A Framework for Extraction of Programs from Proofs Using Postulated Axioms

Anton Setzer Swansea University, Swansea UK (Joint work with Chi Ming Chuang)

16 September 2011

◆ロト ◆聞ト ◆居ト ◆居ト

- 1. Real Number Computations in Agda
- 2. Theory of Program Extraction
- 3. Extensions
- 4. Applications
- 5. More Formal Proof

Conclusion

1. Real Number Computations in Agda

- 2. Theory of Program Extraction
- 3. Extensions
- 4. Applications
- 5. More Formal Proof

Conclusion

Question by Ulrich Berger

- Can you extract programs from proofs in Agda?
- Obvious because of Axiom of Choice?
 From

$$p:(x:A)
ightarrow \exists [y:B] \varphi(y)$$

we get of course

$$f = \lambda x.\pi_0(f x) : A \to B$$

$$\rho = \lambda x.\pi_1(f x) : (x : A) \to \varphi(f x)$$

However what happens in the presence of axioms?

イロト 不得 トイヨト イヨト 二日

Abstract Real Numbers

- Situation different in presence of axioms.
- Approach of Ulrich Berger transferred to Agda: Axiomatize the real numbers abstractly. E.g.

postulate	\mathbb{R}	:	Set
postulate	_ == _	:	$\mathbb{R} \to \mathbb{R} \to \operatorname{Set}$
postulate	_+_	:	$\mathbb{R} \to \mathbb{R} \to \mathbb{R}$
postulate	$\operatorname{commutative}$:	$(r \ s : \mathbb{R}) \rightarrow r + s == s + r$

ヘロト 人間ト ヘヨト ヘヨト

1. Real Number Computations in Agda

Computational Numbers

Formulate \mathbb{N} , \mathbb{Z} , \mathbb{Q} as usual

data \mathbb{N} : Set where $zero : \mathbb{N}$ suc : $\mathbb{N} \to \mathbb{N}$ $+ : \mathbb{N} \to \mathbb{N} \to \mathbb{N}$ n + zero = n $n + \operatorname{suc} m = \operatorname{suc} (n + m)$ $* : \mathbb{N} \to \mathbb{N} \to \mathbb{N}$. . . data \mathbb{Z} : Set where . . .

data $\mathbb Q:$ Set where

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

1. Real Number Computations in Agda

Embedding of \mathbb{N} , \mathbb{Z} , \mathbb{Q} into \mathbb{R}

► We obtain a link between computational types N, Z, Q and the postulated type R.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Cauchy Reals

data CauchyReal $(r : \mathbb{R})$: Set where cauchyReal : $(f : \mathbb{N} \to \mathbb{Q})$ $\to (p : (n : \mathbb{N}) \to |\mathbb{Q}2\mathbb{R} (f n) -_{\mathbb{R}} r|_{\mathbb{R}} <_{\mathbb{R}} 2_{\mathbb{R}}^{-n})$ \to CauchyReal r

Program Extraction for Cauchy Reals

► Show CauchyReal closed under +, *, other operations.

 $\begin{array}{l} \operatorname{lemma}:(r\ s:\mathbb{R})\to\operatorname{CauchyReal}\ r\to\operatorname{CauchyReal}\ s\\\to\operatorname{CauchyReal}\ (r*s) \end{array}$

• Using this show p: CauchyReal r for some r.

• E.g. for
$$r = \mathbb{Q}2\mathbb{R} q$$
.

Define

 $f:(r:\mathbb{R}) \to (p:\operatorname{CauchyReal} r) \to \mathbb{N} \to \mathbb{Q}$

which extracts the Cauchy sequence in p.

▶ If we have $r : \mathbb{R}$; p : CauchyReal r; $n : \mathbb{N}$ then

 $f r p n : \mathbb{Q}$

is an approximation of r up to 2^{-n} . Can be computed in Agda.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Signed Digit Representations

- We can consider as well the real numbers with signed digit representations.
- \blacktriangleright Signed digit representable real numbers in [-1,1] are of the form

$$0.111(-1)0(-1)01(-1)\cdots$$

In general

$$0.d_0d_1d_2d_3\cdots$$

where $d_i \in \{-1, 0, 1\}$.

Signed digit needed because even the first digit of an unsigned digit representation can in general not be determined.

