
A Framework for Extraction of Programs from Proofs
Using Postulated Axioms

Anton Setzer
Swansea University, Swansea UK

(Joint work with Chi Ming Chuang)

16 September 2011

1/ 41

1. Real Number Computations in Agda

2. Theory of Program Extraction

3. Extensions

4. Applications

5. More Formal Proof

Conclusion

2/ 41

1. Real Number Computations in Agda

1. Real Number Computations in Agda

2. Theory of Program Extraction

3. Extensions

4. Applications

5. More Formal Proof

Conclusion

3/ 41

1. Real Number Computations in Agda

Question by Ulrich Berger

I Can you extract programs from proofs in Agda?

I Obvious because of Axiom of Choice?
From

p : (x : A)→ ∃ [y : B] ϕ(y)

we get of course

f = λx .π0(f x) : A→ B
p = λx .π1(f x) : (x : A)→ ϕ(f x)

I However what happens in the presence of axioms?

4/ 41

1. Real Number Computations in Agda

Abstract Real Numbers

I Situation different in presence of axioms.

I Approach of Ulrich Berger transferred to Agda:
Axiomatize the real numbers abstractly. E.g.

postulate R : Set
postulate == : R→ R→ Set
postulate + : R→ R→ R
postulate commutative : (r s : R)→ r + s == s + r
· · ·

5/ 41

1. Real Number Computations in Agda

Computational Numbers

I Formulate N, Z, Q as usual

data N : Set where
zero : N
suc : N→ N

+ : N→ N→ N
n + zero = n
n + suc m = suc (n + m)

∗ : N→ N→ N
· · ·

data Z : Set where
· · ·

data Q : Set where
· · · 6/ 41

1. Real Number Computations in Agda

Embedding of N, Z, Q into R

N2R : N→ R
N2R zero = 0R
N2R (suc n) = N2R n +R 1R

Z2R : Z→ R
· · ·

Q2R : Q→ R
· · ·

I We obtain a link between computational types N,Z,Q and the
postulated type R.

7/ 41

1. Real Number Computations in Agda

Cauchy Reals

data CauchyReal (r : R) : Set where
cauchyReal : (f : N→ Q)

→ (p : (n : N)→ |Q2R (f n)−R r |R <R 2−nR)
→ CauchyReal r

8/ 41

1. Real Number Computations in Agda

Program Extraction for Cauchy Reals

I Show CauchyReal closed under +, ∗, other operations.

lemma : (r s : R)→ CauchyReal r → CauchyReal s
→ CauchyReal (r ∗ s)

I Using this show p : CauchyReal r for some r .
I E.g. for r = Q2R q.

I Define
f : (r : R)→ (p : CauchyReal r)→ N→ Q

which extracts the Cauchy sequence in p.

I If we have r : R; p : CauchyReal r ; n : N then

f r p n : Q

is an approximation of r up to 2−n. Can be computed in Agda.

9/ 41

1. Real Number Computations in Agda

Signed Digit Representations

I We can consider as well the real numbers with signed digit
representations.

I Signed digit representable real numbers in [−1, 1] are of the form

0.111(−1)0(−1)01(−1) · · ·

In general
0.d0d1d2d3 · · ·

where di ∈ {−1, 0, 1}.
I Signed digit needed because even the first digit of an unsigned digit

representation can in general not be determined.

10/ 41

1. Real Number Computations in Agda

Coalgebraic Definition of Signed Digit Real Numbers (SD)

data Digit : Set where
−1d 0d 1d : Digit

coalg SD : R→ Set where
∈[−1, 1] : {r : R} → SD r → r ∈R [−1, 1]
digit : {r : R} → SD r → Digit
tail : {r : R} → (p : SD r) → SD (2R ∗R r −R (digit p))

11/ 41

1. Real Number Computations in Agda

Proof of “1R = 0.1d1d1d1d · · · ”

1SD : (r : R)→ (r ==R 1R)→ SD r
∈[−1, 1] (1SD r q) = · · ·
digit (1SD r q) = 1d
tail (1SD r q) = 1SD (2R ∗R r −R 1R) · · ·

Proofs of · · · can be

I inferred purely logically from axioms about R (using automated
theorem proving?)

I added as postulated axioms.

12/ 41

1. Real Number Computations in Agda

Proof of “0R = 0.1d(−1d)(−1d)(−1d) · · · ”

0SD : (r : R)→ (r ==R 0R)→ SD r
∈[−1, 1] (0SD r q) = · · ·
digit (1SD r q) = 1d
∈[−1, 1] (tail (0SD r q)) = · · ·
digit (tail (0SD r q)) = −1d
tail (tail (0SD r q)) = tail (0SD (2R ∗R r −R 0R))

13/ 41

1. Real Number Computations in Agda

Extraction of Programs

I From
p : SD r

one can extract the first n digits of r .

