Anton Setzer
Swansea University,

Swansea, UK

14 August 2012

«Or «Fr «=>» QA

A Brief Introduction into ML Type Theory

Interactive Programs in Dependent Type Theory

Weakly Final Coalgebras

More on 10

Coalgebras and Bisimulation

2/ 50

A Brief Introduction into ML Type Theory

Interactive Programs in Dependent Type Theory

Weakly Final Coalgebras

More on 10

Coalgebras and Bisimulation

«0>» «Fr «=>» 4 Q>

it
-

A Brief Introduction into ML Type Theory

1. A Brief Introduction into ML Type Theory

» Martin-Lof type theory = version of predicative dependent type
theory.
» As in simple type theory we have judgements of the form

st A
“s is of type A”.
» Additionally we have judgements of the form

A type

and judgements expressing on the term and type level having
a-equivalent normal form w.r.t. reductions.

s=t : A
A=B : type

4/ 50

A Brief Introduction into ML Type Theory

Logical Framework

\4

We have a collection of small types:
Set : type

» If A: Set then A : type.
» If A= B : Set then A= B : type
» All types used in the following will be elements of Set, except for Set
itself and function types which refer to Set.
» E.g. A— Set: type.

» Types will be used for expressiveness (and that's what Martin-Lof
intended):

> Instead of "B is a set depending on x : A" we write “B: A — Set".

5/ 50

A Brief Introduction into ML Type Theory

Judgements

» Eg.
Ax.x N —= N

where N is the type of natural numbers.

» Because of the higher complexity of the type theory, one doesn’t
define the valid judgements inductively, but introduces rules for
deriving valid judgements.

» Similar to derivations of propositions.
» For the main version of ML type theory however, whether s : A is
decidable.

6/ 50

A Brief Introduction into ML Type Theory

Dependent Types

v

In ML type theory we have dependent types.

v

Simplest example are the type of n x m matrices Mat n m.
» Depends on n,m: N.

v

In ordinary programming languages, matrix multiplication can in
general not be typed correctly.
» All we can do is say that it takes two matrices and returns a 3rd matrix.
» We cannot enforce that the dimensions of the inputs are correct.

v

In dependent type theory it can be typed as follows:

matmult : (n, m, k : N) — Mat n m — Mat m k — Mat n k

v

Example of dependent function type.

7/ 50

A Brief Introduction into ML Type Theory

Propositions as Types

» Using the Brouwer-Heyting-Kolmogorov interpretation of the
intuitionistic propositions one can now define propositions as types.
» Done in such a way such that ¢ is intuitionistically provable iff there
exists p : .
» For instance, we can define
PNY =@ xp
» © X 1 is the product of ¢ and 2.
» A proof of ¢ A1) is a pair (p, q) consisting of

» An element p : ¢, i.e. a proof of
» and an element q : v, i.e. a proof of .

8/ 50

» We can define

VY =+
> @+ 1 is the disjoint union of ¢ and .
» A proof of p V1) is
> inl p for p: ¢ or
> inrqforq:o

» ¢ — 1 is the function type, which maps a proof of ¢ to a proof of ¥
» | is the false formula, which has no proof, and we can define

1:=0

» T is the true formula, which has exactly one proof, and we can
interpret it as the one element set

data T : Set where
triv: T
> =@ — L.

«0O0» «Fr» «=)r» « Q>

it
-
it

» We can define

Vx:Ap:i=(x:A) =

» The type of functions, mapping any element a: A to a proof of
olx = 4]
» We can define

Ix:Ap=(x:A)xop

» The type of pairs (a, p), consisting of an a: Aand a p: p[x = a].

«0O0)>» «F»r «Z» « > Q>

A Brief Introduction into ML Type Theory

Sorting functions

» We can now define, depending on / : List N the proposition
Sorted /
» Now we can define
sort : List N — (/: List N) x Sorted /

which maps lists to sorted lists.

» We can define as well Eq / /" expressing that / and /" are lists having
the same elements and define even better

sort : (/: List N) — (/" : List N) x Sorted / x Eq / I'

11/ 50

A Brief Introduction into ML Type Theory

Verified programs

» This allows to define verified programs.
» Usage in critical systems.

» Example, verification of railway interlocking systems (including
underground lines).

