Anton Setzer

Swansea University, Swansea UK

Logic Colloquium 2012 (Manchester), 14 July 2012

«O0)>» «F» «=)» 4« Q>

it
-

Induction on N

Streams
Bisimilarity

Bisimilarity in Transition Systems

«O0)>» «F» «=)» 4« Q>

it
-

~ lnductonenN
Induction on N

Streams

Bisimilarity

Bisimilarity in Transition Systems

«0>» «Fr «=>» 4 > Q>

» N is initial algebra of the functor 1 + _

0+S
1+N—° . N
1+g dlg
f'/
1+ X

X
f’' can be decomposed as f' = a+ f

«0O0)>» «F»r «Z» « Q>

it
-

0+5S
14N 22 N
1+g dlg
f
1ex 2T x

Existence of g corresponds to iteration:
5(0) = g((0+5)(inl))
g(S(n)) = &((0+S)(inx(n)))
g(s"(0)) = f"(a)

(a+)((1 + g)(inl))

(a+ F)((1+ g)(inr(n)))
f(g(n))

Induction on N

Proof by Induction

» We can derive using uniqueness of g the induction principle from it:
» Assume ¢(0), ¥n € N.p(n) — ¢(S(n)). Then ¥Vn € N.(n) hold.

» The induction principle is derived by taking

X :={neNJp(n)}

in
1+N 0+5 N
14+g dl g
1+X 0+5 X

and then deriving that g as above is the identity.

Anton Setzer (Swansea) How to Reason Informally Coinductively 6/ 23

Induction on N

Proof by Induction

» Actual proofs by induction are carried out as follows:
Show Vn € N.g(n) by Induction on n:

» Base case:
Prove ¢(0).
» Induction step:
Assume n € N. Prove ¢(S(n)) by using the IH ¢(n).
» So we don't define a set X := {n € N.o(n)} and show it is closed
under 0, S, but reason using the schema of induction.

» We can use the |H in order to prove the proof obligation ¢(S(n))
in the induction step.

» Goal: Reason in a similar informal way about coalgebras, without
having to construct the “X".

Anton Setzer (Swansea) How to Reason Informally Coinductively 7/ 23

S Streams
Induction on N

Streams

Bisimilarity

Bisimilarity in Transition Systems

«0>» «Fr «=>» 4 > Q>

» Dual of 4+ is X, so we use for clarity a functor using product rather
than disjoint union:

» Stream is the final coalgebra of N x _

f
X N x X
Jlg idx g
head x tail
Stream cad x tal N X Stream
» We can decompose f as

f o=

fo x f
«0O0» «F»r « =) « P NEd
~ Anton Setzer (Swansea) How to Reason Informally Coinductively ~~ 9/23

it
-

X&,Nxx

Jlg idx g

head x tail
cad x tal N x Stream

Stream

g above is uniquely defined by

head(g(x)) = mo((head x tail)(g(x)))
= mo((id x g)(fo x Ai)(x)) = fo(x)
tail(g(x)) = mi((head x tail)(g(x)))

m((id x g)(fo x Ai)(x)) = &(filx))

«O0> «F>» «=)r» «=)» = QR

Streams

Guarded Recursion

» We had:
head (g(x)) = fo(x)
tail ~ (g(x)) = &(f(x))

» By choosing fy, fi we can define g : X — Stream s.t.

head (g(x)) = n depending on x
tail (g(x)) = g(x’) some x’ € X depending on x

So full recursion allowed after applying destructor to g.

» Guarded recursion in this form is exactly the same as the existence of
g in the categorical diagram.

Anton Setzer (Swansea) How to Reason Informally Coinductively 11/ 23

» Generalisation: We can define g such that

head (g(x)) = n depending on x
tail (g(x)) = g(x') some x’ € X depending on x
or
= s some s € Stream depending on x
«O0>» «Fr «=» « =) = Q>

» We can define

cons

(N x Stream) — Stream
head (cons(n,s)) = n
tail (cons(n,s)) s

Note: cons defined by guarded recursion
inc

head (inc(n))

N — Stream
tail

(nc(n) =

inc(n+1)

«4O0)>» «Fr «=» « = Q>

it
-

head (ind/(n)) —
tail (ind'(n)) =
head (inc(n)) —
tail ~ (inc’(n)) =

N — Stream
n

inc’(n+1)

N — Stream
n

ind’(n+1)

» We want to show that inc, inc’ are bisimilar and therefore, because
Stream is a final (and not weakly final coalgebra) equal.