I Show e.g. closure of SD under Q ∩ [−1, 1], + ∩ [−1, 1], ∗, π
10 · · ·

I Then we extract the first n digits of any real number formed using
these operations.

I Has been done (excluding π
10) in Agda.

14/ 41

1. Real Number Computations in Agda

First 1000 Digits of 29
37 ∗

29
3998

15/ 41

2. Theory of Program Extraction

1. Real Number Computations in Agda

2. Theory of Program Extraction

3. Extensions

4. Applications

5. More Formal Proof

Conclusion

16/ 41

2. Theory of Program Extraction

Problem with Program Extraction

I Because of postulates it is not guaranteed that each program reduces
to canonical head normal form.

I Example 1

postulate ax : (x : A)→ B[x] ∨ C [x]

a : A
a = · · ·

f : B[a] ∨ C [a]→ B
f (inl x) = tt
f (inr x) = ff

f (ax a) in Normal form, doesn’t start with a constructor

I Axioms with computational content should not be allowed.

17/ 41

2. Theory of Program Extraction

Example 2

postulate ax : A ∧ B

f : A→ B → B
f a b = · · ·

g : A ∧ B → B
g (p a b) = f a b

g ax in normal form doesn’t start with a constructor

I Problem actually occurred.

I Axioms with result type algebraic data types are not allowed.

18/ 41

2. Theory of Program Extraction

Example 3

r0 : R
r0 = 1R

r1 : R
r1 = 1R +R 0R

postulate ax : r0 == r1

19/ 41

postulate ax : r0 == r1

transfer : (r s : R)→ r == s → SD r → SD s
transfer r r refl p = p

f : (r : R)→ SD r → Digit
f r a = · · ·

p : SD r0
p = · · ·

q : SD r1
q = transfer r0 r1 ax

q′ : Digit
q′ = f r1 q

NF of q′ doesn’t start with a constructor

Problem actually occurred.

2. Theory of Program Extraction

Main Restriction

I If A is a postulated constant then either
I A : (x1 : B1)→ · · · → (xn : Bn)→ Set or
I A : (x1 : B1)→ · · · → (xn : Bn)→ A′ t1 · · · tn where A′ is a postulated

constant.

I Essentially: postulated constants have result type a postulated type.

21/ 41

2. Theory of Program Extraction

Theorem

I Assume some healthy conditions (e.g. strong normalisation,
confluence, elements starting with different constructors are different).

I Assume no record types or indexed inductive definitions are used
(probably can be removed).

I Assume result type of axioms is always a postulated type.

I Then every closed term in normal form which is an element of an
algebraic data type is in canonical normal form (starts with a
constructor).

22/ 41

2. Theory of Program Extraction

Proof Assuming Simple Pattern Matching

I Assume t : A, t closed in normal form, A algebraic data type.
I Show by induction on length(t) that t starts with a constructor:

I We have t = f t1 · · · tn, f function symbol or constructor.
I f cannot be postulated or directly defined.
I If f is defined by pattern matching on say ti .

I By IH ti starts with a constructor.
I t has a reduction, wasn’t in NF

I So f is a constructor.

23/ 41

2. Theory of Program Extraction

Reduction of Nested Pattern Matching to Simple Pattern
Matching

Difficult proof in the thesis of Chi Ming Chuang.

24/ 41

3. Extensions

1. Real Number Computations in Agda

2. Theory of Program Extraction

3. Extensions

4. Applications

5. More Formal Proof

Conclusion

25/ 41

3. Extensions

Extensions

I Negated axioms such as ¬(0R == 1R) are currently forbidden
I Have form 0R == 1R → ⊥ where ⊥ is algebraic data type.
I Causes problems since they are needed (e.g. when using the reciprocal

function).
I Without negated axioms the theory is trivially consistent (interpret all

postulate sets as one element sets).
I With negated axioms it could be inconsistent.

I E.g. take axioms which have consequences 0R == 1R and
¬(0R == 1R).)

I In case of an inconsistency we would get a proof p : ⊥ and therefore

efq p : N

is noncanonical of N in NF.

26/ 41

3. Extensions

Theorem (Negated Axioms)

I Assume conditions as before.

I Assume result type of axioms is always a postulated type or a negated
postulated type.

I Assume the Agda code doesn’t prove ⊥.

I Then every closed term which is an element of an algebraic data type
is in canonical normal form (starts with a constructor).

27/ 41

3. Extensions

More Extensions

I We could separate our algebraic data types into those for which we
want to use their computational content and those for which we don’t
use their content.

I Assume we never derive using case distinction on a non-computational
data type an element of a computational data type.

