
Combining Automated and Interactive Theorem
Proving in Agda

Anton Setzer
(Joint work with Karim Kanso)

May 21, 2010

1/ 38

1. An Introduction to Agda

2. Integrating Automated Theorem Proving into Agda

3. Defining the Mini SAT Solver in Agda

4. Correctness Proof for the Mini SAT Solver

2/ 38

1. An Introduction to Agda

Basics of Agda

I The core of Agda is a very simple language.

I Functional programming language based on dependent types.

I Mainly used as an interactive theorem prover.

I Compiled version exists, prototype of a dependently typed
programming language.

3/ 38

1. An Introduction to Agda

Algebraic Data Types

I Agda has infinitely many type levels, called

Set::: ⊆ Set1:::: ⊆ Set2:::: ⊆ · · ·

I Algebraic data types can be introduced by determining their strictly
positive constructors, e.g.

data N : Set where
zero : N
suc : N→ N

4/ 38

1. An Introduction to Agda

Pattern Matching

I Once a set is introduced in this way functions can be defined
I using pattern matching
I recursively, as long as termination is accepted by the

termination checker.

I Example

double : N→ N
double zero = zero
double (suc n) = suc (suc (double n))

5/ 38

1. An Introduction to Agda

Mixfix Symbols

I Agda allows mixfix symbols, with positions denoted by e.g.

+ : N→ N→ N
n + zero = n
n + suc m = suc (n + m)

I We replace suc by +1, use builtin N which allows 0 and obtain

+ : N→ N→ N
n + 0 = n
n + (m +1) = (n + m) +1

I It supports as well the use of Unicode symbols.

I This allows to write code which looks very close to mathematical
code.

6/ 38

1. An Introduction to Agda

Dependent Types

Assume we have defined the type of matrices Mat n m depending on
dimensions n and m:

Mat : N→ N→ Set

Then the type of matrix multiplication is

matmult : (n m k : N)
→ Mat n m
→ Mat m k
→ Mat n k

7/ 38

1. An Introduction to Agda

Dependent Algebraic Data Types

We can define the type of n-vectors (or n-tuples) based on a set X :
({n : N} denotes a

::::::::
hidden

:::::::::::
argument)

data Vector(X : Set) : N→ Set where
[] : Vector X zero

:: : X → {n : N} → Vector X n→ Vector X (n +1)

e.g. (using the builtin natural numbers)

a : Vector N 3
a = 0 :: 1 :: 2 :: []

8/ 38

1. An Introduction to Agda

Logic in Agda

Logic in Agda (which is intuitionistic) is based on the principle of
propositions as types:

I Propositions are elements of Set.

I Elements of propositions are proofs of this proposition.

I A proposition holds iff it has a proof.

Examples:

I The true proposition:

data > : Set where
triv : >

9/ 38

1. An Introduction to Agda

⊥, ∧, ∨

I The false proposition:

data ⊥ : Set where

Pattern matching on an empty data type (ex falsum quodlibet) is
denoted as follows:

f : ⊥ → N
f ()

I Conjunction:
∧ (A B : Set) : Set where

and : A→ B → A ∧ B

I Disjunction:
∨ (A B : Set) : Set where

inl : A→ A ∨ B
inr : B → A ∨ B

10/ 38

1. An Introduction to Agda

→, ¬, ∀, ∃

I Implication: A→ B is the function type A→ B.

I Negation: ¬A = A→ ⊥.

I Universal quantification: ∀x : A.ϕ is given as

(x : A)→ ϕ

I Existential quantification:

data ∃ (A : Set) (ϕ : A→ Set) : Set where
exists : (x : A)→ (ϕ x)→ ∃ A ϕ

I Example:
∀ε > 0.∃δ > 0.ϕ(ε, δ) is written as

(ε : Q)→ ε > 0→ ∃ Q (λδ.δ > 0 ∧ ϕ ε δ)

11/ 38

1. An Introduction to Agda

Decidable Prime Formulas

Booleans:
data B : Set where

tt : B
ff : B

Atom converts Booleans into the corresponding formula:

