 0, S)→ (X , z , s):

g : N→ X
g(0) = z
g(S(n)) = s(g(n))

I This means we can define uniquely

g : N→ X
g(0) = x for some x ∈ X
g(S(n)) = x ′ for some x ′ ∈ X depending on g(n)

Anton Setzer (Swansea) How to Reason Informally Coinductively 5/ 26



Unique Coiteration

I Dually, that (Stream, head, tail) is maximal can be given by:
I Assume another Stream-structure (X , h, t):

h : X → N
t : X → X

I Then there exist a
unique homomorphism g : (X , h, t)→ (Stream, head, tail):

g : X → Stream
head(g(x)) = h(x)
tail(g(x)) = g(t(x))

I Means we can define uniquely

g : X → Stream
head(g(x)) = n for some n ∈ N depending on x
tail(g(x)) = g(x ′) for some x ′ ∈ X depending on x

Anton Setzer (Swansea) How to Reason Informally Coinductively 6/ 26



Comparison

I When using iteration the instance of g we can use is restricted, but
we can apply an arbitrary function to it.

I When using coiteration we can choose which instance of g we want,
but can use it only directly.

Anton Setzer (Swansea) How to Reason Informally Coinductively 7/ 26



Duality

Inductive Definition Coinductive Definition

Determined by Introduction Determined by Observation

Iteration Coiteration

Primitive Recursion ?

Pattern matching ?

Induction ?

Induction-Hypothesis ?

Anton Setzer (Swansea) How to Reason Informally Coinductively 8/ 26



Unique Primitive Recursion

I From unique iteration we can derive principle of
unique primitive recursion

I We can define uniquely

g : N→ X
g(0) = x for some x ∈ X
g(S(n)) = x ′ for some x ′ ∈ X depending on n, g(n)

I Primitive pattern matching.

Anton Setzer (Swansea) How to Reason Informally Coinductively 9/ 26



Unique Primitive Corecursion

I From unique coiteration we can derive principle of
unique primitive corecursion

I We can define uniquely

g : X → Stream
head(g(x)) = n for some n ∈ N depending on x
tail(g(x))) = g(x ′) for some x ′ ∈ X depending on x

or
= s for some s ∈ Stream depending on x

I Note: No application of a function to g(x ′) allowed.
I Primitive copattern matching.

Anton Setzer (Swansea) How to Reason Informally Coinductively 10/ 26



Example

s ∈ Stream
head(s) = 0
tail(s) = s

s ′ : N→ Stream
head(s ′(n)) = 0
tail(s ′(n)) = s ′(n + 1)

cons : (N× Stream)→ Stream
head(cons(n, s)) = n
tail(cons(n, s)) = s

Anton Setzer (Swansea) How to Reason Informally Coinductively 11/ 26



Duality

Inductive Definition Coinductive Definition

Determined by Introduction Determined by Observation

Iteration Coiteration

Primitive Recursion Primitive Corecursion

Pattern matching Copattern matching

Induction ?

Induction-Hypothesis ?

Anton Setzer (Swansea) How to Reason Informally Coinductively 12/ 26



Induction

I From unique iteration one can derive principle of induction:

We can prove ∀n ∈ N.ϕ(n) by proving
ϕ(0)
∀n ∈ N.ϕ(n)→ ϕ(S(n))

I Using induction we can prove (assuming extensionality of functions)
uniqueness of iteration and primitive recursion.

Anton Setzer (Swansea) How to Reason Informally Coinductively 13/ 26



Equivalence

Theorem

Let (N, 0,S) be an N-algebra. The following is equivalent

1. The principle of unique iteration.

2. The principle of unique primitive recursion.

3. The principle of iteration + induction.

4. The principle of primitive recursion + induction.

Anton Setzer (Swansea) How to Reason Informally Coinductively 14/ 26



Coinduction

I Uniqueness in coiteration is equivalent to the principle:
Bisimulation implies equality

I Bisimulation on Stream is the largest relation ∼ on Stream s.t.

s ∼ s ′ → head(s) = head(s ′) ∧ tail(s) ∼ tail(s ′)

I Largest can be expressed as ∼ being an indexed coinductively defined
set.