I Then axioms with result type non-computational data types could be
allowed, e.g.

tertiumNonDatur : A ∨non−computational ¬A

28/ 41

3. Extensions

Addition of Coalgebraic Types

I Original proof didn’t include coalgbraic types.

I With coalgebraic types additional complication:
t can be of the form

elim t1

for an eliminator elim of a coalgebraic type.
I Extend the theorem by proving simultaneously:

I If A algebraic, t closed term in NF, t : A, then t starts with a
constructor.

I If A coalgebriac, t closed term, t : A, and elim is an eliminator of A,
then elim t has a reduction.

29/ 41

4. Applications

1. Real Number Computations in Agda

2. Theory of Program Extraction

3. Extensions

4. Applications

5. More Formal Proof

Conclusion

30/ 41

4. Applications

Easy Proofs

I Axiomatized theory allows to easily prove big theorems by postulating
them, as long as we are only interested in the computational content.

I In an experiment we introduced axioms such as

ax : (r : R)→ (q : Q)→ |Q2R q −R r | <R 2−2R → q ≤Q 1/4Q
→ r ≤R 1/2R

I In fact the more is postulated the faster the program (and the easier
one can see what is computed).

31/ 41

4. Applications

Separation of Logic and Computation

I Postulates allow us to have a two-layered theory with
I computational part (using non-postulated types)
I an a logic part (using postulated types).

32/ 41

4. Applications

Useful for Programming with Dependent Types

I This could be very useful for programming with dependent types.
I Postuluate axioms with no computational content.
I Possibly prove them using automated theorem provers (approach by

Bove, Dybjer et. al.).
I Concentrate in programming on computational part.

33/ 41

4. Applications

Experiments carried out

I In about 6 hours I developed a framework using Cauchy Reals, Signed
Digit Reals, conversion into streams and lists form scratch.

I Allowed the compuation of the first 10 digits of rational numbers in
[−1, 1].

I Framework is easy to use since most proofs are replaced by postulates.

I Chi Ming Chuang showed closure of signed digit reals under average
and multiplication using more efficient direct calculations and full
proofs of most theorems needed.

I Was able to calculated fast the first 1000 digits of rational numbers.

34/ 41

4. Applications

Idea: Type Theory with Partial and Total Objects

I One could postulate
I types of partial elements,
I constants operating on those types,
I equations for those constants .

I Then one can
I define predicates on those partial elements corresonding to the total

elements,
I and show that certain partial elements are total or have other

properties.

35/ 41

4. Applications

Example

postulate Npartial : Set
postulate == : Npartial → Npartial → Set
postulate zero : Npartial

postulate succ : Npartial → Npartial

postulate f : Npartial → Npartial

postulate lemf0 : f zero == · · ·
postulate lemfs : (n : Npartial)→ f (succ n) == · · ·
data N : Npartial → Set where

zerop : N zero
succp : (n : Npartial)→ N n→ N (succ n)
eqp : (n m : Npartial)→ N n→ n == m→ N m

lemma : (n : Npartial)→ N n→ N (f n)
lemma n p = · · ·

36/ 41

4. Applications

Idea: Type Theory with Partial and Total Objects

I One could develop a system with a “total” and “partial” mode.
I In total mode equations for partial objects are postulated axioms.
I In partial mode no total types can be used.
I In partial mode, equations for partial objects become definitional

equations.
I E.g. f zero can be evaluated in “partial mode”.

37/ 41

5. More Formal Proof

1. Real Number Computations in Agda

2. Theory of Program Extraction

3. Extensions

4. Applications

5. More Formal Proof

Conclusion

38/ 41

5. More Formal Proof

Framework for Agda

I Proofs rely on some understanding of the behaviour Agda.

I Not fully mathematical proofs.
I Instead develop

I a logical framework with reductions,
I an extension of this framework by constants and reduction rules,
I an abstract notion of

I postulated types and constants,
I algebraic and coalgebraic types
I functions defined by nested pattern matching (including elimination

patterns)

I and show that the theorem holds in this framework.

39/ 41

Conclusion

1. Real Number Computations in Agda

2. Theory of Program Extraction

3. Extensions

4. Applications

5. More Formal Proof

Conclusion

40/ 41

Conclusion

Conclusion

I If result types of postulated constants are postulated types, then
closed elements of algebraic types evalulate to constructor normal
form.

I Reduces the need burden of proofs while programming (by
postulating axioms or proving them using ATP).

I Axiomatic treatment of R.

I Program extracton for proofs with real number computations works
very well.

I Applications to programming with dependent types in general.

I Possible solution for type theory with partiality and totality.

41/ 41

	1. Real Number Computations in Agda
	2. Theory of Program Extraction
	3. Extensions
	4. Applications
	5. More Formal Proof
	Conclusion