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 ● のへの

1. Real Number Computations in Agda

Coalgebraic Definition of Signed Digit Real Numbers (SD)

data Digit : Set where $-1_d \ 0_d \ 1_d$: Digit

<ロト <部ト < 注ト < 注ト = 注

Proof of " $\mathbf{1}_{\mathbb{R}}=0.1_{\mathrm{d}}\mathbf{1}_{\mathrm{d}}\mathbf{1}_{\mathrm{d}}\mathbf{1}_{\mathrm{d}}\cdots$ "

$$\begin{array}{lll} 1_{\mathrm{SD}} : (r : \mathbb{R}) \to (r ==_{\mathbb{R}} 1_{\mathbb{R}}) \to \mathrm{SD} \ r \\ \in [-1, 1] & (1_{\mathrm{SD}} \ r \ q) &= & \cdots \\ \mathrm{digit} & (1_{\mathrm{SD}} \ r \ q) &= & 1_{\mathrm{d}} \\ \mathrm{tail} & (1_{\mathrm{SD}} \ r \ q) &= & 1_{\mathrm{SD}} \left(2_{\mathbb{R}} \ast_{\mathbb{R}} r -_{\mathbb{R}} 1_{\mathbb{R}} \right) \cdots \end{array}$$

Proofs of $\cdots\,$ can be

- ► inferred purely logically from axioms about R (using automated theorem proving?)
- added as postulated axioms.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

1. Real Number Computations in Agda

Proof of " $0_{\mathbb{R}} = 0.1_{\mathrm{d}}(-1_{\mathrm{d}})(-1_{\mathrm{d}})(-1_{\mathrm{d}})\cdots$ "

13/41

・ロト・日本・山下・山下・山下・山下・山下

Extraction of Programs

From

p: SD r

one can extract the first n digits of r.

- ▶ Show e.g. closure of SD under $\mathbb{Q} \cap [-1,1]$, $+ \cap [-1,1]$, *, $\frac{\pi}{10} \cdots$
- ► Then we extract the first *n* digits of any real number formed using these operations.
- Has been done (excluding $\frac{\pi}{10}$) in Agda.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

1. Real Number Computations in Agda

First 1000 Digits of $\frac{29}{37} * \frac{29}{3998}$

GN Command Prompt

C:\find digits>Appendix1.exe

8.000000<-1>010010<-1>00<-1>0<-1>01001000<-1><-1>0100<-1>0100<-1>0000010<-1>000<-1>000<-1> 100007-177-170107-17007-177-170107-17000101107-170001010100007-1707-170007-1700 RR(=1)R(=1)(=1)R1R(=1)RRR(=1)RRR1R(=1)RRR1RR(=1)RR(=1)RR(=1)RRR(=1)RRR1RR(=1)RRR1RR(=1)(=1)(=1) 581 981 91 91 98 4-1 599 94 -1 594 -1 591 991 989 991 981 91 991 94 -1 5991 984 -1 599 944 -1 591 9891 1 9 <-1>00<-1>00<-1>00<-1>00<-1>00110<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1> 110<-1>00<-1>010002<-1>00010010010010101010002<-1>02<-1>000<-1>010002<-1>010001002<-1>000<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>0002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1>002<-1 C=1 20C=1 200100100101010C=1 200001010100100C=1 2000C=1 2000C=1 20C=1 20000101000010C=1 2 300100004-1>004-1>001104-1>00100010010004-1>01004-1>0000104-1>0000104-1>00001010100001010 <-1>0100100(-1)0010100010100(-1)<-1>0100(-1)0(-1)00(-1)0010100100100(-1)01000(-1)00(-1)00(-1)00(-1)00 0100(-1)00(-1)00010(-1)0100(-1)00(-1)000(-1)000(-1)000(-1)00(-1)000(-1)00(-1)00(-1)00(-1)00(-1)

C:\find digits> _

Э

_ 🗆 X

・ロト ・ 一 ト ・ ヨ ト

1. Real Number Computations in Agda

2. Theory of Program Extraction

- 3. Extensions
- 4. Applications
- 5. More Formal Proof

Conclusion

2. Theory of Program Extraction

Problem with Program Extraction

- Because of postulates it is not guaranteed that each program reduces to canonical head normal form.
- ► Example 1

postulate ax : $(x : A) \rightarrow B[x] \lor C[x]$

- a: A $a = \cdots$ $f: B[a] \lor C[a] \to \mathbb{B}$ f (inl x) = tt
- $f(\operatorname{inn} x) = \operatorname{tt} f(\operatorname{inn} x) = \operatorname{ff}$

f(ax a) in Normal form, doesn't start with a constructor

► Axioms with computational content should not be allowed.

