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Initial Algebras in Functional Programming

Algebraic Data Types

In most functional programming languages we have the notion of an
algebraic data type, e.g.

data N : Set where
0 : N
S : N→ N

data NatList : Set where
nil : NatList
cons : N→ NatList→ NatList

Anton Setzer Coinduction, Corecursion, Copatterns 4/ 40



Initial Algebras in Functional Programming

Algebraic Data Types as F-Algebras

data N : Set where
0 : N
S : N→ N

can be rewritten as

data N : Set where
intro : (1 + N)→ N

or with F(X ) := 1 + X

data N : Set where
intro : F(N)→ N

So 0 = intro inl and S n = intro (inr n).
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Initial Algebras in Functional Programming

Algebraic Data Types as F-Algebras

data NatList : Set where
nil : NatList
cons : N→ NatList→ NatList

can we written as

data NatList : Set where
nil : 1→ NatList
cons : (N×NatList)→ NatList

and with F(X ) := 1 + (N× X ) becomes

data NatList : Set where
intro : F(NatList)→ NatList
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Initial Algebras in Functional Programming

Initial F-Algebras

Initial F-Algebras F∗ are minimal F-Algebras:

F(F∗)
intro

- F∗

F(A)

F(g)

? f
- A

∃! g

?
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Initial Algebras in Functional Programming

Iteration

Existence of g corresponds to iteration (example N):

1 + N
intro

- N

1 + A

1 + g

? f
- A

∃g

?

g 0 = g (intro inl) = f inl
g (S n) = g (intro (inr n)) = f (inr (g n))
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Initial Algebras in Functional Programming

g 0 = f inl
g (S n) = f (inr (g n))

So with a0 := f inl : A and f0 := f ◦ inr : A→ A

g 0 = a0
g (S n) = f0 (g n)

and therefore
g n = f n0 a0

On the other hand for every

a0 : A f0 : A→ A

we can define f and therefore g s.t. this equation holds.
So initial F-algebra means just unique iteration.
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Initial Algebras in Functional Programming

Recursion

The principle of recursion can be derived using uniqueness
(I learned this from Thorsten Altenkirch):
Assume

a0 : A
f0 : N→ A→ A

We derive g : N→ A s.t.

g 0 = a0
g (S n) = f0 n (g n)

This allows to define efficiently the inverse of S:

pred : N→ N
pred 0 = 0
pred (S n) = n
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Initial Algebras in Functional Programming

Recursion

We have
a0 : A
f0 : N→ A→ A

We need to have an F-algebra, we take as carrier

N× A

Define
f : (1 + (N× A))→ (N× A)
f inl = 〈0, a0〉
f (inr 〈n, a〉) = 〈S n, f0 n a〉
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f inl = 〈0, a〉
f (inr 〈n, a〉) = 〈n + 1, f0 n a〉

1 + N
intro

- N

1 + (N× A)

1 + g

? f
- N× A

g

?

1 + N

1 + π0

? intro
- N

π0

?

Both π0 ◦ g and id make the outermost diagram commute.
By uniqueness follows π0 ◦ g = id,
therefore g n = 〈n, g0 n〉 for some g0 : N→ A.



f inl = 〈0, a〉
f (inr 〈n, a〉) = 〈n + 1, f0 n a〉
g n = 〈n, g0 n〉

1 + N
intro

- N

1 + (N× A)

1 + g

? f
- N× A

g

?

Therefore

g0 0 =π1(g (intro inl )) =π1(f inl ) =a0
g0 (S n) =π1(g (intro (inr n))) =π1(f (inr 〈n, g0 n〉)) =f0 n (g0 n)



Initial Algebras in Functional Programming

Induction

Induction can be regarded as dependent elimination:
Assume

A : N→ Set
a0 : A 0
f0 : (n : N)→ A n→ A (S n)

We derive g : (n : N)→ A n s.t.

g 0 = a0
g (S n) = f0 n (g n)

Can be derived in the same way as recursion.
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Coalgebras and Copatterns

Coalgebras

Final coalgebras F∞ are obtained by reversing the arrows in the diagram
for F-algebras:

A
f

- F(A)

F∞

∃!g

? case
- F(F∞)

F(g)

?
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Coalgebras and Copatterns

Coalgebras

Consider Streams = F∞ where F(X ) = N× X :

A
f

- N× A

Stream

∃!g

? case
- N× Stream

id× g

?

Let
case s = 〈head s, tail s〉

and
f a = 〈f0 a, f1 a〉

Anton Setzer Coinduction, Corecursion, Copatterns 17/ 40



Coalgebras and Copatterns

Guarded Recursion

A
〈f0, f1〉 - N× A

Stream

∃!g

? 〈head, tail〉
- N× Stream

id× g

?

Resulting equations:

head (g a) = f0 a
tail (g a) = g (f1 a)
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Coalgebras and Copatterns

Example of Guarded Recursion

head (g a) = f0 a
tail (g a) = g (f1 a)

describes a schema of guarded recursion (or better coiteration)
As an example, with A = N, f0 n = n, f1 n = n + 1 we obtain:

inc : N→ Stream
head (inc n) = n
tail (inc n) = inc (n + 1)
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Coalgebras and Copatterns

Corecursion

In coiteration we need to make in tail always a recursive call:

tail (g a) = g (f1 a)

Corecursion allows for tail to escape into a previously defined stream.
Assume

A : Set
f0 : A→ N
f1 : A→ (Stream + A)

we get g : A→ Stream s.t.

head (g a) = f0 a
tail (g a) = s if f1 a = inl s
tail (g a) = g a′ if f1 a = inr a′
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Coalgebras and Copatterns

Iteration and Recursion

(I learned this symmetry from Peter Hancock)

Iteration: For a0 : A, f0 : A→ A we get

f : N→ A
f 0 = a0
f (S n) = f0 (f n)

Recursion: For a0 : A, f0 : (N× A)→ A we get

f : N→ A
f 0 = a0
f (S n) = f0 〈n, f n〉
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Coalgebras and Copatterns

Coiteration and Corecursion

Iteration: For f0 : A→ N, f1 : A→ A we get

f : A→ Stream
head (f a) = f0 a
tail (f a) = f (f1 a)

Corecursion: For f0 : A→ N, f1 : A→ (Stream + A) we get

f : A→ Stream
head (f a) = f0 a
tail (f a) = s if f1 a = inl s
tail (f a) = f a′ if f1 a = inr a′
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Coalgebras and Copatterns

Recursion, Corecursion

Recursion allows to define the inverse of the constructor S

pred : N→ N
pred 0 = 0
pred (S n) = n

Corecursion allows to define the inverse of the destrutors head, tail:

cons : N→ Stream→ Stream
head (cons n s) = n
tail (cons n s) = s
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Coalgebras and Copatterns

Nested Corecursion

stutter : N→ Stream
head (stutter n) = n
head (tail (stutter n)) = n
tail (tail (stutter n)) = stutter (n + 1)

Even more general schemata can be defined.
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Coalgebras and Copatterns

Weakly Final Coalgebra

I Equality for final coalgebras is undecidable:
Two streams

s = (a0 , a1 , a2 , . . .
t = (b0 , b1 , b2 , . . .

are equal iff ai = bi for all i .

I Even the weak assumption

∀s.∃n, s ′.s = cons n s ′

results in an undecidable equality.

I Weakly final coalgebras obtained by omitting uniqueness of g in
diagram for coalgebras.

I However, one can extend schema of coiteration as above, and still
preserve decidability of equality.

I Those schemata are usually not derivable in weakly final coalgebras.
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Coalgebras and Copatterns

Patterns and Copatterns

I We can define now functions by patterns and copatterns.

I Example define stream:
f n =
n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,
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Coalgebras and Copatterns

Patterns and Copatterns

f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
f = ?
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Coalgebras and Copatterns

Patterns and Copatterns

f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
f = ?

Pattern match on f : N→ Stream:

f : N→ Stream
f n = ?
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Coalgebras and Copatterns

Patterns and Copatterns

f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
f n = ?

Copattern matching on f n : Stream:

f : N→ Stream
head (f n) = ?
tail (f n) = ?
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Coalgebras and Copatterns

Patterns and Copatterns

f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
head (f n) = ?
tail (f n) = ?

Pattern matching on the first n : N:

f : N→ Stream
head (f 0) = ?
head (f (S n)) = ?
tail (f n) = ?
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Coalgebras and Copatterns

Patterns and Copatterns

f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
head (f 0) = ?
head (f (S n)) = ?
tail (f n) = ?

Pattern matching on second n : N:

f : N→ Stream
head (f 0) = ?
head (f (S n)) = ?
tail (f 0) = ?
tail (f (S n)) = ?
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Coalgebras and Copatterns

Patterns and Copatterns

f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
head (f 0) = ?
head (f (S n)) = ?
tail (f 0) = ?
tail (f (S n)) = ?

Copattern matching on tail (f 0) : Stream

f : N→ Stream
head (f 0 ) = ?
head (f (S n))= ?
head (tail (f 0 ))= ?
tail (tail (f 0 ))= ?
tail (f (S n ))= ?
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Coalgebras and Copatterns

Patterns and Copatterns

f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
head (f 0 ) = ?
head (f (S n))= ?
head (tail (f 0 ))= ?
tail (tail (f 0 ))= ?
tail (f (S n ))= ?

Copattern matching on tail (f (S n)) : Stream:

f : N→ Stream
head (f 0 ) = ?
head (f (S n)) = ?
head (tail (f 0 )) = ?
tail (tail (f 0 )) = ?
head (tail (f (S n)))= ?
tail (tail (f (S n)))= ?
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Coalgebras and Copatterns

Patterns and Copatterns

We resolve the goals:

f : N→ Stream
head (f 0 ) = 0
head (tail (f 0 )) = 0
tail (tail (f 0 )) = f N
head (f (S n)) = S n
head (tail (f (S n)))= S n
tail (tail (f (S n)))= f n
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Coalgebras and Copatterns

Results of paper in POPL

I Development of a recursive simply typed calculus (no termination
check).

I Allows to derive schemata for pattern/copattern matching.

I Proof that subject reduction holds.

t : A, t −→ t ′ implies t ′ : A
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Codata Types

Codata Type

I Idea of Codata Types:

codata Stream : Setwhere
cons : N→ Stream→ Stream

I Theoretical problem:
Underlying assumption is

∀s : Stream.∃n, s ′.s = cons n s ′

which results in undecidable equality.

I Results in Coq in a long known problem of subject reduction.

I In Agda severe restriction of elimination for coalgebras, which makes
proving formulae involving coalgebras very difficult.
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Problem of Subject reduction:

data == {A : Set} (a : A) : A→ Set where
refl : a == a

codata Stream : Set where
cons : N→ Stream→ Stream

zeros : Stream
zeros = cons 0 zeros

force : Stream→ Stream
force s = case s of (cons x y)→ cons x y

lem1 : (s : Stream)→ s == force(s))
lem1 s = case s of (cons x y)→ refl

lem2 : zeros == cons 0 zeros
lem2 = lem1 zeros
lem2 −→ refl but ¬(refl : zeros == cons 0 zeros)



Codata Types

Multiple Constructors in Algebras and Coalgebras

I Having more than one constructor in algebras correspond to disjoint
union:

data N : Set where
0 : N
S : N→ N

corresponds to
data N : Set where

intro : (1 + N)→ N
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Codata Types

Multiple Constructors in Algebras and Coalgebras

I Dual of disjoint union is products, and therefore multiple destructors
correspond to product:

coalg Stream : Set where
head : Stream→ N
tail : Stream→ Stream

corresponds to

coalg Stream : Set where
case : Stream→ (N× Stream)
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Codata Types

Codata Types Correspond to Disjoint Union

I Consider
codata coList : Set where

nil : coList
cons : N→ coList→ coList

I Cannot be simulated by a coalgebra with several destructors.
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Codata Types

Simulating Codata Types by Simultaneous
Algebras/Coalgebras

I Represent Codata as follows

mutual
coalg coList : Set where

unfold : coList→ coListShape

data coListShape : Set where
nil : coListShape
cons : N→ coList→ coListShape
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Codata Types

Definition of Append

append : coList→ coList→ coList
append l l ′ =?
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Codata Types

Definition of Append

append : coList→ coList→ coList
append l l ′ =?

We copattern match on append l l ′ : coList:

append : coList→ coList→ coList
unfold (append l l ′) =?
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Codata Types

Definition of Append

append : coList→ coList→ coList
unfold (append l l ′) =?

We cannot pattern match on l .
But we can do so on (unfold l):

append : coList→ coList→ coList
unfold (append l l ′) =

case (unfold l) of
nil → ?
(cons n l) → ?
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Codata Types

Definition of Append

append : coList→ coList→ coList
unfold (append l l ′) =

case (unfold l) of
nil → ?
(cons n l) → ?

We resolve the goals:

append : coList→ coList→ coList
unfold (append l l ′) =

case (unfold l) of
nil → unfold l ′

(cons n l) → cons n (append l l ′)
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Codata Types

Fibonacci Numbers

Efficient Haskell version adapted to our codata notation:

codata Stream : Set where
cons : N→ Stream→ Stream

tail : Stream→ Stream
tail (cons n l) = l

addStream : Stream→ Stream→ Stream
addStream (cons n l) (cons n′ l ′) = cons (n + n′) (addStream l l ′)

fib : Stream
fib = cons 1 (cons 1 (addStream fib (tail fib)))

Requires lazy evaluation.
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Codata Types

Fibonacci Numbers using Coalgebras

coalg Stream : Set where
head : Stream→ N
tail : Stream→ Stream

addStream : Stream→ Stream→ Stream
head (addStream l l ′) = head l + head l ′

tail (addStream l l ′) = addStream (tail l) (tail l ′)

fib : Stream
head fib = 1
head (tail fib) = 1
tail (tail fib) = addStream fib (tail fib)

No laziness required. Requires full corecursion (but terminates).
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Conclusion

Conclusion

I Symmetry between
I algebras and coalgebras,
I iteration and coiteration,
I recursion and corecursion,
I patterns and copatterns.

I Unknown: dual of induction (requires codependent types?)
I Codata construct assumes every element is introduced by a

constructor, which results in
I either undecidable equality
I or requires sophisticated restrictions on reduction rule which are

difficult to get right.
I Problem of subreduction in Coq.
I Overly restriction on elimination in Agda.

I Weakly final coalgebras solve this problem, but add small overhead
when programming.
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