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1. An Introduction to Agda

Basics of Agda

I The core of Agda is a very simple language.

I Functional programming language based on dependent types.

I Mainly used as an interactive theorem prover.

I Compiled version exists, prototype of a dependently typed
programming language.
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1. An Introduction to Agda

Algebraic Data Types

I Agda has infinitely many type levels, called

Set::: ⊆ Set1:::: ⊆ Set2:::: ⊆ · · ·

I Algebraic data types can be introduced by determining their strictly
positive constructors, e.g.

data N : Set where
zero : N
suc : N→ N

4/ 38



1. An Introduction to Agda

Pattern Matching

I Once a set is introduced in this way functions can be defined
I using pattern matching
I recursively, as long as termination is accepted by the

termination checker.

I Example

double : N→ N
double zero = zero
double (suc n) = suc (suc (double n))
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1. An Introduction to Agda

Mixfix Symbols

I Agda allows mixfix symbols, with positions denoted by e.g.

+ : N→ N→ N
n + zero = n
n + suc m = suc (n + m)

I We replace suc by +1, use builtin N which allows 0 and obtain

+ : N→ N→ N
n + 0 = n
n + (m +1) = (n + m) +1

I It supports as well the use of Unicode symbols.

I This allows to write code which looks very close to mathematical
code.
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1. An Introduction to Agda

Dependent Types

Assume we have defined the type of matrices Mat n m depending on
dimensions n and m:

Mat : N→ N→ Set

Then the type of matrix multiplication is

matmult : (n m k : N)
→ Mat n m
→ Mat m k
→ Mat n k
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1. An Introduction to Agda

Dependent Algebraic Data Types

We can define the type of n-vectors (or n-tuples) based on a set X :
({n : N} denotes a

::::::::
hidden

:::::::::::
argument)

data Vector(X : Set) : N→ Set where
[] : Vector X zero

:: : X → {n : N} → Vector X n→ Vector X (n +1)

e.g. (using the builtin natural numbers)

a : Vector N 3
a = 0 :: 1 :: 2 :: []
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1. An Introduction to Agda

Logic in Agda

Logic in Agda (which is intuitionistic) is based on the principle of
propositions as types:

I Propositions are elements of Set.

I Elements of propositions are proofs of this proposition.

I A proposition holds iff it has a proof.

Examples:

I The true proposition:

data > : Set where
triv : >
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1. An Introduction to Agda

⊥, ∧, ∨

I The false proposition:

data ⊥ : Set where

Pattern matching on an empty data type (ex falsum quodlibet) is
denoted as follows:

f : ⊥ → N
f ()

I Conjunction:
∧ (A B : Set) : Set where

and : A→ B → A ∧ B

I Disjunction:
∨ (A B : Set) : Set where

inl : A→ A ∨ B
inr : B → A ∨ B
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1. An Introduction to Agda

→, ¬, ∀, ∃

I Implication: A→ B is the function type A→ B.

I Negation: ¬A = A→ ⊥.

I Universal quantification: ∀x : A.ϕ is given as

(x : A)→ ϕ

I Existential quantification:

data ∃ (A : Set) (ϕ : A→ Set) : Set where
exists : (x : A)→ (ϕ x)→ ∃ A ϕ

I Example:
∀ε > 0.∃δ > 0.ϕ(ε, δ) is written as

(ε : Q)→ ε > 0→ ∃ Q (λδ.δ > 0 ∧ ϕ ε δ)
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1. An Introduction to Agda

Decidable Prime Formulas

Booleans:
data B : Set where

tt : B
ff : B

Atom converts Booleans into the corresponding formula:

Atom : B→ Set
Atom tt = >
Atom ff = ⊥
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2. Integrating Automated Theorem Proving into Agda

Main Idea

I Define a data type of codes for formulas in Agda:

data For : Set where
· · ·

I Define what is meant by an environment, which e.g. assigns values to
free variables, determines the state etc. We get

Env : Set

I Define a function [[ ]] which assigns to codes for formulas and
environments the corresponding Agda formula:

[[ ]] : For→ Env→ Set

14/ 38



2. Integrating Automated Theorem Proving into Agda

Main Idea

Define a check function, which checks whether a formula is universally
true:

check : For→ B

Prove that check is correct:

correctCheck : (ϕ : For)→ Atom (check ϕ)→ (ξ : Env)→ [[ϕ ]] ξ

Implement in Agda a builtin version of check which calls an automated
theorem proving tool. Declare check as a builtin:

{−# BUILTIN CHECK check #−}

Now when check is called for a closed element of For, instead of the
(inefficient) Agda code the automated theorem prover is called.
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2. Integrating Automated Theorem Proving into Agda

Usage

Assume an Agda formula ψ, e.g.