«0O0» «Fr» «=)r» «

> = 9DAC¢

- Bsmilaiy
Induction on N

Streams

Bisimilarity

Bisimilarity in Transition Systems

«0>» «Fr «=>» 4 > Q>

Bisimilarity
Bisimilarity

» Bisimilarity ~ is the largest fixed point and therefore a dependent
final coalgebra:

5(5,5") —— head(s) = head(s') A o(tail(s), tail(s'))

dlg idA g

s s M~ ad(s) = head(s) A tail(s) ~ tail(s')
» As a proof principle this reads:
» Assume
Vs,s’ € Stream.p(s,s’) — head(s) = head(s’) A p(tail(s), tail(s")).
» Then Vs,s’ € Stream.p(s,s’) = s~ s’
(And then Vs, s’ € Stream.p(s,s’) — s =5).

Anton Setzer (Swansea) How to Reason Informally Coinductively 16/ 23

Bisimilarity
Generalisation
» We can generalise this to
» Assume

Vs, s’ € Stream.p(s,s’) — head(s) = head(s")A
(¢(tail(s), tail(s")) V tail(s) ~ tail(s"))

» Then Vs, s’ € Stream.p(s,s’) — s~ s'.
» The coinduction step requires us to prove, assuming ¢(s,s’)

head(s) = head(s’) A tail(s) ~ tail(s")
and we can use the co-IH
o(tail(s), tail(s')) — tail(s) ~ tail(s")

in order to prove the right conjunct.

» Similar to induction where we could use the IH as an additional
assumption in the proof obligation of the induction step.

Anton Setzer (Swansea) How to Reason Informally Coinductively 17/ 23

» We show Vn € N.inc(n) ~ inc’(n) A inc(n) ~ inc”(n).
» Formally we can argue by using

¢(s,s’) ;== 3n € Nis = inc(n) A s € {inc(n), inc"(n)}
and then showing

Vs,s' € Stream.p(s,s’) — head(s) = head(s')A

(p(tail(s), tail(s")) V tail(s) ~ tail(s"))

«0O0» «Fr» «=)r» « Q>

it
-

Bisimilarity

Informal Proof by Coinduction

» We show inc(n) ~ inc/(n) A inc(n) ~ inc”(n) by coinduction on ~:
» Coinduction step for inc(n) ~ inc’(n):
We need to prove

head(inc(n)) = head(inc’(n)) A tail(inc(n)) ~ tail(inc’(n))

and can use the co-IH for the second conjunct.

Follows by:
head (inc(n)) = n = head(ind(n))
tail (inc(n)) = inc(n+1) “~" inc’(n+1) = tail(inc/(n))

» Coinduction step for inc(n) ~ inc”(n): Similarly.

Anton Setzer (Swansea) How to Reason Informally Coinductively 19/ 23

.~ Bisimilarity in Transition Systems
Induction on N

Streams

Bisimilarity

Bisimilarity in Transition Systems

a
u]
v
a
v
a
il
v
a
it
-
it

DA

» Consider the following (unlabelled) transition system

2 a PR :
Q 7

» Bisimilarity is the final coalgebra
p~q— (Vo'.p—p'

—3¢.9g—qd Ap ~7)
A - --symmetric case- - - }

«O0)>» «F» «=)» 4« Q>

it
-

Bisimilarity in Transition Systems

Proof using the Definition of ~

2 3 N K
D 7

» We show p ~ g A p ~ r by coinduction:
» Coinduction step for p ~ g:
» Every transition of p is simulated by a transition of g:
Only transition of p is p — p.
We choose for g transition g — r,
and get by co-IH p ~ r.

» Every transition of g is simulated by a transition of p:
Only transition of g is g — r.
We choose for p transition p — p,
and get by co-IH p ~ r.

» Coinduction step for p ~ r: Similar.

Anton Setzer (Swansea) How to Reason Informally Coinductively 22/ 23

Bisimilarity in Transition Systems

Conclusion

» Principle of induction is well established and makes proofs much
easier.

» In theoretical computer science coinductive principles occur
frequently.

» Main reason: interactive programs running continuously in various
frameworks (imperative, object-oriented, process-calculi)

» Coalgebras as being defined by their eliminators rather than infinite
applications of constructors makes clear when recursive calls are
allowed.

» Proofs by coinduction in the above situation can be carried out
similarly as proofs by induction.

» Main difficulty: when are we allowed to apply co-IH?

» In the corecursion step we have a proof obligation, and can use the
co-IH to prove it.

Anton Setzer (Swansea) How to Reason Informally Coinductively 23/ 23

	Induction on N
	Streams
	Bisimilarity
	Bisimilarity in Transition Systems