Atom : B→ Set
Atom tt = >
Atom ff = ⊥

12/ 38

2. Integrating Automated Theorem Proving into Agda

1. An Introduction to Agda

2. Integrating Automated Theorem Proving into Agda

3. Defining the Mini SAT Solver in Agda

4. Correctness Proof for the Mini SAT Solver

13/ 38

2. Integrating Automated Theorem Proving into Agda

Main Idea

I Define a data type of codes for formulas in Agda:

data For : Set where
· · ·

I Define what is meant by an environment, which e.g. assigns values to
free variables, determines the state etc. We get

Env : Set

I Define a function [[]] which assigns to codes for formulas and
environments the corresponding Agda formula:

[[]] : For→ Env→ Set

14/ 38

2. Integrating Automated Theorem Proving into Agda

Main Idea

Define a check function, which checks whether a formula is universally
true:

check : For→ B

Prove that check is correct:

correctCheck : (ϕ : For)→ Atom (check ϕ)→ (ξ : Env)→ [[ϕ]] ξ

Implement in Agda a builtin version of check which calls an automated
theorem proving tool. Declare check as a builtin:

{−# BUILTIN CHECK check #−}

Now when check is called for a closed element of For, instead of the
(inefficient) Agda code the automated theorem prover is called.

15/ 38

2. Integrating Automated Theorem Proving into Agda

Usage

Assume an Agda formula ψ, e.g.

ψ : B→ B→ Set
ψ b b′ = (Atom b ∧Atom b′) ∨ ¬(Atom b) ∨ ¬(Atom b′)

Assume that ψ has a code dψe in For, i.e.

dψe : For
dψe = · · ·

s.t.
[[dψe]][x 7→ b, y 7→ b′] = ψ b b′

16/ 38

2. Integrating Automated Theorem Proving into Agda

Usage

[[dψe]][x 7→ b, y 7→ b′] = ψ b b′

Then we can prove this formula (which we could prove by hand) as follows:

theorem : (b b′ : B)→ ψ b b′

theorem b b′ = correctCheck dψe triv [x 7→ b, y 7→ b′]

Type checking
triv : Atom (check dψe)

will require that
check dψe

evaluates to tt.
This evaluation will activate the automated theorem proving tool.
Note that in the example above we obtain

theorem : (b b′ : B)→ (Atom b ∧Atom b′) ∨ ¬(Atom b) ∨ ¬(Atom b′)

17/ 38

2. Integrating Automated Theorem Proving into Agda

Interleaving Interactive and Automated Theorem Proving

This allows to combine both theorem proving techniques:

Interactive Theorem Proving
↓

Automated Theorem Proving
↓

Interactive Theorem Proving
↓

Automated Theorem Proving
↓
· · ·

18/ 38

2. Integrating Automated Theorem Proving into Agda

Simplicity of check

The function check will defined in such a way that
I The definition is simple.

I When using a builtin function, we need to check that the function
fulfils the equations.

I So we need to implement in Agda the verification that when using
check its Agda definition is correct.

I The correctness proof is simple, so that it can be given in Agda.

I Efficiency is not a concern since its usage will be replaced by a call to
an efficient automated theorem prover.

19/ 38

2. Integrating Automated Theorem Proving into Agda

Security Concerns

An initial idea was to define a flexible builtin in Agda, which automatically
calls a user-defined Haskell function.
Problem:

I Then one could write Agda code, which during type checking calls an
arbitrary Haskell function.

I Such a function might erase your hard disk.

Solution:

I To define a new builtin needs to require some modification of the
Agda type checking program.

I Users should be aware that if programming is involved there might be
a security problem.

I They won’t expect this from a proof code to be type checked.

