
Extraction of Programs from Proofs about Real
Numbers in Dependent Type Theory

Anton Setzer
Swansea University

Swanesa, UK
(Joint work with Chi Ming Chuang, Swansea)

August 24, 2010

1/ 34



1. Introduction

2. Restrictions and assumptions about Agda

3. Proof Part 1: Proof of Theorem assuming simple pattern matching

4. Proof Part 2: Reduction to simple pattern matching

5. Conclusion

2/ 34



1. Introduction

Goal

I We want use dependent type theory for extracting programs from
intuitionistic proofs about real numbers.

I System to be used is Agda
I We want to use the fact that in dependent type theory proofs and

programs are the same.
I Therefore if we have

p : ∀x : A.∃y : B.ϕ x , y

we get a function

f := λx .π0 (p x) : A → B

s.t.
λx .π1 (p x) : ∀x : A.ϕ x (f x)

I Question: What happens if we add axioms, e.g. axioms formalising
the real numbers.

3/ 34



1. Introduction

Real Number Computations

I For formalising real numbers we follow the approach by Berger.

I For axiomatising the real numbers we postulate

R : Set

together with certain operations and their properties.

I We will define coalgebraically

SignedDigit : R → Set

the set of real numbers which have a signed digit representation,
i.e. which can be written as

0.d0d1d2 · · ·

where di ∈ {−1, 0, 1}.
(They are necessarily elements of the interval [−1, 1]).

4/ 34



1. Introduction

Streams

I Let Stream be the data type of signed digit streams.

I We can define

toStream : (r : R) → SignedDigit r → Stream

which determines for an element r : R s.t. SignedDigit r holds its
signed digit representation.

I We can define

toList : Stream → N → List Digit

which determines for a stream s and n : N the list of the first n digits
of s.

5/ 34



1. Introduction

Real Number Computations

I We will show that the signed digits are closed under certain
operations e.g.

∀r , s : R.SignedDigit r → SignedDigit s → SignedDigit (av r s)
∀r , s : R.SignedDigit r → SignedDigit s → SignedDigit (r ∗ s)

SignedDigit
√

2
2

and potentially more complicated operations.
(Here av is the average function

av r s =
r + s

2

Since elements of SignedDigit are in [−1, 1] signed digit are not
closed under +; however, they are closed under under av).

6/ 34



1. Introduction

Real Number Computations

I Therefore we can determine certain r : R s.t.

p : SignedDigit r

holds.

I Then
q : toList (toStream r p) n

is the list of the first n digits of r .

I We would like that q evaluates to

[d0, . . . , dn−1]

for some di : Digit, so in ordinary mathematics

r = 0.d0 · · · dn−1 · · ·

7/ 34



1. Introduction

Real Number Computations

I For instance we could find di s.t.

√
2 +

√
2

4
= 0.d0 · · · dn−1 · · ·

I Our approach should be extensible to more advanced functions carried
out by Ulrich Berger.

I Problem: Evaluation of q might make use of the axioms used which
are just postulates.

8/ 34



1. Introduction

Example 1

I Assume we introduce the axiom

postulate axiom1 : ¬ (0 # 0)

which is
postulate axiom1 : 0 # 0 → ⊥

I Let’s axiomatise errnoeously as well

postulate wrongAxiom : 0 # 0

I We can define
lemma : ⊥ → Digit
lemma ()

I Now
lemma (axiom1 wrongAxiom) : Digit

doesn’t normalise.

9/ 34



1. Introduction

Example 2

I Assume the correct axiom

axiom2 : −0 == 0

I The equality is defined in Agda (using a hidden argument {A : Set})
as

data == {A : Set} (a : A) : A → Set where
refl : a == a

== means that the arguments of == are written before and after
it (infix).
a == b is defined for all a, b : A by having refl : a == a for all a : A.

I Define by case distinction on ==

transfer : (P : R → Set) → (r , s : R) → r == s → P r → P s
transfer P r r refl p = p

10/ 34



1. Introduction

Example 2

transfer : (P : R → Set) → (r , s : R) → r == s → P r → P s
transfer P r r refl p = p

I Let P : R → Set, P r = Digit.
I Then

q := transfer P −0 0 axiom2 0 : Digit

but doesn’t normalise, since axiom2 doesn’t normalise to a
constructor of −0 == 0.