ψ : B→ B→ Set
ψ b b′ = (Atom b ∧Atom b′) ∨ ¬(Atom b) ∨ ¬(Atom b′)

Assume that ψ has a code dψe in For, i.e.

dψe : For
dψe = · · ·

s.t.
[[ dψe ]][x 7→ b, y 7→ b′] = ψ b b′
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2. Integrating Automated Theorem Proving into Agda

Usage

[[ dψe ]][x 7→ b, y 7→ b′] = ψ b b′

Then we can prove this formula (which we could prove by hand) as follows:

theorem : (b b′ : B)→ ψ b b′

theorem b b′ = correctCheck dψe triv [x 7→ b, y 7→ b′]

Type checking
triv : Atom (check dψe)

will require that
check dψe

evaluates to tt.
This evaluation will activate the automated theorem proving tool.
Note that in the example above we obtain

theorem : (b b′ : B)→ (Atom b ∧Atom b′) ∨ ¬(Atom b) ∨ ¬(Atom b′)
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2. Integrating Automated Theorem Proving into Agda

Interleaving Interactive and Automated Theorem Proving

This allows to combine both theorem proving techniques:

Interactive Theorem Proving
↓

Automated Theorem Proving
↓

Interactive Theorem Proving
↓

Automated Theorem Proving
↓
· · ·
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2. Integrating Automated Theorem Proving into Agda

Simplicity of check

The function check will defined in such a way that
I The definition is simple.

I When using a builtin function, we need to check that the function
fulfils the equations.

I So we need to implement in Agda the verification that when using
check its Agda definition is correct.

I The correctness proof is simple, so that it can be given in Agda.

I Efficiency is not a concern since its usage will be replaced by a call to
an efficient automated theorem prover.
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2. Integrating Automated Theorem Proving into Agda

Security Concerns

An initial idea was to define a flexible builtin in Agda, which automatically
calls a user-defined Haskell function.
Problem:

I Then one could write Agda code, which during type checking calls an
arbitrary Haskell function.

I Such a function might erase your hard disk.

Solution:

I To define a new builtin needs to require some modification of the
Agda type checking program.

I Users should be aware that if programming is involved there might be
a security problem.

I They won’t expect this from a proof code to be type checked.
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3. Defining the Mini SAT Solver in Agda

For

data For : Set where
const : B→ For
x : N→ For
∧for : For→ For→ For
∨for : For→ For→ For
¬for : For→ For

check0 checks whether the formula holds if all variables are instantiated
with tt:

check0 : For→ B
check0 (const b) = b
check0 (x n) = tt

check0 (ϕ
∧for
∨for

ψ) = check0 ϕ
∧B
∨B check0 ψ

check0 (¬for ϕ) = ¬B (check0 ϕ)
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3. Defining the Mini SAT Solver in Agda

instantiate-

instantiate- ϕ b

I instantiates in ϕ variable x 0 by b

I replaces x (n +1) by x n

instantiate- : For→ B→ For
instantiate- (const b) b′ = const b
instantiate- (x 0) b′ = const b′

instantiate- (x (n +1)) b′ = x n

instantiate- (ϕ
∧for
∨for

ψ) b′ = instantiate- ϕ b′

∧for
∨for

instantiate- ψ b′

instantiate- (¬for ϕ) b′ = ¬for (instantiate- ϕ b′)
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3. Defining the Mini SAT Solver in Agda

check1

check1 ϕ n checks whether ϕ is universally true if

I variables (x 0) · · · (x (n − 1)) are arbitrary,

I other variables are instantiated by tt.

check1 : For→ N→ B
check1 ϕ 0 = check0 ϕ
check1 ϕ (n +1) = check1 (instantiate- ϕ tt) n

∧B check1 (instantiate- ϕ ff) n
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3. Defining the Mini SAT Solver in Agda

maxVar

maxVar returns
max{n +1 | (x n) occurs in ϕ}

maxVar : For→ N
maxVar (const b) = 0
maxVar (x n) = n +1

maxVar (ϕ
∧for
∨for

ψ) = max (maxVar ϕ) (maxVar ψ)

maxVar (¬for ϕ) = maxVar ϕ

Now we define check:

check : For→ B
check ϕ = check1 ϕ (maxVar ϕ)
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3. Defining the Mini SAT Solver in Agda

Nondependent Types

I Until now the code was kept minimal, and didn’t require dependent
types.

I check depends on all of this code.
I When defining the builtin function all this codes needs to be reflected

into Haskell.
I Possible because no dependent types were used.

I The code in the following needs not to be translated into Haskell
code.

I We will use dependent types, and will no longer be minimalistic.
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3. Defining the Mini SAT Solver in Agda

[[ ϕ ]]

Environments are given here as elements of Vector B n for some n.

I For i < n, variable x i is instantiated by the i element of this vector,

I For i ≥ n, variable x i is instantiated by tt.

