«0O0)>» «F»r «Z» « Q>

Anton Setzer
Swansea University, Swansea UK
(Joint work with Chi Ming Chuang)

16 September 2011

it
-

1. Real Number Computations in Agda

2. Theory of Program Extraction

3. Extensions

4. Applications

5. More Formal Proof

Conclusion

2/ 41

1. Real Number Computations in Agda

2. Theory of Program Extraction

3. Extensions
4. Applications

5. More Formal Proof

Conclusion

«0>» «Fr «=>» 4 Q>

it
-

» Can you extract programs from proofs in Agda?
» Obvious because of Axiom of Choice?
From

p:(x:A)—=3y:Blely)
we get of course

f=Mm(f x): A= B
p=Mx.mi(f x): (x: A) = o(f x)

» However what happens in the presence of axioms?

«0O0» «Fr» «=)r» « » Q>

» Situation different in presence of axioms.

» Approach of Ulrich Berger transferred to Agda:
Axiomatize the real numbers abstractly. E.g.

postulate R : Set

postulate _==_ : R—> R — Set

postulate _+ _ : R>R—=R

postulate commutative : (rs:R)—>r4+s==s+r

«0O0» «Fr» «=)r» «

it
it
N)
¥l
i)

» Formulate N, Z, Q as usual

data N : Set where

Zero N

suc N—-N
+:N—-=N—=>N
n 4+ zero = n
n + sucm

suc (n+ m)
*_:N->N-=N

data Z : Set where

data Q : Set where e -
e T

it
-

N2R: N —+ R
N2R zero Or
N2R (sucn) = N2Rn+glg

Z2R :Z — R

Q2R:Q - R

» We obtain a link between computational types N, Z,Q and the
postulated type R.

«O0)>» «F» «=)» 4«

» T 9ac

data CauchyReal (r : R) : Set where
cauchyReal : (f : N — Q)

= (p:(n:N) = |Q2R (f n) —r rlr <r 23")
— CauchyReal r

«O0)>» «F» «=)» 4« Q>

it
-

1. Real Number Computations in Agda

Program Extraction for Cauchy Reals

» Show CauchyReal closed under +, *, other operations.

lemma : (r s : R) — CauchyReal r — CauchyReal s
— CauchyReal (r * s)

» Using this show p : CauchyReal r for some r.
» E.g. for r = Q2R q.

> Define
f:(r:R)— (p:CauchyReal r) = N — Q

which extracts the Cauchy sequence in p.
» If we have r : R; p : CauchyReal r; n: N then

frpn:Q

is an approximation of r up to 27". Can be computed in Agda.

9/ 41

1. Real Number Computations in Agda

Signed Digit Representations

» We can consider as well the real numbers with signed digit
representations.

» Signed digit representable real numbers in [—1,1] are of the form
0.111(-1)0(-1)01(-1)---

In general
0.dod1drds5 - -
where d; € {-1,0,1}.

» Signed digit needed because even the first digit of an unsigned digit
representation can in general not be determined.

10/ 41

data Digit : Set where
—14 04 14 : Digit

coalg SD : R — Set where

e[-1,1] {r:R} — SDr — regp[-1,1]
digit {r:R} — SDr
tail

— Digit
{r:R} — (p:SDr) — SD (2g*g r —g (digit p))

«0O0» «Fr» «=)r» « » Q>

1SD (r R)—}(r——R 1R)—)SDI’
€[-1,1] (lsprq) =

digit (Isprq) = 1d
tail (]-SD r q) = 1gp (ZR ¥R —R lR) ce
Proofs of --- can be

» inferred purely logically from axioms about R (using automated
theorem proving?)

» added as postulated axioms.

«0O0» «Fr» «=)r» «

it
v

OSD:(r:]R)—>(r==R0]R)—>SDr

€[-1,1] (Ospraq) =

digit (]-SD r q) = 14

€[-1,1] (tail (Osprgq)) = ---

digit (tail (OSD r q)) = —14

tail (tail (Ogp r q)) = tail (Osp (2gr *r r —gr OR))

«O0>» «Fr «=» « =) = Q>

» From
p:SDr
one can extract the first n digits of r.
» Show e.g. closure of SD under QN [~1,1], +N[-1,1], %, {5
» Then we extract the first n digits of any real number formed using
these operations.

» Has been done (excluding {5) in Agda.

