How to Reason Informally Coinductively

Anton Setzer

Swansea University, Swansea UK

Logic Colloquium 2012 (Manchester), 14 July 2012

ヘロト 人間ト ヘヨト ヘヨト

Streams

Bisimilarity

Bisimilarity in Transition Systems

Streams

Bisimilarity

Bisimilarity in Transition Systems

E

ヘロト ヘヨト ヘヨト ヘヨト

ℕ as an Initial Algebra

 $\blacktriangleright~\mathbb{N}$ is initial algebra of the functor 1+ _

f' can be decomposed as f' = a + f

<ロ> <部> <部> <き> <き> <き> <き</p>

$\mathbb N$ as an Initial Algebra

Existence of g corresponds to iteration:

Proof by Induction

- We can derive using uniqueness of g the induction principle from it:
 - ▶ Assume $\varphi(0)$, $\forall n \in \mathbb{N}.\varphi(n) \rightarrow \varphi(S(n))$. Then $\forall n \in \mathbb{N}.\varphi(n)$ hold.
- The induction principle is derived by taking

$$X:=\{n\in\mathbb{N}\mid\varphi(n)\}$$

in

and then deriving that g as above is the identity.

Anton Setzer (Swansea)

Proof by Induction

- Actual proofs by induction are carried out as follows: Show ∀n ∈ N.φ(n) by Induction on n:
 - Base case:
 - Prove $\varphi(0)$.
 - Induction step:

Assume $n \in \mathbb{N}$. Prove $\varphi(\mathbf{S}(n))$ by using the IH $\varphi(n)$.

- So we don't define a set X := {n ∈ N.φ(n)} and show it is closed under 0, S, but reason using the schema of induction.
- We can use the IH in order to prove the proof obligation φ(S(n)) in the induction step.
- ► Goal: Reason in a similar informal way about coalgebras, without having to construct the "X".

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Streams

Bisimilarity

Bisimilarity in Transition Systems

E

ヘロト ヘ部ト ヘヨト ヘヨト

Streams

Streams

- Dual of + is ×, so we use for clarity a functor using product rather than disjoint union:
- \blacktriangleright Stream is the final coalgebra of $\mathbb{N}\times_$

▶ We can decompose *f* as

$$f = f_0 \times f_1$$

イロト 不得 トイヨト イヨト 二日

Streams

Streams

g above is uniquely defined by

Anton Setzer (Swansea)

Э

ヘロト 人間ト ヘヨト ヘヨト

Guarded Recursion

► We had:

head
$$(g(x)) = f_0(x)$$

tail $(g(x)) = g(f_1(x))$

▶ By choosing f_0 , f_1 we can define $g : X \to \text{Stream s.t.}$

head
$$(g(x)) = n$$
 depending on x
tail $(g(x)) = g(x')$ some $x' \in X$ depending on x

So full recursion allowed after applying destructor to g.

 Guarded recursion in this form is exactly the same as the existence of g in the categorical diagram.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Guarded Recursion

• Generalisation: We can define g such that

$$\begin{array}{rcl} \mathrm{head} & (g(x)) &=& n & \mathrm{depending \ on \ } x \\ \mathrm{tail} & (g(x)) &=& g(x') & \mathrm{some} \ x' \in X \ \mathrm{depending \ on \ } x \\ & & \mathrm{or} & \\ & & & = \ s & \mathrm{some} \ s \in \mathrm{Stream} \ \mathrm{depending \ on \ } x \end{array}$$

3

▲ロト ▲圖ト ▲屋ト ▲屋ト

Examples

We can define

Note: cons defined by guarded recursion

inc : $\mathbb{N} \to \text{Stream}$ head (inc(n)) = n tail (inc(n)) = inc(n+1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Streams

Examples

$$\operatorname{inc}'$$
 : $\mathbb{N} \to \operatorname{Stream}$
head $(\operatorname{inc}'(n)) = n$
tail $(\operatorname{inc}'(n)) = \operatorname{inc}''(n+1)$

$$\operatorname{inc}''$$
 : $\mathbb{N} \to \operatorname{Stream}$
head $(\operatorname{inc}''(n)) = n$
tail $(\operatorname{inc}''(n)) = \operatorname{inc}'(n+1)$

► We want to show that inc, inc' are bisimilar and therefore, because Stream is a final (and not weakly final coalgebra) equal.