[[ ]] : For→ {n : N} → Vector B n→ Set
[[ const b ]] ~b = Atom b
[[ x n ]] [] = Atom tt
[[ x 0 ]] (b :: ~b) = Atom b

[[ x (n +1) ]] (b :: ~b) = [[ x n ]] ~b

[[ ϕ
∧for
∨for

ψ ]] ~b = [[ϕ ]] ~b
∧
∨ [[ψ ]] ~b

[[ ¬for ϕ ]] ~b = ¬ ([[ϕ ]] ~b)
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3. Defining the Mini SAT Solver in Agda

[[ ϕ ]]b

We have

[[ x 0 ∧for x 1 ]] (b :: b′ :: []) = Atom b ∧Atomb′

We define as well [[ϕ ]]b s.t.

[[ x 0 ∧for x 1 ]]b (b :: b′ :: []) = b ∧B b′

[[ ]]b : For→ {n : N} → Vector B n→ B
[[ const b ]]b ~b = b
[[ x n ]]b [] = tt
[[ x 0 ]]b (b :: ~b) = b

[[ x (n +1) ]]b (b :: ~b) = [[ x n ]]b ~b

[[ ϕ
∧for
∨for

ψ ]]b ~b = [[ϕ ]]b ~b
∧B
∨B [[ψ ]]b ~b

[[ ¬for ϕ ]]b ~b = ¬B ([[ϕ ]]b ~b)
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3. Defining the Mini SAT Solver in Agda

[[ ϕ ]]′

We define [[ϕ ]]′ s.t.

[[ x 0 ∧for x 1 ]]′ (b :: b′ :: []) = Atom (b ∧B b′)

[[ ]]′ : For→ {n : N} → Vector B n→ Set
[[ϕ ]]′ ~b = Atom([[ϕ ]]b ~b)
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4. Correctness Proof for the Mini SAT Solver

Correctness of check0 and Induction Step of check1

lemma1 : (ϕ : For)→ (Atom (check0 ϕ)↔ [[ϕ ]] [])

lemma2 : (ϕ : For)

→ {n : N} → (~b : Vector B (n +1))

→ ([[ϕ ]] ~b ↔ [[ instantiate- ϕ (head ~b) ]] (tail ~b))
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4. Correctness Proof for the Mini SAT Solver

Correctness of check1

correctnessCheck1 : (ϕ : For)
→ (n : N)
→ (Atom (check1 ϕ n)

↔ ((~b : Vector B n)→ [[ϕ ]] ~b))

32/ 38



4. Correctness Proof for the Mini SAT Solver

Independence of [[ ϕ ]] ~b of Variables out of Range

Let

truncateWithDefaultTt : {m : N} → Vector Bool m→ (n : N)
→ Vector B m

which

I truncates its argument to length n

I iff necessary fills it by tt.

lemma4 : (ϕ : For)
→ (n : N)
→ (maxVar ϕ ≤ n)

→ {m : N} → (~b : Vector B m)

→ ([[ϕ ]] ~b ↔ [[ϕ ]] (truncateWithDefaultTt ~b n))
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4. Correctness Proof for the Mini SAT Solver

Equivalence of [[ ϕ ]] ~b and [[ ϕ ]]′ ~b

lemma3 : (ϕ : For)

→ {n : N} → (~b : Vector B n)

→ ([[ϕ ]]~b ↔ [[ϕ ]]′ ~b))
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4. Correctness Proof for the Mini SAT Solver

Correctness of check

corrrectnessCheck : (ϕ : For)
→ Atom (check ϕ)

→ {m : N} → (~b : Vector B m)

→ [[ϕ ]] ~b

corrrectnessCheck′ : (ϕ : For)
→ Atom (check ϕ)

→ {m : N} → (~b : Vector B m)

→ [[ϕ ]]′ ~b
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4. Correctness Proof for the Mini SAT Solver

Example

x0 : For
x0 = x 0

x1 : For
x1 = x 1

example : For
example = ((x0 ∧for x1) ∨for (¬for x0)) ∨for (¬for x1)

proof : (b b′ : B)→ ((Atom b ∧Atom b′) ∨ (¬(Atom b)) ∨ (¬(Atom b′))
proof b b′ = correctnessCheck example1 triv (b :: (b′ :: []))

proof ′ : (b b′ : B)→ Atom(((b ∧B b′) ∨B (¬B b)) ∨B (¬B b′))
proof ′ b b′ = correctnessCheck′ example1 triv (b :: (b′ :: []))
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4. Correctness Proof for the Mini SAT Solver

Conclusion

I Proof in case of the SAT solver relatively short and quite readable.
I Builtin tool has been implemented by Karim Kanso; problem that it is

not part of official Agda, therefore difficult to maintain with new
versions.

I Need for a more flexible builtin mechanism in Agda.

I Karim Kanso is carrying the same out for Model checking (CTL).
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4. Correctness Proof for the Mini SAT Solver

Future Work

I Combine with semidecision procedure.

I Combine with automated theorem provers which provide certificates.
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