«0O0» «Fr» «=)r» «

it
it
N)
¥l
i)

1. Real Number Computations in Agda

First 1000 Digits of 52 * 5305

ind digits dAppendisxl .
.BB88Ea{—1 8188181 >8I
11086808(-1)001108¢ - 1;883\ 1*8@1918(1)8188(=1)
B18¢-1>88{-1><{-1>818(-1>00818118<- 1)“93181553888-\
b 1ﬁ\ JHBBBC I)Eﬂﬂlﬂc 17098188 1881(~1 Y8B(~1)AAAAC
BB 88 -1)BBaE -1 301 BoBE1106
i L ‘l)ﬂﬂ(‘!)ilﬂ‘lli}‘ l)ﬂi-](1 ’l:‘l(‘l(—‘l)m)'—l 1(—1 Y88¢-1 81 000P00B1A<—1 YBBC-1 >
BA18¢ 1\39888\ L\f— »081108<-1 200108001001 >81680{-1 >0010<-1>0010{1>PAR18008{—1 08
a (=1) BGBLaElElEl@HlaIBlEBB(1)B' »808(-1>8108088118¢-12>88¢
YB(=-1)B00010180881

AAC—1)BA1BAC—1)BRRRC—1>881A18<-12818(-1)
<-1501 081081 >B01 010881 A1 A8 —15<-1 58108158
F18868<-1>8<{-1>801000A01 A1 AA1AB1ABAC—1 20188128811 8¢(-1)
1810810010601 80 -1 >800 161 81010181 618<
=~128¢-1>80881806~1>8(-1>0<-128¢~128¢-1 801001 8018(-108<~-1)>{(-1>8619118¢
L »818(-1)B0A{-1)BBBAA1 BB -1 38A{-1)

ind digitsy g

15/ 41

1. Real Number Computations in Agda

2. Theory of Program Extraction

3. Extensions
4. Applications

5. More Formal Proof

Conclusion

«0>» «Fr «=>» 4 Q>

it
-

2. Theory of Program Extraction

Problem with Program Extraction

» Because of postulates it is not guaranteed that each program reduces
to canonical head normal form.

» Example 1

postulate ax : (x : A) — B[x] V C[x]

a=-:--

f:Bla]Vv Cla] = B

f (inl x) = tt

f (inr x) = ff

f (ax a) in Normal form, doesn't start with a constructor

» Axioms with computational content should not be allowed.

17/ 41

postulate ax : AA B

f:-A—-B—B
fab=---

g:ANB—=B
g(pab)=fab

g ax in normal form doesn't start with a constructor

» Problem actually occurred.

» Axioms with result type algebraic data types are not allowed.

«O0)>» «F» «=)» 4«

> = 9DAC¢

r0: R
r0=1R
r1:R

rl = 1g +gr Og

postulate ax : rQ ==r1l

«0>» «Fr «=>» 4 = QR

it
-

postulate ax : rO0 == rl

transfer : (r s :R) = r==s5s—SDr —-SDs
transfer r rrefl p = p

f:(r:R)— SD r — Digit
fra=---

p:SD n

g:SDn
g = transfer ry r; ax

q' : Digit
qd=fngq

NF of g’ doesn't start with a constructor

Problem actually occurred.

» If Ais a postulated constant then either

» A:(x1:B1) = - — (X : By) — Set or
constant.

» A:(xy :By) = - = (xp: By) = A ty-- - t, where A" is a postulated

» Essentially: postulated constants have result type a postulated type.

«O0)>» «F» «=)» 4« Q>

it
-

2. Theory of Program Extraction

Theorem

» Assume some healthy conditions (e.g. strong normalisation,
confluence, elements starting with different constructors are different).

» Assume no record types or indexed inductive definitions are used
(probably can be removed).

» Assume result type of axioms is always a postulated type.

» Then every closed term in normal form which is an element of an
algebraic data type is in canonical normal form (starts with a
constructor).

22/ 41

2. Theory of Program Extraction

Proof Assuming Simple Pattern Matching

» Assume t: A, t closed in normal form, A algebraic data type.
» Show by induction on length(t) that t starts with a constructor:

» We have t = f t; -- - t,, f function symbol or constructor.
» f cannot be postulated or directly defined.
» If f is defined by pattern matching on say t;.

» By IH t; starts with a constructor.
» t has a reduction, wasn't in NF

» So f is a constructor.

23/ 41

Difficult proof in the thesis of Chi Ming Chuang.

«Or «Fr «=>» = = 9HAr

1. Real Number Computations in Agda

2. Theory of Program Extraction

3. Extensions
4. Applications

5. More Formal Proof

Conclusion

«0>» «Fr «=>» 4 Q>

it
v

3. Extensions

Extensions

» Negated axioms such as —(Ogr == 1g) are currently forbidden
» Have form Og == 1gp — L where L is algebraic data type.
» Causes problems since they are needed (e.g. when using the reciprocal
function).
» Without negated axioms the theory is trivially consistent (interpret all
postulate sets as one element sets).
» With negated axioms it could be inconsistent.

» E.g. take axioms which have consequences O == 1g and
~(0r == 1g).)
» In case of an inconsistency we would get a proof p : L and therefore

efqp: N

is noncanonical of N in NF.

26/ 41

3. Extensions

Theorem (Negated Axioms)

» Assume conditions as before.

v

Assume result type of axioms is always a postulated type or a negated
postulated type.

v

Assume the Agda code doesn’t prove L.

v

Then every closed term which is an element of an algebraic data type
is in canonical normal form (starts with a constructor).