» Automatic theorem proving used for proving that concrete interlocking
system fulfils signalling principles.

» Interactive theorem proving used to show that signalling principle imply
formalised safety.

» Interlocking can be run inside Agda without change of language.

12/ 50

A Brief Introduction into ML Type Theory

Normalisation

» However, we need some degree of normalisation, in order to
guarantee that p : ¢ implies @ is true.

» By using full recursion, one can define p : ¢ recursively by defining:

Py
P

» Therefore most types (except for the dependent function type) in
standard ML-type theory correspond to essentially inductive-recursive
definitions (an extension of inductive data types).

» Therefore all data types are well-founded.

» Causes problems since interactive programs correspond to
non-well-founded data types.

13/ 50

A Brief Introduction into ML Type Theory

Interactive Programs in Dependent Type Theory

Weakly Final Coalgebras

More on 10

Coalgebras and Bisimulation

«0>» «Fr «=>» 4 Q>

it
-

Interactive Programs in Dependent Type Theory

2. Interactive Programs

» Functional programming based on reduction of expressions.

» Program is given by an expression which is applied to finitely many
arguments.
The normal form obtained is the result.

» Allows only non-interactive batch programs with a fixed number
of inputs.

» In order to have interactive programs, something needs to be added
to functional programming (constants with side effects, monads,
streams, ...).

» We want a solution which exploits the flexibility of dependent types.

15/ 50

Interactive Programs in Dependent Type Theory

Interfaces

» We consider programs which interact with the real world:
» They issue a command ...
(eg.
(1) get last key pressed;
(2) write character to terminal,
(3) set traffic light to red)
» ... and obtain a response, depending on the command ...
(e.g.
> in (1) the key pressed
> in (2), (3) a trivial element indicating that this was done, or a message
indicating success or an error element).

16/ 50

Program

laeSponse

Command

World —=

it
a
it
v

«O» «Fr «) -

Interactive Programs in Dependent Type Theory

Dependent Interfaces

» The set of commands might vary after interactions. E.g.
» after switching on the printer, we can print;
» after opening a new window, we can communicate with it;
» if we have tested whether the printer is on, and got a positive answer,
we can print on it (increase of knowledge).

» States indicate

» principal possibilities of interaction

(we can only communicate with an existing window),
» objective knowledge

(e.g. about which printers are switched on).

18/ 50

Interactive Programs in Dependent Type Theory

Interfaces (Cont.)

» S: Set.
» S = set of states which determine the interactions possible.
» C:S — Set.

» C s = set of commands the program can issue when in state s : S.
» R:(s:5) = (Cs) — Set.
» R s c = set of responses the program can obtain from the real world,
when having issued command c.

»n:(s:S)—=(c:Cs)—=(r:Rsc)—S.
» 1 s c ris the next state the system is in after having issued command
¢ and received response r : R s c.

19/ 50

Interactive Programs in Dependent Type Theory

Expl. 1: Interact. with 1 Window

v

S = {x}.
» Only one state, no state-dependency.
C % = {getchar} U {writechar c | ¢ € Char}.

» getchar means: get next character from the keyboard.
» writechar ¢ means: write character on the window.

\4

» R x getchar = Char.
» Response of the real world to getchar is the character code for the key
pressed.
>

R x (writechar c) = {x}.
» Response to the request to writing a character is a success message.

>N x Cr==%

20/ 50

Interactive Programs in Dependent Type Theory

Ex. 2: Interact. with many Windows

» S=N.
» n: N = number of windows open.
» Let Fin, :={0,...,n—1}.
» C n = {getchar}
U{getselection | n > 0}
U{writestring k s | k € Fin, A s € String}
U{open}
U{close k | k € Fin,}
» writestring k s means: output string s on window k.
» getselection means: get the window selected.

» open means: open a new window.
» close k means: close the kth window.

