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Coalgebras in Agda

Codata Type

I Idea of Codata Types:

codata Stream : Set where
cons : N→ Stream→ Stream

I Same definition as inductive data type but we are allowed to have
infinite chains of constructors

cons n0 (cons n1 (cons n2 · · · ))

I Problem 1: Non-normalisation.
I Problem 2: Equality between streams is equality between all

elements, and therefore undecidable.
I Problem 3: Underlying assumption is

∀ s : Stream.∃ n, s ′.s = cons n s ′

which results in undecidable equality.
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Coalgebras in Agda

Solution: Coalgebras Defined by Observations

I We define coalgebras by their observations. Tentative syntax

coalg Stream : Set where
head : Stream→ N
tail : Stream→ Stream

I Stream is the largest set of terms which allow arbitrary many
applications of tail followed by head to obtain a natural numbers.

I From this one can develop a general model for coalgebras (see our
paper [Set16]).

I Therefore no infinite expansion of streams:
– for each expansion of a stream one needs one application of tail.
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Coalgebras in Agda

Syntax in Agda

I In Agda the record type has been reused for defining coalgebras:

record Stream (A : Set) : Set where
coinductive
field
head : A
tail : Stream A

const and inc can be defined with the syntax as given before
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Coalgebras in Agda

Principle of Guarded Recursion

I Define
f : A→ Stream
head (f a) = · · · : N
tail (f a) = · · · : Stream

where

tail (f a) = f a′ for some a′ : A
or
tail (f a) = s ′ for some s ′ : Stream given before

I No function can be applied to the corecursion hypothesis.
I Using sized types one can apply size preserving or size increasing

functions to co-IH (Abel).
I Above is example of copattern matching.
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Coalgebras in Agda

Example

I Constant stream of a, a, a, . . .

const : {A : Set} → A→ Stream A
head (const a) = a
tail (const a) = const a

I The increasing stream n, n + 1, n + 2, . . .

inc : N→ Stream N
head (inc n) = n
tail (inc n) = inc (n + 1)

I Cons is defined:

cons : X → Stream X → Stream X
head (cons x l) = x
tail (cons x l) = l
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Coalgebras in Agda

Nested Patter/Copattern Matching

I We can even define functions by a combination of pattern and
copattern matching and nest those:
The following defines the stream

stutterDown n n = n, n, n − 1, n − 1, . . . 0, 0, n, n, n − 1, n − 1, . . .

stutterDown : N → N → Stream N
head (stutterDown n m) = m
head (tail (stutterDown n m)) = m
tail (tail (stutterDown n (suc m))) = stutterDown n m
tail (tail (stutterDown n 0)) = stutterDown n n
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Interactive Programs in Agda

IO-Trees (Non-State Dependent)
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p : IO

(r : R c)

(r ′ : R c′)

p′′ : IO

p′ : IO

c : C

c′′ : C

c′ : C
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Interactive Programs in Agda

IOInterface

An IOInterface is a record having fields Command and Response:

record IOInterface : Set1 where
field Command : Set

Response : Command → Set
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Interactive Programs in Agda

Console Interface

data ConsoleCommand : Set where
getLine : ConsoleCommand
putStrLn : String → ConsoleCommand

ConsoleResponse : ConsoleCommand → Set
ConsoleResponse getLine = String
ConsoleResponse (putStrLn s) = Unit

ConsoleInterface : IOInterface
Command ConsoleInterface = ConsoleCommand
Response ConsoleInterface = ConsoleResponse
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Interactive Programs in Agda

IO

The set of IO programs IO∞ is the coalgebra having as observation an
element of IO.
Elements of IO are IO trees which can have leaves (introduced by return)
and nodes (introduced by do):

mutual
record IO∞ (I : IOInterface) (A : Set) : Set where
coinductive
field force : IO I A

data IO (I : IOInterface) (A : Set) : Set where
do : (c : Command I) ( f : Response I c → IO∞ I A)

→ IO I A
return : A → IO I A

Anton Setzer and Stephan Adelsberger Towards object orientation in Agda 14/ 25



Interactive Programs in Agda

Monadic bind is used to combine programs:

mutual
>>= : ∀{A B} (m : IO I A) (k : A → IO∞ I B) → IO I B

do c f >>= k = do c ń x → f x >>=∞ k
return a >>= k = force (k a)

>>=∞ : ∀{A B} (m : IO∞ I A) (k : A → IO∞ I B)
→ IO∞ I B

force (m >>=∞ k) = force m >>= k
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Interactive Programs in Agda

Running Interactive Programs

{-# NON TERMINATING #-}
translateIO : ∀ {A} (tr : (c : C) → NativeIO (R c)) → IO∞ I A

→ NativeIO A
translateIO tr m = case (force m) of ń
{ (do c f ) → (tr c) native>>= ń r → translateIO tr ( f r)
; (return a) → nativeReturn a
}

Non termination is unproblematic since this function is only used as part of
the compilation process.
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Interactive Programs in Agda

Console IO

IOConsole : Set → Set
IOConsole = IO∞ ConsoleInterface

translateIOConsoleLocal : (c : ConsoleCommand)
→ NativeIO (ConsoleResponse c)

translateIOConsoleLocal (putStrLn s) = nativePutStrLn s
translateIOConsoleLocal getLine = nativeGetLine

translateIOConsole : {A : Set} → IOConsole A → NativeIO A
translateIOConsole = translateIO translateIOConsoleLocal
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Interactive Programs in Agda

A First Interactive Program

cat : IOConsole Unit
force cat = do getLine ń line →

do∞ (putStrLn line) ń →
cat

I This program doesn’t termination check because in guarded recursion
we are not allowed to apply the defined function do∞o to the
corecursive call of cat.

I Can be repaired using sized Types (Abel).
I Using sized types one can apply size preserving or increasing functions

to corecursive calls.
I The code in the following usually requires decorations by sized types in

order to termination check.
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Interactive Programs in Agda

Executable Program

main : NativeIO Unit
main = translateIOConsole cat
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State-Dependent IO

State Dependent IO-Trees
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(r : R s c)

(r ′ : R s′ c′)

p : IO s

p′ : IO s′ (s′ = n s c r)

p′′ : IO s′′ (s′′ = n s′ c′ r ′)

c : C s

c′ : C s′

c′′ : C s′′
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State-Dependent IO

State Dependent IO – Interface

record IOInterfaces : Set2 where
field
States : Set1
Commands : States → Set1
Responses : (s : States) → Commands s → Set
nexts : (s : States) → (c : Commands s)

→ Responses s c
→ States
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State-Dependent IO

State Dependent IO

record IOs (A : S → Set) (s : S) : Set1 where
coinductive
field
forces : IOs’ A s

data IOs’ (A : S → Set) : S → Set1 where
dos’ : {s : S} → (c : C s)

→ ( f : (r : R s c) → IOs A (next s c r) )
→ IOs’ A s

returns’ : {s : S} → (a : A s) → IOs’ A s
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