
Towards Object Orientation in Agda
Part I: Coalgebras and IO

Stephan Adelsberger
Vienna University of Economics and Business

Anton Setzer
Swansea University, Swansea UK

TCS Seminar, Department of Computer Science, Swansea University

10 April 2017

Anton Setzer and Stephan Adelsberger Towards object orientation in Agda 1/ 25

http://nm.wu.ac.at/nm/sadelsbe
https://www.wu.ac.at/en/
http://www.cs.swan.ac.uk/~csetzer/
http://www.swansea.ac.uk/compsci/

Coalgebras in Agda

Interactive Programs in Agda

State-Dependent IO

Anton Setzer and Stephan Adelsberger Towards object orientation in Agda 2/ 25

Coalgebras in Agda

Coalgebras in Agda

Interactive Programs in Agda

State-Dependent IO

Anton Setzer and Stephan Adelsberger Towards object orientation in Agda 3/ 25

Coalgebras in Agda

Codata Type

I Idea of Codata Types:

codata Stream : Set where
cons : N→ Stream→ Stream

I Same definition as inductive data type but we are allowed to have
infinite chains of constructors

cons n0 (cons n1 (cons n2 · · ·))

I Problem 1: Non-normalisation.
I Problem 2: Equality between streams is equality between all

elements, and therefore undecidable.
I Problem 3: Underlying assumption is

∀ s : Stream.∃ n, s ′.s = cons n s ′

which results in undecidable equality.
Anton Setzer and Stephan Adelsberger Towards object orientation in Agda 4/ 25

Coalgebras in Agda

Solution: Coalgebras Defined by Observations

I We define coalgebras by their observations. Tentative syntax

coalg Stream : Set where
head : Stream→ N
tail : Stream→ Stream

I Stream is the largest set of terms which allow arbitrary many
applications of tail followed by head to obtain a natural numbers.

I From this one can develop a general model for coalgebras (see our
paper [Set16]).

I Therefore no infinite expansion of streams:
– for each expansion of a stream one needs one application of tail.

Anton Setzer and Stephan Adelsberger Towards object orientation in Agda 5/ 25

Coalgebras in Agda

Syntax in Agda

I In Agda the record type has been reused for defining coalgebras:

record Stream (A : Set) : Set where
coinductive
field
head : A
tail : Stream A

const and inc can be defined with the syntax as given before

Anton Setzer and Stephan Adelsberger Towards object orientation in Agda 6/ 25

Coalgebras in Agda

Principle of Guarded Recursion

I Define
f : A→ Stream
head (f a) = · · · : N
tail (f a) = · · · : Stream

where

tail (f a) = f a′ for some a′ : A
or
tail (f a) = s ′ for some s ′ : Stream given before

I No function can be applied to the corecursion hypothesis.
I Using sized types one can apply size preserving or size increasing

functions to co-IH (Abel).
I Above is example of copattern matching.

Anton Setzer and Stephan Adelsberger Towards object orientation in Agda 7/ 25

Coalgebras in Agda

Example

I Constant stream of a, a, a, . . .

const : {A : Set} → A→ Stream A
head (const a) = a
tail (const a) = const a

I The increasing stream n, n + 1, n + 2, . . .

inc : N→ Stream N
head (inc n) = n
tail (inc n) = inc (n + 1)

I Cons is defined:

cons : X → Stream X → Stream X
head (cons x l) = x
tail (cons x l) = l

Anton Setzer and Stephan Adelsberger Towards object orientation in Agda 8/ 25

Coalgebras in Agda

Nested Patter/Copattern Matching

I We can even define functions by a combination of pattern and
copattern matching and nest those:
The following defines the stream

stutterDown n n = n, n, n − 1, n − 1, . . . 0, 0, n, n, n − 1, n − 1, . . .

stutterDown : N → N → Stream N
head (stutterDown n m) = m
head (tail (stutterDown n m)) = m
tail (tail (stutterDown n (suc m))) = stutterDown n m
tail (tail (stutterDown n 0)) = stutterDown n n

Anton Setzer and Stephan Adelsberger Towards object orientation in Agda 9/ 25

Interactive Programs in Agda

Coalgebras in Agda

Interactive Programs in Agda

State-Dependent IO

Anton Setzer and Stephan Adelsberger Towards object orientation in Agda 10/ 25

Interactive Programs in Agda

IO-Trees (Non-State Dependent)

�������� ����

�������� ����

p : IO

(r : R c)

(r ′ : R c′)

p′′ : IO

p′ : IO

c : C

c′′ : C

c′ : C

Anton Setzer and Stephan Adelsberger Towards object orientation in Agda 11/ 25

Interactive Programs in Agda

IOInterface

An IOInterface is a record having fields Command and Response:

record IOInterface : Set1 where
field Command : Set

Response : Command → Set

Anton Setzer and Stephan Adelsberger Towards object orientation in Agda 12/ 25

Interactive Programs in Agda

Console Interface

data ConsoleCommand : Set where
getLine : ConsoleCommand
putStrLn : String → ConsoleCommand

ConsoleResponse : ConsoleCommand → Set
ConsoleResponse getLine = String
ConsoleResponse (putStrLn s) = Unit

ConsoleInterface : IOInterface
Command ConsoleInterface = ConsoleCommand
Response ConsoleInterface = ConsoleResponse