3

Streams

Bisimilarity

Bisimilarity in Transition Systems

Э

ヘロア ヘロア ヘビア ヘビア

Bisimilarity

 Bisimilarity ~ is the largest fixed point and therefore a dependent final coalgebra:

$$\begin{array}{c} \varphi(s,s') \xrightarrow{f} \operatorname{head}(s) = \operatorname{head}(s') \land \varphi(\operatorname{tail}(s), \operatorname{tail}(s')) \\ \exists !g \\ s \sim s' \xrightarrow{\operatorname{elim}_{\sim}} \operatorname{head}(s) = \operatorname{head}(s') \land \operatorname{tail}(s) \sim \operatorname{tail}(s') \end{array}$$

- As a proof principle this reads:
 - Assume

$$\forall s, s' \in \operatorname{Stream}.\varphi(s, s') \to \operatorname{head}(s) = \operatorname{head}(s') \land \varphi(\operatorname{tail}(s), \operatorname{tail}(s')).$$

► Then $\forall s, s' \in \text{Stream}.\varphi(s, s') \rightarrow s \sim s'.$ (And then $\forall s, s' \in \text{Stream}.\varphi(s, s') \rightarrow s = s'$).

イロト 不得 トイヨト イヨト 二日

Bisimilarity

Generalisation

- ► We can generalise this to
 - Assume

$$\begin{array}{l} \forall s, s' \in \operatorname{Stream}. \varphi(s, s') \to \operatorname{head}(s) = \operatorname{head}(s') \land \\ (\varphi(\operatorname{tail}(s), \operatorname{tail}(s')) \lor \operatorname{tail}(s) \sim \operatorname{tail}(s')) \end{array}$$

- Then $\forall s, s' \in \text{Stream}. \varphi(s, s') \rightarrow s \sim s'.$
- ▶ The coinduction step requires us to prove, assuming $\varphi(s,s')$

$$\mathrm{head}(s) = \mathrm{head}(s') \wedge \mathrm{tail}(s) \sim \mathrm{tail}(s')$$

and we can use the co-IH

$$\varphi(\operatorname{tail}(s),\operatorname{tail}(s'))
ightarrow \operatorname{tail}(s) \sim \operatorname{tail}(s')$$

in order to prove the right conjunct.

Similar to induction where we could use the IH as an additional assumption in the proof obligation of the induction step.

Example Proof by Coinduction

- ▶ We show $\forall n \in \mathbb{N}.inc(n) \sim inc'(n) \wedge inc(n) \sim inc''(n)$.
- Formally we can argue by using

$$\varphi(s,s') := \exists n \in \mathbb{N}. s = \operatorname{inc}(n) \land s' \in \{\operatorname{inc}'(n), \operatorname{inc}''(n)\}$$

and then showing

$$orall s, s' \in \operatorname{Stream}. arphi(s, s')
ightarrow \operatorname{head}(s) = \operatorname{head}(s') \land (arphi(\operatorname{tail}(s), \operatorname{tail}(s')) \lor \operatorname{tail}(s) \sim \operatorname{tail}(s'))$$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Informal Proof by Coinduction

- ▶ We show $inc(n) \sim inc'(n) \wedge inc(n) \sim inc''(n)$ by coinduction on ~:
- ► Coinduction step for inc(n) ~ inc'(n): We need to prove

 $head(inc(n)) = head(inc'(n)) \wedge tail(inc(n)) \sim tail(inc'(n))$

and can use the co-IH for the second conjunct. Follows by:

head (inc(n)) = n = head(inc'(n))tail $(inc(n)) = inc(n+1) \sim inc''(n+1) = tail(inc'(n))$

• **Coinduction step** for $inc(n) \sim inc''(n)$: Similarly.

◆□ > ◆母 > ◆臣 > ◆臣 > 三臣 - のへで

Streams

Bisimilarity

Bisimilarity in Transition Systems

3

ヘロト ヘ部ト ヘヨト ヘヨト

Bisimilarity

Consider the following (unlabelled) transition system:

Bisimilarity is the final coalgebra

$$p \sim q
ightarrow (orall p'. p \longrightarrow p' \
ightarrow \exists q'. q \longrightarrow q' \wedge p' \sim q') \ \wedge \cdots ext{symmetric case} \cdots \}$$

э

イロト イポト イヨト イヨト

Bisimilarity in Transition Systems

Proof using the Definition of \sim

- We show $p \sim q \wedge p \sim r$ by coinduction:
- ► Coinduction step for p ~ q:
 - Every transition of p is simulated by a transition of q: Only transition of p is p → p.
 We choose for q transition q → r, and get by co-IH p ~ r.
 - Every transition of q is simulated by a transition of p: Only transition of q is q → r. We choose for p transition p → p, and get by co-IH p ~ r.

► Coinduction step for *p* ~ *r*: Similar.

Conclusion

- Principle of induction is well established and makes proofs much easier.
- In theoretical computer science coinductive principles occur frequently.
 - Main reason: interactive programs running continuously in various frameworks (imperative, object-oriented, process-calculi)
- Coalgebras as being defined by their eliminators rather than infinite applications of constructors makes clear when recursive calls are allowed.
- Proofs by coinduction in the above situation can be carried out similarly as proofs by induction.
- ► Main difficulty: when are we allowed to apply co-IH?
 - In the corecursion step we have a proof obligation, and can use the co-IH to prove it.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >