
Unfolding Nested Patterns and Copatterns

Anton Setzer

(Swansea, UK)

Shonan Meeting on Coinduction
7 October 2013

Anton Setzer Unfolding Nested (Co)Patterns 1/ 31

Codata types and Decidable Equality

Pattern and Copattern Matching

Reduction of Mixed Pattern/Copattern Matching to Operators

Conclusion

Anton Setzer Unfolding Nested (Co)Patterns 2/ 31

Codata types and Decidable Equality

Codata types and Decidable Equality

Pattern and Copattern Matching

Reduction of Mixed Pattern/Copattern Matching to Operators

Conclusion

Anton Setzer Unfolding Nested (Co)Patterns 3/ 31

Codata types and Decidable Equality

Theorem Regarding Undecidabilty of Equality

Theorem

Assume the following:

I There exists a subset Stream ⊆ N,1

I computable functions
head : Stream→ N, tail : Stream→ Stream,

I a decidable equality == on Stream which is congruence,

I the possibilty to define elements of Stream by guarded recursion
based on primitive recursive functions f , g : N→ N, such that the
standard equalities related to guarded recursion hold.

Then it is not possible to fulfil the following condition:

∀s, s ′ : Stream.head s = head s ′∧tail s == tail s ′ → s == s ′ (∗)

1Thanks to somebody in the audience (M. Hofmann?) pointed out during
the talk that Stream needs not to be decidable.

Anton Setzer Unfolding Nested (Co)Patterns 4/ 31

Codata types and Decidable Equality

Consequences for Codata Approach

Remark

Condition (∗) is fulfilled if we have an operation
cons : N→ Stream→ Stream preserving equalities s.t.

∀s : Stream.s = cons (head s) (tail s)

So we cannot have a type theory with streams, decidable type checking
and decidable equality on streams such that

∀s.∃n, s ′.s == cons n s ′

as assumed by the codata approach.

Anton Setzer Unfolding Nested (Co)Patterns 5/ 31

Codata types and Decidable Equality

Proof of Theorem

I Assume we had the above.

I By
s ≈ n0 :: n1 :: n2 :: · · · nk :: s ′

we mean the equations using head, tail expressing that s behaves as
the stream indicated on the right hand side.

I Define by guarded recursion l : Stream

l ≈ 1 :: 1 :: 1 :: · · ·

Anton Setzer Unfolding Nested (Co)Patterns 6/ 31

Codata types and Decidable Equality

Proof of Theorem

I For e code for a Turing machine define by guarded recursion based on
primitive recursion functions f , g s.t. if e terminates after n steps and
returns result k then

f e ≈ 0 :: 0 :: 0 :: · · · :: 0︸ ︷︷ ︸
n times

:: l

g e ≈

0 :: 0 :: 0 :: · · · :: 0︸ ︷︷ ︸

n times

:: l if k = 0

0 :: 0 :: 0 :: · · · :: 0︸ ︷︷ ︸
n+1 times

:: l if k > 0

Anton Setzer Unfolding Nested (Co)Patterns 7/ 31

Codata types and Decidable Equality

Proof of Theorem

f e ≈ 0 :: 0 :: 0 :: · · · :: 0︸ ︷︷ ︸
n times

:: l

g e ≈

0 :: 0 :: 0 :: · · · :: 0︸ ︷︷ ︸

n times

:: l if k = 0

0 :: 0 :: 0 :: · · · :: 0︸ ︷︷ ︸
n+1 times

:: l if k > 0

I If e terminates after n steps with result 0 then

f e == g e

I If e terminates after n steps with result > 0 then

¬(f e == g e)

Anton Setzer Unfolding Nested (Co)Patterns 8/ 31

Codata types and Decidable Equality

Proof of Theorem

I So
λe.(f e == g e)

separates the TM with result 0 from those with result > 0.

I But these two sets are inseparable.

Anton Setzer Unfolding Nested (Co)Patterns 9/ 31

Codata types and Decidable Equality

Related Work (Added after the Talk)

I During the talk a related article by Conor McBride was discussed
I Let’s see how things unfold: Reconciling the infinite with the

intensional. Proceedings of CALCO’09, LNCS, 2009, 113 – 126.

I While this paper contains the idea we believe that we state a more
precise theorem and provide a more formal proof.

I We were not able to reduce the result directly to the undecidability of
the Turing Halting problem as suggested in that paper.

Anton Setzer Unfolding Nested (Co)Patterns 10/ 31

Pattern and Copattern Matching

Codata types and Decidable Equality

Pattern and Copattern Matching

Reduction of Mixed Pattern/Copattern Matching to Operators

Conclusion

Anton Setzer Unfolding Nested (Co)Patterns 11/ 31

Pattern and Copattern Matching

Coalgebras defined by Elimination Rules

coalg Stream : Set where
head : Stream→ N
tail : Stream→ Stream

Copattern matching:

g : A→ Stream
head (g a) = f0 a
tail (g a) = g (f1 a)
or
tail (g a) = f2 a

Anton Setzer Unfolding Nested (Co)Patterns 12/ 31

Pattern and Copattern Matching

Patterns and Copatterns

I We can define now functions by patterns and copatterns.

I Example define stream:
f n =
n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

Anton Setzer Unfolding Nested (Co)Patterns 13/ 31

Pattern and Copattern Matching

Patterns and Copatterns

f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
f = ?

Anton Setzer Unfolding Nested (Co)Patterns 14/ 31

Pattern and Copattern Matching

Patterns and Copatterns

f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
f = ?

Copattern matching on f : N→ Stream:

f : N→ Stream
f n = ?

Anton Setzer Unfolding Nested (Co)Patterns 14/ 31

Pattern and Copattern Matching

Patterns and Copatterns

f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
f n = ?

Copattern matching on f n : Stream:

f : N→ Stream
head (f n) = ?
tail (f n) = ?

Anton Setzer Unfolding Nested (Co)Patterns 14/ 31

Pattern and Copattern Matching

Patterns and Copatterns

f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
f n = ?

Solve first case, copattern match on second case:

f : N→ Stream
head (f n) = n
head (tail (f n)) = ?
tail (tail (f n)) = ?

Anton Setzer Unfolding Nested (Co)Patterns 14/ 31

Pattern and Copattern Matching

Patterns and Copatterns

f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
f n = ?

Solve second line, pattern match on n

f : N→ Stream
head (f n) = n
head (tail (f n)) = n
tail (tail (f 0)) = ?
tail (tail (f (S n))) = ?

Anton Setzer Unfolding Nested (Co)Patterns 14/ 31

Pattern and Copattern Matching

Patterns and Copatterns

f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
f n = ?

Solve remaining cases

f : N→ Stream
head (f n) = n
head (tail (f n)) = n
tail (tail (f 0)) = f N
tail (tail (f (S n))) = f n

Anton Setzer Unfolding Nested (Co)Patterns 14/ 31

Reduction of Mixed Pattern/Copattern Matching to Operators

Codata types and Decidable Equality

Pattern and Copattern Matching

Reduction of Mixed Pattern/Copattern Matching to Operators

Conclusion

Anton Setzer Unfolding Nested (Co)Patterns 15/ 31

Reduction of Mixed Pattern/Copattern Matching to Operators

Operators for Primitive (Co)Recursion

PN,A : A→ (N→ A→ A)→ N→ A
PN,A step0 stepS 0 = step0
PN,A step0 stepS (S n) = stepS n (PN,A step0 stepS n)

coPStream,A : (A→ N)→ (A→ (Stream + A))→ A→ Stream
head (coPStream,A stephead steptail a) = stephead a
tail (coPStream,A stephead steptail a) =

caseStream,A,Stream id (coPStream,A stephead steptail) (steptail a)

Anton Setzer Unfolding Nested (Co)Patterns 16/ 31

Reduction of Mixed Pattern/Copattern Matching to Operators

Operators for full/primitive (co)recursion

coPStream,A : (A→ N)→ (A→ (Stream + A))→ A→ Stream
head (coPStream,A stephead steptail a) = stephead a
tail (coPStream,A stephead steptail a) =
caseStream,A,Stream id (coPStream,A stephead steptail) (steptail a)

coRStream,A : ((A→ Stream)→ A→ N)
→ ((A→ Stream)
→ A→ Stream)→ Stream

head (coRStream,A stephead steptail a) = stephead
(coRStream,A stephead steptail) a

tail (coRStream,A stephead steptail a) = steptail
(coRStream,A stephead steptail) a

Anton Setzer Unfolding Nested (Co)Patterns 17/ 31

Reduction of Mixed Pattern/Copattern Matching to Operators

Consider Example from above

f : N→ Stream
head (f n) = n
head (tail (f n)) = n
tail (tail (f 0)) = f N
tail (tail (f (S n))) = f n

This example can be reduced to primitive (co)recursion.
Step 1: Following the development of the (co)pattern matching definition,
unfold it into simulteneous non-nested (co)pattern matching definitions.

Anton Setzer Unfolding Nested (Co)Patterns 18/ 31

Reduction of Mixed Pattern/Copattern Matching to Operators

Step 1: Unnesting of Nested (Co)Pattern Matching

We follow the steps in the pattern matching:
We start with

f : N→ Stream
head (f n) = n
tail (f n) = ?

