
Programming with Dependent Types –
Interactive programs and Coalgebras

Anton Setzer
Swansea University,

Swansea, UK

14 August 2012

1/ 50



A Brief Introduction into ML Type Theory

Interactive Programs in Dependent Type Theory

Weakly Final Coalgebras

More on IO

Coalgebras and Bisimulation

2/ 50



A Brief Introduction into ML Type Theory

A Brief Introduction into ML Type Theory

Interactive Programs in Dependent Type Theory

Weakly Final Coalgebras

More on IO

Coalgebras and Bisimulation

3/ 50



A Brief Introduction into ML Type Theory

1. A Brief Introduction into ML Type Theory

I Martin-Löf type theory = version of predicative dependent type
theory.

I As in simple type theory we have judgements of the form

s : A

“s is of type A”.

I Additionally we have judgements of the form

A : type

and judgements expressing on the term and type level having
α-equivalent normal form w.r.t. reductions.

s = t : A

A = B : type

4/ 50



A Brief Introduction into ML Type Theory

Logical Framework

I We have a collection of small types:

Set : type

I If A : Set then A : type.

I If A = B : Set then A = B : type
I All types used in the following will be elements of Set, except for Set

itself and function types which refer to Set.
I E.g. A→ Set : type.

I Types will be used for expressiveness (and that’s what Martin-Löf
intended):

I Instead of “B is a set depending on x : A” we write “B : A→ Set”.

5/ 50



A Brief Introduction into ML Type Theory

Judgements

I E.g.
λx .x : N→ N

where N is the type of natural numbers.
I Because of the higher complexity of the type theory, one doesn’t

define the valid judgements inductively, but introduces rules for
deriving valid judgements.

I Similar to derivations of propositions.
I For the main version of ML type theory however, whether s : A is

decidable.

6/ 50



A Brief Introduction into ML Type Theory

Dependent Types

I In ML type theory we have dependent types.
I Simplest example are the type of n ×m matrices Mat n m.

I Depends on n,m : N.

I In ordinary programming languages, matrix multiplication can in
general not be typed correctly.

I All we can do is say that it takes two matrices and returns a 3rd matrix.
I We cannot enforce that the dimensions of the inputs are correct.

I In dependent type theory it can be typed as follows:

matmult : (n,m, k : N)→ Mat n m→ Mat m k → Mat n k

I Example of dependent function type.

7/ 50



A Brief Introduction into ML Type Theory

Propositions as Types

I Using the Brouwer-Heyting-Kolmogorov interpretation of the
intuitionistic propositions one can now define propositions as types.

I Done in such a way such that ψ is intuitionistically provable iff there
exists p : ψ.

I For instance, we can define

φ ∧ ψ := ϕ× ψ

I ϕ× ψ is the product of ϕ and ψ.
I A proof of ϕ ∧ ψ is a pair 〈p, q〉 consisting of

I An element p : ϕ, i.e. a proof of ϕ
I and an element q : ψ, i.e. a proof of ψ.

8/ 50



A Brief Introduction into ML Type Theory

∨, →, >, ¬

I We can define
φ ∨ ψ := ϕ+ ψ

I ϕ+ ψ is the disjoint union of ϕ and ψ.
I A proof of ϕ ∨ ψ is

I inl p for p : ϕ or
I inr q for q : ϕ

I ϕ→ ψ is the function type, which maps a proof of ϕ to a proof of ψ.
I ⊥ is the false formula, which has no proof, and we can define

⊥ := ∅
I > is the true formula, which has exactly one proof, and we can

interpret it as the one element set

data > : Set where
triv : >

I ¬ϕ := ϕ→ ⊥.

9/ 50



A Brief Introduction into ML Type Theory

Propositions as Types

I We can define
∀x : A.ϕ := (x : A)→ ϕ

I The type of functions, mapping any element a : A to a proof of
ϕ[x := a]

I We can define
∃x : A.ϕ := (x : A)× ϕ

I The type of pairs 〈a, p〉, consisting of an a : A and a p : ϕ[x := a].

10/ 50



A Brief Introduction into ML Type Theory

Sorting functions

I We can now define, depending on l : List N the proposition

Sorted l

I Now we can define

sort : List N→ (l : List N)× Sorted l

which maps lists to sorted lists.

I We can define as well Eq l l ′ expressing that l and l ′ are lists having
the same elements and define even better

sort : (l : List N)→ (l ′ : List N)× Sorted l × Eq l l ′

11/ 50



A Brief Introduction into ML Type Theory

Verified programs

I This allows to define verified programs.

I Usage in critical systems.
I Example, verification of railway interlocking systems (including

underground lines).
I Automatic theorem proving used for proving that concrete interlocking

system fulfils signalling principles.
I Interactive theorem proving used to show that signalling principle imply

formalised safety.
I Interlocking can be run inside Agda without change of language.

12/ 50



A Brief Introduction into ML Type Theory

Normalisation

I However, we need some degree of normalisation, in order to
guarantee that p : ϕ implies ϕ is true.

I By using full recursion, one can define p : ϕ recursively by defining:

p : ϕ

= p

I Therefore most types (except for the dependent function type) in
standard ML-type theory correspond to essentially inductive-recursive
definitions (an extension of inductive data types).

I Therefore all data types are well-founded.

I Causes problems since interactive programs correspond to
non-well-founded data types.

13/ 50



Interactive Programs in Dependent Type Theory

A Brief Introduction into ML Type Theory

Interactive Programs in Dependent Type Theory

Weakly Final Coalgebras

More on IO

Coalgebras and Bisimulation

14/ 50



Interactive Programs in Dependent Type Theory

2. Interactive Programs

I Functional programming based on reduction of expressions.

I Program is given by an expression which is applied to finitely many
arguments.
The normal form obtained is the result.

I Allows only non-interactive batch programs with a fixed number
of inputs.

I In order to have interactive programs, something needs to be added
to functional programming (constants with side effects, monads,
streams, . . .).

I We want a solution which exploits the flexibility of dependent types.

15/ 50



Interactive Programs in Dependent Type Theory

Interfaces

I We consider programs which interact with the real world:
I They issue a command . . .

(e.g.

(1) get last key pressed;
(2) write character to terminal;
(3) set traffic light to red)

I . . . and obtain a response, depending on the command . . .
(e.g.

I in (1) the key pressed
I in (2), (3) a trivial element indicating that this was done, or a message

indicating success or an error element).

16/ 50



Interactive Programs in Dependent Type Theory

Interactive Programs

Program

Response Command

World

17/ 50



Interactive Programs in Dependent Type Theory

Dependent Interfaces

I The set of commands might vary after interactions. E.g.
I after switching on the printer, we can print;
I after opening a new window, we can communicate with it;
I if we have tested whether the printer is on, and got a positive answer,

we can print on it (increase of knowledge).

I States indicate
I principal possibilities of interaction

(we can only communicate with an existing window),
I objective knowledge

(e.g. about which printers are switched on).

18/ 50



Interactive Programs in Dependent Type Theory

Interfaces (Cont.)

I An
::::::::::
interface is a quadruple (S,C,R, n) s.t.

I S : Set.
I S = set of states which determine the interactions possible.

I C : S→ Set.
I C s = set of commands the program can issue when in state s : S .

I R : (s : S)→ (C s)→ Set.
I R s c = set of responses the program can obtain from the real world,

when having issued command c.

I n : (s : S)→ (c : C s)→ (r : R s c)→ S.
I n s c r is the next state the system is in after having issued command

c and received response r : R s c.

19/ 50



Interactive Programs in Dependent Type Theory

Expl. 1: Interact. with 1 Window

I S = {∗}.
I Only one state, no state-dependency.

I C ∗ = {getchar} ∪ {writechar c | c ∈ Char}.
I getchar means: get next character from the keyboard.
I writechar c means: write character on the window.

I R ∗ getchar = Char.
I Response of the real world to getchar is the character code for the key

pressed.

I R ∗ (writechar c) = {∗}.
I Response to the request to writing a character is a success message.

I n ∗ c r = ∗

20/ 50



Interactive Programs in Dependent Type Theory

Ex. 2: Interact. with many Windows

I S = N.
I n : N = number of windows open.
I Let Finn := {0, . . . , n − 1}.

I C n = {getchar}
∪{getselection | n > 0}
∪{writestring k s | k ∈ Finn ∧ s ∈ String}
∪{open}
∪{close k | k ∈ Finn}

.

I writestring k s means: output string s on window k.
I getselection means: get the window selected.
I open means: open a new window.
I close k means: close the kth window.

21/ 50



Interactive Programs in Dependent Type Theory

Example 2 (Cont.)

I R n getchar = Char
R n getselection = Finn
R n c = {∗} otherwise

.

I n n open ∗ = n + 1
n n (close k) ∗ = n − 1
n n c r = n otherwise

.

22/ 50



Weakly Final Coalgebras

A Brief Introduction into ML Type Theory

Interactive Programs in Dependent Type Theory

Weakly Final Coalgebras

More on IO

Coalgebras and Bisimulation

23/ 50



Weakly Final Coalgebras

3. Weakly Final Coalgebras

I The
::::::::::::
interactive

::::::::::::
programs for such an interface is given by

I a family of sets IO : S→ Set
I IO s = set of interactive programs, starting in state s;

I a function c : (s : S)→ IO s → C s
I c s p = command issued by program p;

I and a function
next : (s : S)→ (p : IO s)→, (r : R s (c s p))→ IO (n s (c s p) r)

I next(s, p, r) = program we execute, after having obtained for
command c s p response r .

24/ 50



Weakly Final Coalgebras

IO-Trees

�������� ����

�������� ����

(r : R s c)

(r ′ : R s′ c′)

p : IO s

p′ : IO s′ (s′ = n s c r)

p′′ : IO s′′ (s′′ = n s′ c′ r ′)

c : C s

c′ : C s′

c′′ : C s′′

25/ 50



Weakly Final Coalgebras

Need for Coalgebraic Types

IO : S→ Set
c : (s : S)→ IO s → C s
next : (s : S)→ (p : IO s)→, (r : R s (c s p))→ IO (n s (c s p) r)

I We might think we can define IO s as

data IO : S→ Set where
do : (s : S)
→ (c : C s)
→ ((r : R s c)→ IO (n s c r))
→ IO s

I However this is the type of well-founded IO-trees, programs which
always terminate.

I Artificial to force programs to always terminate.

26/ 50



Weakly Final Coalgebras

Coalgebras

I Instead we use the type of non-well-founded trees, as given by
coalgebras.

I We consider first non-state dependent programs.
I So we have as interfaces

I C : Set,
I R : C→ Set

I The type of programs for this interface requires
I IO : Set,
I c : IO→ C
I next : (p : IO)→ (r : R (c p))→ IO.

27/ 50



Weakly Final Coalgebras

Coalgebras

I Can be combined into
I IO : Set.
I evolve : IO→ (c : C)× (R c → IO)

I Let F X := (c : C)× (R c → X ).

I Then need to define evolveIO→ F IO, i.e. an F-coalgebra IO.

28/ 50



Weakly Final Coalgebras

Weakly Final Coalgebras

I Having non-terminating programs can be expressed as having a
weakly final F -coalgebra:

A
f

- F A

IO

∃g

? evolve
- F (IO A)

F g

?

29/ 50



Weakly Final Coalgebras

Weakly Final Coalgebras

I In our example we have

A
f

- (c : C)× (R c → A)

IO

∃g

? evolve
- (c : C)× (R c → IO)

id× (g ◦ )

?

30/ 50



Weakly Final Coalgebras

Guarded Recursion

A
f

- (c : C)× (R c → A)

IO

∃g

? evolve
- (c : C)× (R c → IO)

id× (g ◦ )

?

I If we split f into two functions:

f0 : A→ C
f1 : (a : A)→ R (f0 a)→ A

and evolve back into

c : IO→ C
next : (p : IO)→ R : (c a)→ IO

31/ 50



Weakly Final Coalgebras

Guarded Recursion

I we obtain that we can define g : A→ IO s.t.

c (g a) = f0 a
next (g a) = g (f1 a)

I Simple form of guarded recursion.

32/ 50



Weakly Final Coalgebras

Generalisation

I In case of final coalgebras we can get a more general principle

c (g a) = some c : C depending on a

next (g a) =

{
g a′ for some a′ depending on a
or some p : IO depending on a

I We can’t have final coalgebras (uniqueness of g above), since this
would result in undecidability of type checking.

I However we can add rules for this and other extended principles.

33/ 50



Weakly Final Coalgebras

Desired Notations in Agda

record IO : Set where
c : IO→ C
next : (p : IO)→ R (c p)→ IO

34/ 50



Weakly Final Coalgebras

Example Program

I Assume interface
I C = {getchar} ∪ {writechar c | c ∈ Char}
I R getchar = Char,
I R (writechar c) = {∗}

read : IO
c read = getchar
next read c = write c

write : Char→ IO
c (write c) = writechar c
next (write c) ∗ = read

35/ 50



Weakly Final Coalgebras

Difference to codata

I Note that in this setting, coalgebras are defined by their elimination
rules.

I So they are not introduced by some constructor,
I “Constructor” can be defined using guarded recursion

I Elements of coalgebras are not infinite objects, but objects which
evolves into something infinite.

I No problem of subject reduction problem as it occurs in Coq and in
Agda if allowing dependent pattern matching on coalgebras.

I Maybe a more accurate picture are IO graphs which unfold to IO
trees.

