
How to Reason Informally Coinductively

Anton Setzer

Swansea University, Swansea UK

Logic Colloquium 2012 (Manchester), 14 July 2012

Anton Setzer (Swansea) How to Reason Informally Coinductively 1/ 23



Induction on N

Streams

Bisimilarity

Bisimilarity in Transition Systems

Anton Setzer (Swansea) How to Reason Informally Coinductively 2/ 23



Induction on N

Induction on N

Streams

Bisimilarity

Bisimilarity in Transition Systems

Anton Setzer (Swansea) How to Reason Informally Coinductively 3/ 23



Induction on N

N as an Initial Algebra

I N is initial algebra of the functor 1 +

1 + N
0 + S

- N

1 + X

1 + g

? f ′
- X

∃! g

?

f ′ can be decomposed as f ′ = a + f

Anton Setzer (Swansea) How to Reason Informally Coinductively 4/ 23



Induction on N

N as an Initial Algebra

1 + N
0 + S

- N

1 + X

1 + g

? a + f
- X

∃! g

?

Existence of g corresponds to iteration:

g(0) = g((0 + S)(inl)) = (a + f )((1 + g)(inl))
= a

g(S(n)) = g((0 + S)(inr(n))) = (a + f )((1 + g)(inr(n)))
= f (g(n))

g(Sn(0)) = f n(a)

Anton Setzer (Swansea) How to Reason Informally Coinductively 5/ 23



Induction on N

Proof by Induction

I We can derive using uniqueness of g the induction principle from it:
I Assume ϕ(0), ∀n ∈ N.ϕ(n)→ ϕ(S(n)). Then ∀n ∈ N.ϕ(n) hold.

I The induction principle is derived by taking

X := {n ∈ N | ϕ(n)}

in

1 + N
0 + S

- N

1 + X

1 + g

? 0 + S
- X

∃! g

?

and then deriving that g as above is the identity.

Anton Setzer (Swansea) How to Reason Informally Coinductively 6/ 23



Induction on N

Proof by Induction

I Actual proofs by induction are carried out as follows:
Show ∀n ∈ N.ϕ(n) by Induction on n:

I Base case:
Prove ϕ(0).

I Induction step:
Assume n ∈ N. Prove ϕ(S(n)) by using the IH ϕ(n).

I So we don’t define a set X := {n ∈ N.ϕ(n)} and show it is closed
under 0, S, but reason using the schema of induction.

I We can use the IH in order to prove the proof obligation ϕ(S(n))
in the induction step.

I Goal: Reason in a similar informal way about coalgebras, without
having to construct the “X”.

Anton Setzer (Swansea) How to Reason Informally Coinductively 7/ 23



Streams

Induction on N

Streams

Bisimilarity

Bisimilarity in Transition Systems

Anton Setzer (Swansea) How to Reason Informally Coinductively 8/ 23



Streams

Streams

I Dual of + is ×, so we use for clarity a functor using product rather
than disjoint union:

I Stream is the final coalgebra of N×

X
f

- N× X

Stream

∃!g

? head× tail
- N× Stream

id× g

?

I We can decompose f as

f = f0 × f1

Anton Setzer (Swansea) How to Reason Informally Coinductively 9/ 23



Streams

Streams

X
f0 × f1 - N× X

Stream

∃!g

? head× tail
- N× Stream

id× g

?

g above is uniquely defined by

head(g(x)) = π0((head× tail)(g(x)))
= π0((id× g)(f0 × f1)(x)) = f0(x)

tail(g(x)) = π1((head× tail)(g(x)))
= π1((id× g)(f0 × f1)(x)) = g(f1(x))

Anton Setzer (Swansea) How to Reason Informally Coinductively 10/ 23



Streams

Guarded Recursion

I We had:
head (g(x)) = f0(x)
tail (g(x)) = g(f1(x))

I By choosing f0, f1 we can define g : X → Stream s.t.

head (g(x)) = n depending on x
tail (g(x)) = g(x ′) some x ′ ∈ X depending on x

So full recursion allowed after applying destructor to g .

I Guarded recursion in this form is exactly the same as the existence of
g in the categorical diagram.

Anton Setzer (Swansea) How to Reason Informally Coinductively 11/ 23



Streams

Guarded Recursion

I Generalisation: We can define g such that

head (g(x)) = n depending on x
tail (g(x)) = g(x ′) some x ′ ∈ X depending on x

or
= s some s ∈ Stream depending on x

Anton Setzer (Swansea) How to Reason Informally Coinductively 12/ 23



Streams

Examples

I We can define

cons : (N× Stream)→ Stream
head (cons(n, s)) = n
tail (cons(n, s)) = s

Note: cons defined by guarded recursion

inc : N→ Stream
head (inc(n)) = n
tail (inc(n)) = inc(n + 1)

Anton Setzer (Swansea) How to Reason Informally Coinductively 13/ 23



Streams

Examples

inc′ : N→ Stream
head (inc′(n)) = n
tail (inc′(n)) = inc′′(n + 1)

inc′′ : N→ Stream
head (inc′′(n)) = n
tail (inc′′(n)) = inc′(n + 1)

I We want to show that inc, inc′ are bisimilar and therefore, because
Stream is a final (and not weakly final coalgebra) equal.