21/ 50

» R ngetchar

R n getselection
Rnc

> 1 nopen *
n n (close k) *
nncr

Char

Fin,

{*} otherwise
n+1
n—1
n otherwise

«O0)>» «F» «=)» 4«

it
it
N)
¥l
i)

A Brief Introduction into ML Type Theory

Interactive Programs in Dependent Type Theory

Weakly Final Coalgebras

More on 10

Coalgebras and Bisimulation

«0>» «Fr «=>» 4 Q>

it
v

Weakly Final Coalgebras

3. Weakly Final Coalgebras

» The interactive programs for such an interface is given by
» a family of sets IO : S — Set
» 10 s = set of interactive programs, starting in state s;
» afunctionc:(s:S)—>10s—Cs
» ¢s p = command issued by program p;

» and a function
next:(s:S) = (p:10s) =, (r:Rs(csp)) »I0 (ns(csp)r)
> next(s, p, r) = program we execute, after having obtained for
command c s p response r.

24/ 50

p:10s

PII 110 5" (5” =ns ¢ r’)

- C s’

«O)>» «Fr <) .

'CSI/

I0:S — Set
c:(s:S)—=1I0s—Cs

next:(s:8) = (p:10s) —,(r:Rs(csp)) =10 (ns(csp)r)
» We might think we can define 1O s as

data IO : S — Set where
do:(s:9)

— (c:Cs)
—((r:Rsc)—=1I0(nscr))
—+10s

» However this is the type of well-founded IO-trees, programs which
always terminate.

» Artificial to force programs to always terminate. _
28y 80

» Instead we use the type of non-well-founded trees, as given by
coalgebras.

» We consider first non-state dependent programs.
» So we have as interfaces
» C: Set,
» R:C — Set
» The type of programs for this interface requires
» 10 : Set,
» ¢c: 10— C
» next: (p:I10) — (r: R (c p)) = I0.

«0O0» «Fr» «=)r» «

it
it
N)
¥l
i)

» Can be combined into
» 1O : Set.

» evolve : I0 — (c: C) x (R ¢ — 10)
» Let FX:=(c:C)x(Rc— X).

» Then need to define evolvelO — F 10, i.e. an F-coalgebra 10

it
-

«O0)>» «F» «=)» 4« Q>

» Having non-terminating programs can be expressed as having a
weakly final F-coalgebra:

R FA
Jdg Fg
1
10— F (10 A)

it
-

«0O0)>» «F»r «Z» « Q>

» In our example we have

f
A

(c:C)x(Rc— A)
Jg

id x (go.)
10 evolve

(c:C)x (Rc—10)

«O0>» «Fr «=» « =) = Q>

f
A

(c:C)x(Rc— A
Jg

X (g _)

(c:C)x (Rc—10)

» If we split f into two functions:
fo A—C

fi
and evolve back into

(a:A)=R(fha)— A

C

: 10=C
next : (p:10) = R: (ca) —»1I0
<O Fr <Zr <=y E HAQ
sy 0

» we obtain that we can define g : A — 10 s.t.

c (g a)
(g a)

» Simple form of guarded recursion.

next

g (fia)

«4O0)>» «Fr «=» « = Q>

it
-

Weakly Final Coalgebras

Generalisation

» In case of final coalgebras we can get a more general principle

c (g a) = some c: C depending on a
{ g a for some &’ depending on a

next (ga) = or some p : IO depending on a

» We can't have final coalgebras (uniqueness of g above), since this

would result in undecidability of type checking.
» However we can add rules for this and other extended principles.

33/ 50

record IO : Set where
C 10 —-C

next

(p:10) =R (cp)—10

«0O0)>» «F»r «Z» « Q>

it
-

» Assume interface

» C = {getchar} U {writechar c | ¢ € Char}
» R getchar = Char,

» R (writechar c)

read :
¢
next

write :
¢
next

={x}

10

read = getchar

read ¢ = write c

Char — 10

(write ¢) = writechar ¢
(write ¢) x = read

«O0)>» «F» «=)» 4«

it
v

Weakly Final Coalgebras

Difference to codata

» Note that in this setting, coalgebras are defined by their elimination
rules.

» So they are not introduced by some constructor,

» “Constructor” can be defined using guarded recursion

» Elements of coalgebras are not infinite objects, but objects which
evolves into something infinite.

» No problem of subject reduction problem as it occurs in Coq and in
Agda if allowing dependent pattern matching on coalgebras.

» Maybe a more accurate picture are |0 graphs which unfold to 10
trees.

36/ 50

(o @«

fHac

p:10s

PII 110 5" (5” =ns ¢ r’)

- C s’

«O)>» «Fr <) .

'CSI/

» Generalisation to dependent weakly final coalgebras.

S @ Set,

C:S — Set,
R:(s:S5) = Cs — Set,
n:(s:8)—=(c:Cs)>Rsc—S5,

vV vyVvVvyy

record IO : S — Set where
C : I0s—Cs

next : (p:10s)—=(r:Rs(csp)) =10 (ns(csp)r)

«O0)>» «F» «=)» 4«

it
-
it

DA

» Assume the interface interacting with arbitrarily many windows.
» We can define a function, which
» when the user presses key "o’ will open a window,

the selection of a window by the user and will close it

«0O0» «Fr» «=)r» « » Q>

» when the user presses key 'c’ and has at least two open windows, get

start : N) =10 n

c (start n) = getchar
next (start (n+2))’'c’ = close n
next (start n) ‘o’ = openn
next (start n) X = startn

close : (n:N) — 10 (n+2)
¢ (close n) = getselection
next (close n) k = close’ n k

close’ : (n:N) — (k : Fin,) — 10 (n +2)
¢ (close’ nk) = close k
next (close’ n k) k = start (n+1)

open: (n:N) =10 n
c (openn) = open
next (open n) x = start (n+ 1)

A Brief Introduction into ML Type Theory

Interactive Programs in Dependent Type Theory

Weakly Final Coalgebras

More on 10

Coalgebras and Bisimulation

«0>» «Fr «=>» 4 Q>

it
v

.

ReSpOnSe

Command|
Program -

a

«O)>» «F>» B

GUIs

More on 10

» In object-oriented programming, GUIs are treated in server-side style:

>

>

With each event (e.g. button click) an event handler is associated.
When the event occurs, the corresponding event handler is activated,
which carries out some calculations, possibly modifies the interface and
then waits for the next event.

» So C s = set of events in state s.
» R s ¢ = possible modifications of the GUI the program can execute.
» n s c r = next state of the GUI after this interaction.

44/ 50

» By adding leaves labelled by A to |O-trees we can define the
I0-monad

IO (A: Set) : Set
together with operations

n

A—-I0A
*

IOA—- (A—-1I0B)—1I0B

«O0)>» «F» «=)» 4« Q>

it
-

» Assume

» We can define a horizontal transformation from a
(S, C,R,n)-program into a (S',C’, R/, n’)-program:

translatec : (s : S) = (¢ : Cs) = 10s/ ,cvr w5 (R €)
Then we can define

translate : 10g c.r,n — 10s/ ¢/ R/ 0’

by replacing ¢ : C by an execution of translatec c.

«0O0)>» «F»r «Z» « Q>

it
-

A Brief Introduction into ML Type Theory

Interactive Programs in Dependent Type Theory

Weakly Final Coalgebras

More on 10

Coalgebras and Bisimulation

«0>» «Fr «=>» 4 Q>

it
-

Coalgebras and Bisimulation

4. Coalgebras and Bisimulation

» For simplicity consider non-state dependent 10-trees.

» Two IO-trees are the same, if their commands are the same and for
every response to it, the resulting 1O-trees are bisimilar.

» Because of non-well-foundedness of trees we need
non-well-foundedness of bisimulation.

48/ 50

mutual
record _ ~ _: IO — IO — Set where
toproof : (p, p’' : 10)
—p~p
— Bisimaux (¢ p) (next p) (¢ p’) (next p’)

data Bisimaux : (¢ : C)
— (next : R ¢ — 10)
—(c: C)
— (next’ : R ¢/ — 10)
— Set where
eq: (c:C)
— (next, next’ : R ¢ — 10)
— (p:(r:Rc)— (next r) ~ (next' r))
— Bisimaux ¢ next ¢ next’

«0O0» «Fr» «=)r» «

> = 9DAC¢

Coalgebras and Bisimulation

Conclusion
» Introduction of state-dependent interactive programs.
» Coalgebras defined by their elimination rules.
» Categorical diagram corresponds exactly to guarded recursion.
» [O-monad definable.
» Compilation.
» Bisimilarity as a state-dependent weakly final coalgebra.

50/ 50

	A Brief Introduction into ML Type Theory
	Interactive Programs in Dependent Type Theory
	Weakly Final Coalgebras
	More on IO
	Coalgebras and Bisimulation