Anton Setzer Unfolding Nested (Co)Patterns 19/ 31

Copattern matching on tail (f n):

f : N→ Stream
head (f n) = n
head (tail (f n) = n
tail (tail (f n) = ?

corresponds to

f : N→ Stream
head (f n) = n
tail (f n) = g n

g : N→ Stream
(head (tail (f n)) =) head (g n) = n
(tail (tail (f n)) =) tail (g n) = ?

Pattern matching on tail (tail (f n)):

f : N→ Stream
head (f n) = n
head (tail (f n) = n
tail (tail (f 0) = f N
tail (tail (f (S n)) = f n

corresponds to

f : N→ Stream
head (f n) = n
tail (f n) = g n

g : N→ Stream
(head (tail (f n)) =) head (g n) = n
(tail (tail (f n)) =) tail (g n) = k n

k : N→ Stream
(tail (tail (f 0)) =) k 0 = f N
(tail (tail (f (S n))) =) k (S n) = f n

Reduction of Mixed Pattern/Copattern Matching to Operators

Step 2: Reduction to Primitive (Co)recursion

I This can now easily be reduced to full (co)recursion.

I In this example we can reduce it to primitive (co)recursion.

I First combine f , g into one function f + g .

Anton Setzer Unfolding Nested (Co)Patterns 22/ 31

f : N→ Stream
f n = (f + g) (f n)

(f + g) : (f(N) + g(N))→ Stream

head ((f + g) (f n)) = n
head ((f + g) (g n)) = n

tail ((f + g) (f n)) = (f + g) (g n)

tail ((f + g) (f n)) = k n

k : N→ Stream
k 0 = (f + g) (f N)
k (S n) = (f + g) (f n)

Reduction of Mixed Pattern/Copattern Matching to Operators

Unfolding of the Pattern Matchings

I The call of k has result always of the form (f + g)(fbf n)).
So we can replace the recursive call k n by (f + g)(f (k ′ n)).

Anton Setzer Unfolding Nested (Co)Patterns 24/ 31

f : N→ Stream
f n = (f + g) (f n)

(f + g) : (f(N) + g(N))→ Stream

head ((f + g) (f n)) = n
head ((f + g) (g n)) = n

tail ((f + g) (f n)) = (f + g) (g n)

tail ((f + g) (f n)) = (f + g) (f (k ′ n))

k ′ : N→ N
k 0 = N
k (S n) = n

Reduction of Mixed Pattern/Copattern Matching to Operators

Unfolding of the Pattern Matchings

I (f + g) can be defined by primitive corecursion.

I k ′ can be defined by primitive recursion.

Anton Setzer Unfolding Nested (Co)Patterns 26/ 31

f : N→ Stream
f n = (f + g) (f n)

(f + g) : (f(N) + g(N))→ Stream

(f + g) =
coPStream,(f(N)+g(N) (λx .caser (x) of

(f n) −→ n
(g n) −→ n)

(λx .caser (x) of
(f n) −→ g n

(g n) −→ f (k ′ n))

k ′ : N→ N
k ′ = PN,N n (λn, ih.n)

Reduction of Mixed Pattern/Copattern Matching to Operators

Reduction to Primitive (Co)Recursion

I The case distinction can be trivially replaced by the case distinction
operator.

Anton Setzer Unfolding Nested (Co)Patterns 28/ 31

f : N→ Stream
f n = (f + g) (f n)

(f + g) : (f(N) + g(N))→ Stream

(f + g) =
coPStream,f(N)+g(N) (casef(N)+g(N) id id)

(casef(N)+g(N) g (f ◦ k ′))

k ′ : N→ N
k ′ = PN,N n (λn, ih.n)

Conclusion

Codata types and Decidable Equality

Pattern and Copattern Matching

Reduction of Mixed Pattern/Copattern Matching to Operators

Conclusion

Anton Setzer Unfolding Nested (Co)Patterns 30/ 31

Conclusion

Conclusion

I Codata types make the assumption

∀s : Stream.∃n, s ′.s = cons n s ′

which cannot be combined with a decidable equality.
I One can reduce certain cases of recursive nested (co)pattern

matching to primitive (co)recursion.
I Systematic treatment needs still to be done.
I Cases which can be reduced should be those to be accepted by a

termination checker.
I If the reduction succeeds we get a normalising version (by Mendler and

Geuvers).
I Therefore a termination checked version of the calculus is normalising.

Anton Setzer Unfolding Nested (Co)Patterns 31/ 31

	Codata types and Decidable Equality
	Pattern and Copattern Matching
	Reduction of Mixed Pattern/Copattern Matching to Operators
	Conclusion