11/ 34



2. Restrictions and assumptions about Agda

1. Introduction

2. Restrictions and assumptions about Agda

3. Proof Part 1: Proof of Theorem assuming simple pattern matching

4. Proof Part 2: Reduction to simple pattern matching

5. Conclusion

12/ 34



2. Restrictions and assumptions about Agda

Restrictions on Language of Agda (Types)

For simplicity we restrict our language.
We have as types

I postulated types

postulate A : B → C → Set

I non-indexed (but possibly parametrized) algebraic and coalgebraic
data types

(co)data A (B : Set) (n : N) : Set where
C0 : A B n → A B n
C1 : N → A B n
· · ·

I So A B n refers only to A B n.

13/ 34



2. Restrictions and assumptions about Agda

Restrictions on Language of Agda (Types)

I restricted indexed algebraic and coalgebraic data types

(co)data A (B : Set) : (n : N) → Set where
C0 : (n : N) → A B 0 → A B n
C1 : (n : N) → A B (n + 3) → A B n
· · ·

I So A B n can refer to A B n′ for other n′ but n is first argument of
constructor (constructors are uniform in n).

I The equality type == which is the only generalised indexed
inductive definition allowed:

data == {A : Set} (a : A) : A → Set where
refl : a == a

14/ 34



2. Restrictions and assumptions about Agda

Restrictions on Language of Agda (Types)

I Dependent function types

(a1 : A1) → (a2 : A2) → · · · → An

I Types defined in the same way as functions below.
I Not allowed in this setting:

I other generalised indexed inductive definitions,
I induction-recursion,
I induction-induction,
I record types.

15/ 34



2. Restrictions and assumptions about Agda

Restrictions on Language of Agda (Functions)

I We have postulated functions

postulate f : (a1 : A1) → · · · → An

I We have directly defined functions

f : (a1 : A1) → · · · → An+1

f a1 · · · an = s

I We have functions defined by possibly deep pattern matching e.g.

f : (a : A) → (b : B) → C
f (C1 (C2 x)) (C3 y) = s
f (C1 (C′

2 x)) ()

(second line absurdity pattern, assuming B[a := C1 (C′
2 x)] is a

directly empty algebraic data type (no constructor)).

16/ 34



2. Restrictions and assumptions about Agda

Restrictions on Language of Agda (Functions)

I Not allowed:
I let and where-expressions (can be reduced easily).
I No with-expressions (can be reduced as well).

17/ 34



2. Restrictions and assumptions about Agda

Restrictions on Language of Agda (Functions)

I Functions can be defined mutually.
I Functions can be defined recursively.

I Termination checker of Agda imposes restrictions.
I We assume that Agda with these restrictions is normalising.
I The theory of coalgebras (represented by codata) is not fully worked

out in Agda yet, but a satisfactory solution is possible.

I That functions defined by pattern matching have complete pattern
matching is guaranteed by the coverage checker.

18/ 34



2. Restrictions and assumptions about Agda

Assumptions about Agda

I We assume termination and coverage checked Agda code is
normalising and coverage complete.

19/ 34



2. Restrictions and assumptions about Agda

Specific Restricitions on Agda code

I Postulated functions have as result type equalities or postulated
types.

I Therefore postulated axioms which imply negations are not allowed:

axiom1 : ¬ (0 # 0)

stands for
axiom1 : 0 # 0 → ⊥

which has as result type an algebraic data type (⊥ which is the empty
algebraic data type)

I Functions defined by case distinction on equalities have as result type
only equalities or postulated types.

I So when using postulated functions and equalities we stay within
equalities and postulated types.

20/ 34



2. Restrictions and assumptions about Agda

Theorem

I Assume Agda code with these restrctions.

I Assume r : A in normal form, where A is an algebraic data type.

I Then r starts with a constructor.

Especially,

I If r : List Digit, r in normal form, then r = [d1, . . . , dn] for some n
and di ∈ {−1, 0, 1}.

21/ 34



3. Proof Part 1: Proof of Theorem assuming simple pattern
matching

1. Introduction

2. Restrictions and assumptions about Agda

3. Proof Part 1: Proof of Theorem assuming simple pattern matching

4. Proof Part 2: Reduction to simple pattern matching

5. Conclusion

22/ 34



3. Proof Part 1: Proof of Theorem assuming simple pattern
matching

Proof

I Assume we have only simple pattern matching for functions with
result types non-generalised algebraic/coalgebraic data types, i.e.
functions are defined by pattern matching have only complete
non-nested patterns on one argument:

f : (a1 : A1) → · · · → (ak : Ak) → · · · → (an : An) → An+1

f x1 · · · xk−1 (C1 y1
1 · · · y1

n1
) xk+1 · · · xn = s1

· · ·
f x1 · · · xk−1 (Cl y l

1 · · · y l
nl

) xk+1 · · · xn = s1

or

f : (a1 : A1) → · · · → (ak : Ak) → · · · → (an : An) → An+1

f x1 · · · xk−1 () xk+1 · · · xn

23/ 34



3. Proof Part 1: Proof of Theorem assuming simple pattern
matching

Proof of Part 1

I Induction on length of r .