20/ 38

3. Defining the Mini SAT Solver in Agda

1. An Introduction to Agda

2. Integrating Automated Theorem Proving into Agda

3. Defining the Mini SAT Solver in Agda

4. Correctness Proof for the Mini SAT Solver

21/ 38

3. Defining the Mini SAT Solver in Agda

For

data For : Set where
const : B→ For
x : N→ For
∧for : For→ For→ For
∨for : For→ For→ For
¬for : For→ For

check0 checks whether the formula holds if all variables are instantiated
with tt:

check0 : For→ B
check0 (const b) = b
check0 (x n) = tt

check0 (ϕ
∧for
∨for

ψ) = check0 ϕ
∧B
∨B check0 ψ

check0 (¬for ϕ) = ¬B (check0 ϕ)

22/ 38

3. Defining the Mini SAT Solver in Agda

instantiate-

instantiate- ϕ b

I instantiates in ϕ variable x 0 by b

I replaces x (n +1) by x n

instantiate- : For→ B→ For
instantiate- (const b) b′ = const b
instantiate- (x 0) b′ = const b′

instantiate- (x (n +1)) b′ = x n

instantiate- (ϕ
∧for
∨for

ψ) b′ = instantiate- ϕ b′

∧for
∨for

instantiate- ψ b′

instantiate- (¬for ϕ) b′ = ¬for (instantiate- ϕ b′)

23/ 38

3. Defining the Mini SAT Solver in Agda

check1

check1 ϕ n checks whether ϕ is universally true if

I variables (x 0) · · · (x (n − 1)) are arbitrary,

I other variables are instantiated by tt.

check1 : For→ N→ B
check1 ϕ 0 = check0 ϕ
check1 ϕ (n +1) = check1 (instantiate- ϕ tt) n

∧B check1 (instantiate- ϕ ff) n

24/ 38

3. Defining the Mini SAT Solver in Agda

maxVar

maxVar returns
max{n +1 | (x n) occurs in ϕ}

maxVar : For→ N
maxVar (const b) = 0
maxVar (x n) = n +1

maxVar (ϕ
∧for
∨for

ψ) = max (maxVar ϕ) (maxVar ψ)

maxVar (¬for ϕ) = maxVar ϕ

Now we define check:

check : For→ B
check ϕ = check1 ϕ (maxVar ϕ)

25/ 38

3. Defining the Mini SAT Solver in Agda

Nondependent Types

I Until now the code was kept minimal, and didn’t require dependent
types.

I check depends on all of this code.
I When defining the builtin function all this codes needs to be reflected

into Haskell.
I Possible because no dependent types were used.

I The code in the following needs not to be translated into Haskell
code.

I We will use dependent types, and will no longer be minimalistic.

26/ 38

3. Defining the Mini SAT Solver in Agda

[[ϕ]]

Environments are given here as elements of Vector B n for some n.

I For i < n, variable x i is instantiated by the i element of this vector,

I For i ≥ n, variable x i is instantiated by tt.

[[]] : For→ {n : N} → Vector B n→ Set
[[const b]] ~b = Atom b
[[x n]] [] = Atom tt
[[x 0]] (b :: ~b) = Atom b

[[x (n +1)]] (b :: ~b) = [[x n]] ~b

[[ϕ
∧for
∨for

ψ]] ~b = [[ϕ]] ~b
∧
∨ [[ψ]] ~b

[[¬for ϕ]] ~b = ¬ ([[ϕ]] ~b)

27/ 38

3. Defining the Mini SAT Solver in Agda

[[ϕ]]b

We have

[[x 0 ∧for x 1]] (b :: b′ :: []) = Atom b ∧Atomb′

We define as well [[ϕ]]b s.t.

[[x 0 ∧for x 1]]b (b :: b′ :: []) = b ∧B b′

[[]]b : For→ {n : N} → Vector B n→ B
[[const b]]b ~b = b
[[x n]]b [] = tt
[[x 0]]b (b :: ~b) = b

[[x (n +1)]]b (b :: ~b) = [[x n]]b ~b

[[ϕ
∧for
∨for

ψ]]b ~b = [[ϕ]]b ~b
∧B
∨B [[ψ]]b ~b

[[¬for ϕ]]b ~b = ¬B ([[ϕ]]b ~b)

28/ 38

3. Defining the Mini SAT Solver in Agda

[[ϕ]]′

We define [[ϕ]]′ s.t.