I Primitive corecursion over ∼ means:
We can prove

∀s, s ′.X (s, s ′)→ s ∼ s ′

by showing

X (s, s ′) → head(s) = head(s ′)
X (s, s ′) → X (tail(s), tail(s ′)) ∨ tail(s) ∼ tail(s ′)

Anton Setzer (Swansea) How to Reason Informally Coinductively 15/ 26



Coinduction

I Combining
I bisimulation implies equality
I bisimulation can be shown corecursively

we obtain the following principle of coinduction

Anton Setzer (Swansea) How to Reason Informally Coinductively 16/ 26



Schema of Coinduction

I We can prove
∀s, s ′.X (s, s ′)→ s = s ′

by showing

∀s, s ′.X (s, s ′) → head(s) = head(s ′)
∀s, s ′.X (s, s ′) → tail(s) = tail(s ′)

where tail(s) = tail(s ′) can be derived
I directly or
I from a proof of

X (tail(s), tail(s ′))

invoking the co-induction-hypothesis

X (tail(s), tail(s ′))→ tail(s) = tail(s ′)

I Note: Only direct use of co-IH allowed.

Anton Setzer (Swansea) How to Reason Informally Coinductively 17/ 26



Indexed Coinduction

I For using coinduction, one typically wants to show for some
f , g : X → Stream

∀x ∈ X .f (x) = g(x)

I Using X (s, s ′) = {x | f (x) = s ∧ g(x) = s ′} we obtain the principle of
indexed coinduction

Anton Setzer (Swansea) How to Reason Informally Coinductively 18/ 26



Schema Indexed Coinduction

I We can prove
∀x ∈ X .f (x) = g(x)

by showing
∀x ∈ X .head(f (x)) = head(g(x))
∀x ∈ X .tail(f (x)) = tail(g(x))

where tail(f (x)) = tail(g(x)) can be derived
I directly or
I by

tail(f (x)) = f (x ′) tail(g(x)) = g(x ′)

and using the co-induction-hypothesis

f (x ′) = g(x ′)

I Again only direct use of co-IH allowed
(otherwise you can derive tail(f (x)) = tail(g(x)) from f (x) = g(x)).

I In fact the above is the same as uniqueness of corecursion.

Anton Setzer (Swansea) How to Reason Informally Coinductively 19/ 26



Equivalence

Theorem

Let (Stream,head, tail) be a Stream-coalgebra. The following is
equivalent

1. The principle of unique coiteration.

2. The principle of unique primitive corecursion.

3. The principle of coiteration + coinduction

4. The principle of primitive corecursion + coinduction

5. The principle of coiteration + indexed coinduction.

6. The principle of primitive corecursion + indexed coinduction.

Anton Setzer (Swansea) How to Reason Informally Coinductively 20/ 26



Example

I Remember

head(s) = 0 head(s ′(n)) = 0
tail (s) = s tail (s ′(n)) = s ′(n + 1)

I We show ∀n ∈ N.s = s ′(n) by indexed coinduction:

I head(s) = 0 = head(s ′(n)).

I tail(s) = s
co-IH

= s ′(n + 1) = tail(s ′(n)).

Anton Setzer (Swansea) How to Reason Informally Coinductively 21/ 26



Example

head(s) = 0
tail (s) = s

I We show s = cons(0, s) by indexed coinduction:

I head(s) = 0 = head(cons(0, s)).
I tail(s) = s = tail(cons(0, s))

(no use of co-IH).

Anton Setzer (Swansea) How to Reason Informally Coinductively 22/ 26



Proofs of Other Bisimilarity Relations

I The above can be used as well for proving other bisimilarity relations.

I Consider the following (unlabelled) transition system:

x x x

p q r

I Bisimilarity is the final coalgebra

p ∼ q → (∀p′.p −→ p′

→ ∃q′.q −→ q′ ∧ p′ ∼ q′)
∧ · · · symmetric case · · · }

Anton Setzer (Swansea) How to Reason Informally Coinductively 23/ 26



Proof using the Definition of ∼

x x x

p q r

I We show p ∼ q ∧ p ∼ r by indexed coinduction:
I Coinduction step for p ∼ q:

I Assume p −→ p′. Then p′ = p.
We have q −→ r and by co-IH p ∼ r .

I Assume q −→ q′. Then q′ = r .
We have p −→ p and by co-IH p ∼ r .

I Coinduction step for p ∼ r :
I Assume p −→ p′. Then p′ = p.

We have r −→ q and by co-IH p ∼ q.
I Assume r −→ r ′. Then r ′ = q.

We have p −→ p and by co-IH p ∼ q.

Anton Setzer (Swansea) How to Reason Informally Coinductively 24/ 26



General Coinduction

I Schwichtenberg: I have done lots of coinductive proofs but it was
never a proof of an equality.