36/ 50



Weakly Final Coalgebras

IO Graphs

c ′ : C s′

r : R s c

c : C s

r ′ : R s′ c ′

p : IO s

p′ : IO s′ (s′ = n s c r)

37/ 50



Weakly Final Coalgebras

IO-Trees

�������� ����

�������� ����

(r : R s c)

(r ′ : R s′ c′)

p : IO s

p′ : IO s′ (s′ = n s c r)

p′′ : IO s′′ (s′′ = n s′ c′ r ′)

c : C s

c′ : C s′

c′′ : C s′′

38/ 50



Weakly Final Coalgebras

Dependent Coalgebras

I Generalisation to dependent weakly final coalgebras.

I S : Set,
I C : S→ Set,
I R : (s : S)→ C s → Set,
I n : (s : S)→ (c : C s)→ R s c → S,

record IO : S→ Set where
c : IO s → C s
next : (p : IO s)→ (r : R s (c s p))→ IO (n s (c s p) r)

39/ 50



Weakly Final Coalgebras

Example

I Assume the interface interacting with arbitrarily many windows.
I We can define a function, which

I when the user presses key ’o’ will open a window,
I when the user presses key ’c’ and has at least two open windows, get

the selection of a window by the user and will close it

40/ 50



start : (n : N)→ IO n
c (start n) = getchar
next (start (n + 2)) ′c′ = close n
next (start n) ′o′ = open n
next (start n) x = start n

close : (n : N)→ IO (n + 2)
c (close n) = getselection
next (close n) k = close ′ n k

close ′ : (n : N)→ (k : Finn)→ IO (n + 2)
c (close ′ n k) = close k
next (close ′ n k) k = start (n + 1)

open : (n : N)→ IO n
c (open n) = open
next (open n) ∗ = start (n + 1)



More on IO

A Brief Introduction into ML Type Theory

Interactive Programs in Dependent Type Theory

Weakly Final Coalgebras

More on IO

Coalgebras and Bisimulation

42/ 50



More on IO

Server-Side Programs

Response Command

Client

Program

43/ 50



More on IO

GUIs

I In object-oriented programming, GUIs are treated in server-side style:
I With each event (e.g. button click) an event handler is associated.
I When the event occurs, the corresponding event handler is activated,

which carries out some calculations, possibly modifies the interface and
then waits for the next event.

I So C s = set of events in state s.
I R s c = possible modifications of the GUI the program can execute.
I n s c r = next state of the GUI after this interaction.

44/ 50



More on IO

IO-Monad

I By adding leaves labelled by A to IO-trees we can define the
IO-monad

IO (A : Set) : Set

together with operations

η : A→ IO A
∗ : IO A→ (A→ IO B)→ IO B

45/ 50



More on IO

Compilation

I We can define a horizontal transformation from a
(S,C,R, n)-program into a (S′,C′,R′,n′)-program:

I Assume

translatec : (s : S)→ (c : C s)→ IOS′,C′,R′,n′ s (R c)

Then we can define

translate : IOS,C,R,n → IOS′,C′,R′,n′

by replacing c : C by an execution of translatec c .

46/ 50



Coalgebras and Bisimulation

A Brief Introduction into ML Type Theory

Interactive Programs in Dependent Type Theory

Weakly Final Coalgebras

More on IO

Coalgebras and Bisimulation

47/ 50



Coalgebras and Bisimulation

4. Coalgebras and Bisimulation

I For simplicity consider non-state dependent IO-trees.

I Two IO-trees are the same, if their commands are the same and for
every response to it, the resulting IO-trees are bisimilar.

I Because of non-well-foundedness of trees we need
non-well-foundedness of bisimulation.

48/ 50



Coalgebras and Bisimulation

Definition of Bisimulation

mutual
record ∼ : IO→ IO→ Set where
toproof : (p, p′ : IO)

→ p ∼ p′

→ Bisimaux (c p) (next p) (c p′) (next p′)

data Bisimaux : (c : C)
→ (next : R c → IO)
→ (c ′ : C)
→ (next ′ : R c ′ → IO)
→ Set where

eq : (c : C)
→ (next, next ′ : R c → IO)
→ (p : (r : R c)→ (next r) ∼ (next ′ r))
→ Bisimaux c next c next ′

49/ 50



Coalgebras and Bisimulation

Conclusion

I Introduction of state-dependent interactive programs.

I Coalgebras defined by their elimination rules.

I Categorical diagram corresponds exactly to guarded recursion.

I IO-monad definable.

I Compilation.

I Bisimilarity as a state-dependent weakly final coalgebra.

50/ 50


	A Brief Introduction into ML Type Theory
	Interactive Programs in Dependent Type Theory
	Weakly Final Coalgebras
	More on IO
	Coalgebras and Bisimulation