Anton Setzer and Stephan Adelsberger Towards object orientation in Agda 13/ 25

Interactive Programs in Agda

IO

The set of IO programs IO∞ is the coalgebra having as observation an
element of IO.
Elements of IO are IO trees which can have leaves (introduced by return)
and nodes (introduced by do):

mutual
record IO∞ (I : IOInterface) (A : Set) : Set where
coinductive
field force : IO I A

data IO (I : IOInterface) (A : Set) : Set where
do : (c : Command I) (f : Response I c → IO∞ I A)

→ IO I A
return : A → IO I A

Anton Setzer and Stephan Adelsberger Towards object orientation in Agda 14/ 25

Interactive Programs in Agda

Monadic bind is used to combine programs:

mutual
>>= : ∀{A B} (m : IO I A) (k : A → IO∞ I B) → IO I B

do c f >>= k = do c ń x → f x >>=∞ k
return a >>= k = force (k a)

>>=∞ : ∀{A B} (m : IO∞ I A) (k : A → IO∞ I B)
→ IO∞ I B

force (m >>=∞ k) = force m >>= k

Anton Setzer and Stephan Adelsberger Towards object orientation in Agda 15/ 25

Interactive Programs in Agda

Running Interactive Programs

{-# NON TERMINATING #-}
translateIO : ∀ {A} (tr : (c : C) → NativeIO (R c)) → IO∞ I A

→ NativeIO A
translateIO tr m = case (force m) of ń
{ (do c f) → (tr c) native>>= ń r → translateIO tr (f r)
; (return a) → nativeReturn a
}

Non termination is unproblematic since this function is only used as part of
the compilation process.

Anton Setzer and Stephan Adelsberger Towards object orientation in Agda 16/ 25

Interactive Programs in Agda

Console IO

IOConsole : Set → Set
IOConsole = IO∞ ConsoleInterface

translateIOConsoleLocal : (c : ConsoleCommand)
→ NativeIO (ConsoleResponse c)

translateIOConsoleLocal (putStrLn s) = nativePutStrLn s
translateIOConsoleLocal getLine = nativeGetLine

translateIOConsole : {A : Set} → IOConsole A → NativeIO A
translateIOConsole = translateIO translateIOConsoleLocal

Anton Setzer and Stephan Adelsberger Towards object orientation in Agda 17/ 25

Interactive Programs in Agda

A First Interactive Program

cat : IOConsole Unit
force cat = do getLine ń line →

do∞ (putStrLn line) ń →
cat

I This program doesn’t termination check because in guarded recursion
we are not allowed to apply the defined function do∞o to the
corecursive call of cat.

I Can be repaired using sized Types (Abel).
I Using sized types one can apply size preserving or increasing functions

to corecursive calls.
I The code in the following usually requires decorations by sized types in

order to termination check.

Anton Setzer and Stephan Adelsberger Towards object orientation in Agda 18/ 25

Interactive Programs in Agda

Executable Program

main : NativeIO Unit
main = translateIOConsole cat

Anton Setzer and Stephan Adelsberger Towards object orientation in Agda 19/ 25

State-Dependent IO

Coalgebras in Agda

Interactive Programs in Agda

State-Dependent IO

Anton Setzer and Stephan Adelsberger Towards object orientation in Agda 20/ 25

State-Dependent IO

State Dependent IO-Trees

�������� ����

�������� ����

(r : R s c)

(r ′ : R s′ c′)

p : IO s

p′ : IO s′ (s′ = n s c r)

p′′ : IO s′′ (s′′ = n s′ c′ r ′)

c : C s

c′ : C s′

c′′ : C s′′

Anton Setzer and Stephan Adelsberger Towards object orientation in Agda 21/ 25

State-Dependent IO

State Dependent IO – Interface

record IOInterfaces : Set2 where
field
States : Set1
Commands : States → Set1
Responses : (s : States) → Commands s → Set
nexts : (s : States) → (c : Commands s)

→ Responses s c
→ States

Anton Setzer and Stephan Adelsberger Towards object orientation in Agda 22/ 25

State-Dependent IO

State Dependent IO

record IOs (A : S → Set) (s : S) : Set1 where
coinductive
field
forces : IOs’ A s

data IOs’ (A : S → Set) : S → Set1 where
dos’ : {s : S} → (c : C s)

→ (f : (r : R s c) → IOs A (next s c r))
→ IOs’ A s

returns’ : {s : S} → (a : A s) → IOs’ A s

Anton Setzer and Stephan Adelsberger Towards object orientation in Agda 23/ 25

State-Dependent IO

Bibliography I

Andreas Abel, Stephan Adelsberger, and Anton Setzer.
ooAgda.
Agda Library. Available from https://github.com/agda/ooAgda,
2016.

Andreas Abel, Stephan Adelsberger, and Anton Setzer.
Interactive programming in Agda – objects and graphical user
interfaces.
Journal of Functional Programming, 27, Jan 2017.

Anton Setzer.
Object-oriented programming in dependent type theory.
In Conference Proceedings of TFP 2006, 2006.
Available from
http://www.cs.nott.ac.uk/∼nhn/TFP2006/TFP2006-Programme.html
and http://www.cs.swan.ac.uk/∼csetzer/index.html.

Anton Setzer and Stephan Adelsberger Towards object orientation in Agda 24/ 25

https://github.com/agda/ooAgda

State-Dependent IO

Bibliography II

Anto Setzer.
How to reason coinductively informally.
In Reinhard Kahle, Thomas Strahm, and Thomas Studer, editors,
Advances in Proof Theory, pages 377–408. Springer, 2016.

Anton Setzer and Stephan Adelsberger Towards object orientation in Agda 25/ 25

	Coalgebras in Agda
	Interactive Programs in Agda
	State-Dependent IO