Example 2

postulate ax : $A \land B$ $f : A \rightarrow B \rightarrow \mathbb{B}$ $f a b = \cdots$ $g : A \land B \rightarrow \mathbb{B}$ g (p a b) = f a b

g ax in normal form doesn't start with a constructor

- Problem actually occurred.
- Axioms with result type algebraic data types are not allowed.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

2. Theory of Program Extraction

Example 3

$$r0 : \mathbb{R}$$
$$r0 = 1_{\mathbb{R}}$$
$$r1 : \mathbb{R}$$
$$r1 = 1_{\mathbb{R}} +_{\mathbb{R}} 0_{\mathbb{R}}$$

postulate ax : r0 == r1

୬ < ୍ 19/41

▲日 → ▲圖 → ▲ 画 → ▲ 画 → 二 画

postulate ax : r0 == r1

transfer :
$$(r \ s : \mathbb{R}) \to r == s \to SD \ r \to SD \ s$$

transfer $r \ r$ refl $p = p$

$$f: (r: \mathbb{R}) \to \mathrm{SD} \ r \to \mathrm{Digit}$$

 $f \ r \ a = \cdots$

$$p: SD r_0$$
$$p = \cdots$$

 $\begin{array}{l} q: \mathrm{SD} \ r_1 \\ q = \mathrm{transfer} \ r_0 \ r_1 \ \mathrm{ax} \end{array}$

$$q'$$
: Digit
 $q' = f r_1 q$

NF of q' doesn't start with a constructor

Problem actually occurred.

Main Restriction

- If A is a postulated constant then either
 - $A: (x_1:B_1) \rightarrow \cdots \rightarrow (x_n:B_n) \rightarrow \text{Set or}$
 - $A: (x_1:B_1) \to \cdots \to (x_n:B_n) \to A' t_1 \cdots t_n$ where A' is a postulated constant.
- ► Essentially: postulated constants have result type a postulated type.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Theorem

- Assume some healthy conditions (e.g. strong normalisation, confluence, elements starting with different constructors are different).
- Assume no record types or indexed inductive definitions are used (probably can be removed).
- ► Assume result type of axioms is always a postulated type.
- Then every closed term in normal form which is an element of an algebraic data type is in canonical normal form (starts with a constructor).

イロト 不得 トイヨト イヨト 二日

Proof Assuming Simple Pattern Matching

- ► Assume *t* : *A*, *t* closed in normal form, *A* algebraic data type.
- Show by induction on length(t) that t starts with a constructor:
 - We have $t = f t_1 \cdots t_n$, f function symbol or constructor.
 - ► *f* cannot be postulated or directly defined.
 - ▶ If *f* is defined by pattern matching on say *t_i*.
 - ▶ By IH *t_i* starts with a constructor.
 - t has a reduction, wasn't in NF
 - So f is a constructor.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

2. Theory of Program Extraction

Reduction of Nested Pattern Matching to Simple Pattern Matching

Difficult proof in the thesis of Chi Ming Chuang.

ヘロト 人間ト ヘヨト ヘヨト

- 1. Real Number Computations in Agda
- 2. Theory of Program Extraction
- 3. Extensions
- 4. Applications
- 5. More Formal Proof

Conclusion

25/41

3. Extensions

Extensions

- \blacktriangleright Negated axioms such as $\neg(0_{\mathbb{R}} == 1_{\mathbb{R}})$ are currently forbidden
 - \blacktriangleright Have form $0_{\mathbb{R}} == 1_{\mathbb{R}} \to \bot$ where \bot is algebraic data type.
 - Causes problems since they are needed (e.g. when using the reciprocal function).
 - Without negated axioms the theory is trivially consistent (interpret all postulate sets as one element sets).
 - With negated axioms it could be inconsistent.
 - ▶ E.g. take axioms which have consequences $0_{\mathbb{R}} == 1_{\mathbb{R}}$ and $\neg (0_{\mathbb{R}} == 1_{\mathbb{R}}).)$
 - In case of an inconsistency we would get a proof $p : \bot$ and therefore

efq
$$p:\mathbb{N}$$

is noncanonical of $\ensuremath{\mathbb{N}}$ in NF.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 - つへつ

Theorem (Negated Axioms)

- Assume conditions as before.
- Assume result type of axioms is always a postulated type or a negated postulated type.
- Assume the Agda code doesn't prove \perp .
- Then every closed term which is an element of an algebraic data type is in canonical normal form (starts with a constructor).

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

More Extensions

- We could separate our algebraic data types into those for which we want to use their computational content and those for which we don't use their content.
- Assume we never derive using case distinction on a non-computational data type an element of a computational data type.
- Then axioms with result type non-computational data types could be allowed, e.g.

tertiumNonDatur : $A \lor_{non-computational} \neg A$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 - つへつ

Addition of Coalgebraic Types

- Original proof didn't include coalgbraic types.
- With coalgebraic types additional complication:
 t can be of the form

elim t_1

for an eliminator elim of a coalgebraic type.