I Answer:
I What happens is that the predicate proved was defined coinductively.
I The corecursion principle for this predicate corresponds to coinductive

proofs of this formula.
I Again the corecursion hypothesis forms the coinduction principles.

I It is necessary to do it like this because coinduction/corecursion is an
introduction principle, not an elimination principle.

Anton Setzer (Swansea) How to Reason Informally Coinductively 25/ 26



Conclusion

Inductive Definition Coinductive Definition

Determined by Introduction Determined by Observation

Iteration Coiteration

Primitive Recursion Primitive Corecursion

Pattern matching Copattern matching

Induction Coinduction (?)

Induction-Hypothesis Coinduction-Hypothesis

Anton Setzer (Swansea) How to Reason Informally Coinductively 26/ 26



Acknowledgements

I To look at iteration, recursion, induction in parallel with coiteration,
corecursion, coinduction I learned from Peter Hancock, although we
didn’t resolve in our discussions what coinduction is and what the
precise formulation of corecursion would be.

I How to derive from iteration recursion I learned from Thorsten
Altenkirch, however that seems to be a well-known fact.

Anton Setzer (Swansea) How to Reason Informally Coinductively 27/ 26



Bibliography

I Anton Setzer, Andreas Abel, Brigitte Pientka and David Thibodeau:
Unnesting of Copatterns. In Gilles Dowek (Ed): Rewriting and Typed
Lambda Calculi. Proceedings RTA-TLCA 2014. LNCS 8560, 2014,
pp. 31 - 45. Doi 10.1007/978-3-319-08918-8 3. Bibtex.

I Andreas Abel, Brigitte Pientka, David Thibodeau and Anton Setzer:
Copatterns: programming infinite structures by observations.
Proceedings of POPL 2013, 2013, pp. 27 - 38. Doi
10.1145/2429069.2429075. Bibtex.

I Anton Setzer: Coalgebras as Types determined by their Elimination
Rules. In: Peter Dybjer, Sten Lindström, Erik Palmgren, Göran
Sundholm: Epistemology versus ontology: Essays on the foundations
of mathematics in honour of Per Martin-Löf. Springer, 2012, pp. 351
– 369, Doi: 10.1007/978-94-007-4435-6 16. Bibtex

Anton Setzer (Swansea) How to Reason Informally Coinductively 28/ 26

http://www.cs.swan.ac.uk/~csetzer/articles/setzerEtAlRTATLCA2014.pdf
http://dx.doi.org/10.1007/978-3-319-08918-8_3
http://www.cs.swan.ac.uk/~csetzer/articles/setzerEtAlRTATLCA2014.bib
http://www.cs.swan.ac.uk/~csetzer/articles/popl13Draft.pdf
http://dx.doi.org/10.1145/2429069.2429075
http://dx.doi.org/10.1145/2429069.2429075
http://www.cs.swan.ac.uk/~csetzer/articles/popl2013.bib
http://www.cs.swan.ac.uk/~csetzer/articles/setzerMartinLoefFestschrift.pdf
http://www.cs.swan.ac.uk/~csetzer/articles/setzerMartinLoefFestschrift.pdf
http://dx.doi.org/10.1007/978-94-007-4435-6_16
http://www.cs.swan.ac.uk/~csetzer/articles/setzerMartinLoefFestschrift.bib


Appendix

Anton Setzer (Swansea) How to Reason Informally Coinductively 29/ 26



Difficulty defining Pred Using Iteration

I Using iteration pred, the inverse of 0,S is inefficient:

pred : N→ {−1} ∪ N
pred(0) = −1
pred(S(n)) = S′(pred(n))

where
S′ : {−1} ∪ N→ N
S′(−1) = 0
S(n) = S(n) if n ∈ N

pred(2) = S′(pred(1)) = S′(S′(pred(0)))
= S′(S′(−1)) = S′(0) = S(0) = 1

Anton Setzer (Swansea) How to Reason Informally Coinductively 30/ 26



Difficulty defining Cons Using Coiteration

I Using coiteration cons, the inverse of head, tail is difficult to define

cons : (N× Stream)→ Stream
head(cons(n, s)) = n
tail(cons(n, s)) = cons(head(s), tail(s))

e.g .tail(tail(cons(n, s))) = cons(head(tail(s)), tail(tail(s)))

Anton Setzer (Swansea) How to Reason Informally Coinductively 31/ 26