[[x 0 ∧for x 1]]′ (b :: b′ :: []) = Atom (b ∧B b′)

[[]]′ : For→ {n : N} → Vector B n→ Set
[[ϕ]]′ ~b = Atom([[ϕ]]b ~b)

29/ 38

4. Correctness Proof for the Mini SAT Solver

1. An Introduction to Agda

2. Integrating Automated Theorem Proving into Agda

3. Defining the Mini SAT Solver in Agda

4. Correctness Proof for the Mini SAT Solver

30/ 38

4. Correctness Proof for the Mini SAT Solver

Correctness of check0 and Induction Step of check1

lemma1 : (ϕ : For)→ (Atom (check0 ϕ)↔ [[ϕ]] [])

lemma2 : (ϕ : For)

→ {n : N} → (~b : Vector B (n +1))

→ ([[ϕ]] ~b ↔ [[instantiate- ϕ (head ~b)]] (tail ~b))

31/ 38

4. Correctness Proof for the Mini SAT Solver

Correctness of check1

correctnessCheck1 : (ϕ : For)
→ (n : N)
→ (Atom (check1 ϕ n)

↔ ((~b : Vector B n)→ [[ϕ]] ~b))

32/ 38

4. Correctness Proof for the Mini SAT Solver

Independence of [[ϕ]] ~b of Variables out of Range

Let

truncateWithDefaultTt : {m : N} → Vector Bool m→ (n : N)
→ Vector B m

which

I truncates its argument to length n

I iff necessary fills it by tt.

lemma4 : (ϕ : For)
→ (n : N)
→ (maxVar ϕ ≤ n)

→ {m : N} → (~b : Vector B m)

→ ([[ϕ]] ~b ↔ [[ϕ]] (truncateWithDefaultTt ~b n))

33/ 38

4. Correctness Proof for the Mini SAT Solver

Equivalence of [[ϕ]] ~b and [[ϕ]]′ ~b

lemma3 : (ϕ : For)

→ {n : N} → (~b : Vector B n)

→ ([[ϕ]]~b ↔ [[ϕ]]′ ~b))

34/ 38

4. Correctness Proof for the Mini SAT Solver

Correctness of check

corrrectnessCheck : (ϕ : For)
→ Atom (check ϕ)

→ {m : N} → (~b : Vector B m)

→ [[ϕ]] ~b

corrrectnessCheck′ : (ϕ : For)
→ Atom (check ϕ)

→ {m : N} → (~b : Vector B m)

→ [[ϕ]]′ ~b

35/ 38

4. Correctness Proof for the Mini SAT Solver

Example

x0 : For
x0 = x 0

x1 : For
x1 = x 1

example : For
example = ((x0 ∧for x1) ∨for (¬for x0)) ∨for (¬for x1)

proof : (b b′ : B)→ ((Atom b ∧Atom b′) ∨ (¬(Atom b)) ∨ (¬(Atom b′))
proof b b′ = correctnessCheck example1 triv (b :: (b′ :: []))

proof ′ : (b b′ : B)→ Atom(((b ∧B b′) ∨B (¬B b)) ∨B (¬B b′))
proof ′ b b′ = correctnessCheck′ example1 triv (b :: (b′ :: []))

36/ 38

4. Correctness Proof for the Mini SAT Solver

Conclusion

I Proof in case of the SAT solver relatively short and quite readable.
I Builtin tool has been implemented by Karim Kanso; problem that it is

not part of official Agda, therefore difficult to maintain with new
versions.

I Need for a more flexible builtin mechanism in Agda.

I Karim Kanso is carrying the same out for Model checking (CTL).

37/ 38

4. Correctness Proof for the Mini SAT Solver

Future Work

I Combine with semidecision procedure.

I Combine with automated theorem provers which provide certificates.

38/ 38

	1. An Introduction to Agda
	2. Integrating Automated Theorem Proving into Agda
	3. Defining the Mini SAT Solver in Agda
	4. Correctness Proof for the Mini SAT Solver