Anton Setzer (Swansea) How to Reason Informally Coinductively 14/ 23



Bisimilarity

Induction on N

Streams

Bisimilarity

Bisimilarity in Transition Systems

Anton Setzer (Swansea) How to Reason Informally Coinductively 15/ 23



Bisimilarity

Bisimilarity

I Bisimilarity ∼ is the largest fixed point and therefore a dependent
final coalgebra:

ϕ(s, s ′)
f
- head(s) = head(s ′) ∧ ϕ(tail(s), tail(s ′))

s ∼ s ′

∃!g

? elim∼- head(s) = head(s ′) ∧ tail(s) ∼ tail(s ′)

id ∧ g

?

I As a proof principle this reads:
I Assume
∀s, s ′ ∈ Stream.ϕ(s, s ′)→ head(s) = head(s ′) ∧ ϕ(tail(s), tail(s ′)).

I Then ∀s, s ′ ∈ Stream.ϕ(s, s ′)→ s ∼ s ′.
(And then ∀s, s ′ ∈ Stream.ϕ(s, s ′)→ s = s ′).

Anton Setzer (Swansea) How to Reason Informally Coinductively 16/ 23



Bisimilarity

Generalisation

I We can generalise this to
I Assume

∀s, s ′ ∈ Stream.ϕ(s, s ′)→ head(s) = head(s ′)∧
(ϕ(tail(s), tail(s ′)) ∨ tail(s) ∼ tail(s ′))

I Then ∀s, s ′ ∈ Stream.ϕ(s, s ′)→ s ∼ s ′.

I The coinduction step requires us to prove, assuming ϕ(s, s ′)

head(s) = head(s ′) ∧ tail(s) ∼ tail(s ′)

and we can use the co-IH

ϕ(tail(s), tail(s ′))→ tail(s) ∼ tail(s ′)

in order to prove the right conjunct.

I Similar to induction where we could use the IH as an additional
assumption in the proof obligation of the induction step.

Anton Setzer (Swansea) How to Reason Informally Coinductively 17/ 23



Bisimilarity

Example Proof by Coinduction

I We show ∀n ∈ N.inc(n) ∼ inc′(n) ∧ inc(n) ∼ inc′′(n).

I Formally we can argue by using

ϕ(s, s ′) := ∃n ∈ N.s = inc(n) ∧ s ′ ∈ {inc′(n), inc ′′(n)}

and then showing

∀s, s ′ ∈ Stream.ϕ(s, s ′)→ head(s) = head(s ′)∧
(ϕ(tail(s), tail(s ′)) ∨ tail(s) ∼ tail(s ′))

Anton Setzer (Swansea) How to Reason Informally Coinductively 18/ 23



Bisimilarity

Informal Proof by Coinduction

I We show inc(n) ∼ inc′(n) ∧ inc(n) ∼ inc′′(n) by coinduction on ∼:

I Coinduction step for inc(n) ∼ inc′(n):
We need to prove

head(inc(n)) = head(inc′(n)) ∧ tail(inc(n)) ∼ tail(inc′(n))

and can use the co-IH for the second conjunct.
Follows by:

head (inc(n)) = n = head(inc′(n))

tail (inc(n)) = inc(n + 1)
co−IH∼ inc′′(n + 1) = tail(inc′(n))

I Coinduction step for inc(n) ∼ inc′′(n): Similarly.

Anton Setzer (Swansea) How to Reason Informally Coinductively 19/ 23



Bisimilarity in Transition Systems

Induction on N

Streams

Bisimilarity

Bisimilarity in Transition Systems

Anton Setzer (Swansea) How to Reason Informally Coinductively 20/ 23



Bisimilarity in Transition Systems

Bisimilarity

I Consider the following (unlabelled) transition system:

x x x

p q r

I Bisimilarity is the final coalgebra

p ∼ q → (∀p′.p −→ p′

→ ∃q′.q −→ q′ ∧ p′ ∼ q′)
∧ · · · symmetric case · · · }

Anton Setzer (Swansea) How to Reason Informally Coinductively 21/ 23



Bisimilarity in Transition Systems

Proof using the Definition of ∼

x x x

p q r

I We show p ∼ q ∧ p ∼ r by coinduction:
I Coinduction step for p ∼ q:

I Every transition of p is simulated by a transition of q:
Only transition of p is p −→ p.
We choose for q transition q −→ r ,
and get by co-IH p ∼ r .

I Every transition of q is simulated by a transition of p:
Only transition of q is q −→ r .
We choose for p transition p −→ p,
and get by co-IH p ∼ r .

I Coinduction step for p ∼ r : Similar.

Anton Setzer (Swansea) How to Reason Informally Coinductively 22/ 23



Bisimilarity in Transition Systems

Conclusion

I Principle of induction is well established and makes proofs much
easier.

I In theoretical computer science coinductive principles occur
frequently.

I Main reason: interactive programs running continuously in various
frameworks (imperative, object-oriented, process-calculi)

I Coalgebras as being defined by their eliminators rather than infinite
applications of constructors makes clear when recursive calls are
allowed.

I Proofs by coinduction in the above situation can be carried out
similarly as proofs by induction.

I Main difficulty: when are we allowed to apply co-IH?
I In the corecursion step we have a proof obligation, and can use the

co-IH to prove it.

Anton Setzer (Swansea) How to Reason Informally Coinductively 23/ 23


	Induction on N
	Streams
	Bisimilarity
	Bisimilarity in Transition Systems