27/ 41

3. Extensions

More Extensions

» We could separate our algebraic data types into those for which we
want to use their computational content and those for which we don’t
use their content.

» Assume we never derive using case distinction on a non-computational
data type an element of a computational data type.

» Then axioms with result type non-computational data types could be
allowed, e.g.

tertiumNonDatur : A Vyon—computational 7A

28/ 41

3. Extensions

Addition of Coalgebraic Types

» Original proof didn't include coalgbraic types.
» With coalgebraic types additional complication:
t can be of the form
elim ty

for an eliminator elim of a coalgebraic type.
» Extend the theorem by proving simultaneously:

» If A algebraic, t closed term in NF, t : A, then t starts with a
constructor.

» If A coalgebriac, t closed term, t : A, and elim is an eliminator of A,
then elim t has a reduction.

29/ 41

1. Real Number Computations in Agda

2. Theory of Program Extraction

3. Extensions
4. Applications

5. More Formal Proof

Conclusion

«0>» «Fr «=>» 4 Q>

it
v

4. Applications

Easy Proofs

» Axiomatized theory allows to easily prove big theorems by postulating
them, as long as we are only interested in the computational content.

» In an experiment we introduced axioms such as

ax: (r:R) = (q:Q) — |Q2R q — r| <g 25> — q <@ 1/40
—r<p 1/2R

» In fact the more is postulated the faster the program (and the easier
one can see what is computed).

31/ 41

» Postulates allow us to have a two-layered theory with

» computational part (using non-postulated types)
» an a logic part (using postulated types).

«O0)>» «F» «=)» 4« Q>

4. Applications

Useful for Programming with Dependent Types

» This could be very useful for programming with dependent types.

» Postuluate axioms with no computational content.
» Possibly prove them using automated theorem provers (approach by

Bove, Dybjer et. al.).
» Concentrate in programming on computational part.

33/ 41

4. Applications

Experiments carried out

» In about 6 hours | developed a framework using Cauchy Reals, Signed
Digit Reals, conversion into streams and lists form scratch.

» Allowed the compuation of the first 10 digits of rational numbers in
[-1,1].

» Framework is easy to use since most proofs are replaced by postulates.

» Chi Ming Chuang showed closure of signed digit reals under average
and multiplication using more efficient direct calculations and full
proofs of most theorems needed.

» Was able to calculated fast the first 1000 digits of rational numbers.

34/ 41

4. Applications

|dea: Type Theory with Partial and Total Objects

» One could postulate
» types of partial elements,
» constants operating on those types,
» equations for those constants .
» Then one can
» define predicates on those partial elements corresonding to the total

elements,
» and show that certain partial elements are total or have other

properties.

35/ 41

postulate Npargial @ Set

postulate _==_ : Npartial — Npartial — Set
postulate zero : Npartial

postulate succ : Npartial = Npartial
postulate f : Npartial — Npartial
postulate lemf0 : f zero==

postulate lemfs : (n: Npartlal) — f (succ n) =

data N : Nparial — Set where
zerop : N zero
sucep : (1 : Npartial) = N n — N (succ n)
eqp: (n m: Npartia)) > Nn—-n==m—Nm

lemma : (n : Npapgia) = N n— N (f n)
lemmanp=---

«0O0» «Fr» «=)r» «

> = 9DAC¢

4. Applications

|dea: Type Theory with Partial and Total Objects

» One could develop a system with a “total” and “partial” mode.

» In total mode equations for partial objects are postulated axioms.
» In partial mode no total types can be used.

» In partial mode, equations for partial objects become definitional
equations.

» E.g. f zero can be evaluated in “partial mode”.

37/ 41

1. Real Number Computations in Agda

2. Theory of Program Extraction

3. Extensions
4. Applications

5. More Formal Proof

Conclusion

«0>» «Fr «=>» 4 Q>

it
v

5. More Formal Proof

Framework for Agda

» Proofs rely on some understanding of the behaviour Agda.
» Not fully mathematical proofs.

» Instead develop

» a logical framework with reductions,
» an extension of this framework by constants and reduction rules,
» an abstract notion of

» postulated types and constants,

> algebraic and coalgebraic types

» functions defined by nested pattern matching (including elimination
patterns)

v

and show that the theorem holds in this framework.

39/ 41

1. Real Number Computations in Agda

2. Theory of Program Extraction

3. Extensions
4. Applications

5. More Formal Proof

Conclusion

«0>» «Fr «=>» 4 Q>

it
v

Conclusion

Conclusion

» If result types of postulated constants are postulated types, then
closed elements of algebraic types evalulate to constructor normal
form.

» Reduces the need burden of proofs while programming (by
postulating axioms or proving them using ATP).

» Axiomatic treatment of R.

» Program extracton for proofs with real number computations works
very well.

» Applications to programming with dependent types in general.

» Possible solution for type theory with partiality and totality.

41/ 41

	1. Real Number Computations in Agda
	2. Theory of Program Extraction
	3. Extensions
	4. Applications
	5. More Formal Proof
	Conclusion