- Extend the theorem by proving simultaneously:
 - ► If A algebraic, t closed term in NF, t : A, then t starts with a constructor.
 - ► If A coalgebriac, t closed term, t : A, and elim is an eliminator of A, then elim t has a reduction.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

- 1. Real Number Computations in Agda
- 2. Theory of Program Extraction
- 3. Extensions
- 4. Applications
- 5. More Formal Proof

Conclusion

30/41

Easy Proofs

- Axiomatized theory allows to easily prove big theorems by postulating them, as long as we are only interested in the computational content.
- In an experiment we introduced axioms such as

$$\mathrm{ax}:(r:\mathbb{R})
ightarrow (q:\mathbb{Q})
ightarrow |\mathbb{Q}2\mathbb{R}|q-_{\mathbb{R}}|r|<_{\mathbb{R}}2_{\mathbb{R}}^{-2}
ightarrow q\leq_{\mathbb{Q}}1/4_{\mathbb{Q}}
ightarrow r\leq_{\mathbb{R}}1/2_{\mathbb{R}}$$

In fact the more is postulated the faster the program (and the easier one can see what is computed).

イロト 不得 トイヨト イヨト 二日

Separation of Logic and Computation

- Postulates allow us to have a two-layered theory with
 - computational part (using non-postulated types)
 - ▶ an a logic part (using postulated types).

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Useful for Programming with Dependent Types

- > This could be very useful for programming with dependent types.
 - Postuluate axioms with no computational content.
 - Possibly prove them using automated theorem provers (approach by Bove, Dybjer et. al.).
 - Concentrate in programming on computational part.

Experiments carried out

- In about 6 hours I developed a framework using Cauchy Reals, Signed Digit Reals, conversion into streams and lists form scratch.
 - ► Allowed the compution of the first 10 digits of rational numbers in [-1,1].
- ► Framework is easy to use since most proofs are replaced by postulates.
- Chi Ming Chuang showed closure of signed digit reals under average and multiplication using more efficient direct calculations and full proofs of most theorems needed.
- ► Was able to calculated fast the first 1000 digits of rational numbers.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Idea: Type Theory with Partial and Total Objects

One could postulate

- types of partial elements,
- constants operating on those types,
- equations for those constants .
- Then one can
 - define predicates on those partial elements corresonding to the total elements,
 - and show that certain partial elements are total or have other properties.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

4. Applications

Example

: Set postulate $\mathbb{N}_{\text{partial}}$ postulate $_{-} = = _{-}$: $\mathbb{N}_{\text{partial}} \to \mathbb{N}_{\text{partial}} \to \text{Set}$ postulate zero : N_{partial} succ : $\mathbb{N}_{\text{partial}} \to \mathbb{N}_{\text{partial}}$ postulate postulate f : $\mathbb{N}_{\text{partial}} \to \mathbb{N}_{\text{partial}}$ postulate lemf0 : f zero $== \cdots$ postulate lemfs : $(n : \mathbb{N}_{\text{partial}}) \to f(\text{succ } n) == \cdots$ data $\mathbb{N}: \mathbb{N}_{\text{partial}} \to \text{Set where}$ $zerop : \mathbb{N} zero$ succp : $(n : \mathbb{N}_{\text{partial}}) \to \mathbb{N} \ n \to \mathbb{N} \ (\text{succ} \ n)$ eqp: $(n \ m : \mathbb{N}_{\text{partial}}) \to \mathbb{N} \ n \to n == m \to \mathbb{N} \ m$ lemma : $(n : \mathbb{N}_{\text{partial}}) \to \mathbb{N} \ n \to \mathbb{N} \ (f \ n)$

lemma $n p = \cdots$

◆□ > ◆母 > ◆臣 > ◆臣 > 三臣 - のへで

Idea: Type Theory with Partial and Total Objects

- ► One could develop a system with a "total" and "partial" mode.
 - In total mode equations for partial objects are postulated axioms.
 - ► In partial mode no total types can be used.
 - In partial mode, equations for partial objects become definitional equations.
 - E.g. f zero can be evaluated in "partial mode".

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 - つへつ

- 1. Real Number Computations in Agda
- 2. Theory of Program Extraction
- 3. Extensions
- 4. Applications
- 5. More Formal Proof

Conclusion

38/41

Framework for Agda

- Proofs rely on some understanding of the behaviour Agda.
- Not fully mathematical proofs.
- Instead develop
 - a logical framework with reductions,
 - ▶ an extension of this framework by constants and reduction rules,
 - an abstract notion of
 - postulated types and constants,
 - algebraic and coalgebraic types
 - functions defined by nested pattern matching (including elimination patterns)
 - and show that the theorem holds in this framework.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

- 1. Real Number Computations in Agda
- 2. Theory of Program Extraction
- 3. Extensions
- 4. Applications
- 5. More Formal Proof

Conclusion

40/41

Conclusion

- If result types of postulated constants are postulated types, then closed elements of algebraic types evalulate to constructor normal form.
- Reduces the need burden of proofs while programming (by postulating axioms or proving them using ATP).
- Axiomatic treatment of \mathbb{R} .
- Program extracton for proofs with real number computations works very well.
- Applications to programming with dependent types in general.
- Possible solution for type theory with partiality and totality.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