I Assume r : A in normal form, A algebraic data type.

I Show r starts with a constructor.
I Let r = f r1 · · · rn.

I Assume f is not a constructor.
I f cannot be a postulated function or defined by case distinction on an

equality.
I f cannot be directly defined.
I So f is defined by pattern matching on one argument say argument

No. i .
I By IH ri starts with a constructor.
I So r reduces in one step, is not in normal form, a contradiction.

24/ 34



4. Proof Part 2: Reduction to simple pattern matching

1. Introduction

2. Restrictions and assumptions about Agda

3. Proof Part 1: Proof of Theorem assuming simple pattern matching

4. Proof Part 2: Reduction to simple pattern matching

5. Conclusion

25/ 34



4. Proof Part 2: Reduction to simple pattern matching

Theorem

I Agda code following the assumptions can be reduced to
I normalising and coverage complete Agda code
I fulfilling the assumptions and
I using only simple pattern matching for functions having result types

non-generalised (co)algebraic data types.

26/ 34



4. Proof Part 2: Reduction to simple pattern matching

Proof

I Assume a function which has no simple pattern matching:

f : (x1 : B1) → · · · → (xn : Bn) → A
f x1 · · · xk−1 r1

k · · · r1
n = s1

· · ·
f x1 · · · xk−1 r l

k · · · r l
n = sl

where one of r i
k is not a variable.

27/ 34



4. Proof Part 2: Reduction to simple pattern matching

Step 1

I Replace if r i
k is a variable this by having a simple pattern matching on

that argument:
Assume Bk has constructors C1, . . . ,Cl (we assume here the easier
case of non-indexed inductive definitions).
Assume r1

k is a variable.
Replace the above by

f : (x1 : B1) → · · · → (xn : Bn) → A
f x1 · · · xk−1 (C1 y1

1 · · · y1
n1

) r1
k · · · r1

n=s1[· · · ]
· · ·
f x1 · · · xk−1 (Cl y l

1 · · · y l
nl

) r1
k · · · r1

n=s1[· · · ]
f x1 · · · xk−1 r2

k · · · r1
n=s2

· · ·
f x1 · · · xk−1 r l

k · · · r l
n=sl

28/ 34



4. Proof Part 2: Reduction to simple pattern matching

Step 2

I Assume Step 1 has been carried out so that no variables occur in
column k .

29/ 34



4. Proof Part 2: Reduction to simple pattern matching

Step 2

I Assume we have

f : (x1 : B1) → · · · → (xn : Bn) → A

f x1 · · · xk−1 (C1 s1,1
1 · · · s1,1

n1 ) r1,1
k+1 · · · r

1,1
n = t1,1

· · ·
f x1 · · · xk−1 (C1 s1,j

1 · · · s1,j
n1 ) r1,j

k+1 · · · r
1,j
n = t j ,1

f x1 · · · xk−1 (C2 s2,1
1 · · · s2,1

n2 ) r2,1
k+1 · · · r

2,1
n = t2,1

· · ·
f x1 · · · xk−1 (C2 s2,j ′

1 · · · s2,j ′
n2 ) r2,j ′

k+1 · · · r
2,j ′
n = t2,j ′

· · ·
f x1 · · · xk−1 (Cl s l ,1

1 · · · s l ,1
nl ) r l ,1

k+1 · · · r
l ,1
n = t l ,1

· · ·
f x1 · · · xk−1 (Cl s l ,j ′

1 · · · s l ,j ′
nl ) r l ,j ′

k+1 · · · r
l ,j ′
n = t l ,j ′

30/ 34



4. Proof Part 2: Reduction to simple pattern matching

Step 2

I Replace this by defining mutually

f : (x1 : B1) → · · · → (xn : Bn) → A
f x1 · · · xk−1 (C1 y1 · · · yn1) xk+1 · · · xn

= g1 x1 · · · xk−1 y1 · · · yn1 xk+1 · · · xn

· · ·
f x1 · · · xk−1 (Cl y1 · · · ynl

) xk+1 · · · xn

= gl x1 · · · xk−1 y1 · · · ynl
xk+1 · · · xn

· · ·
gi : · · ·
gi x1 · · · xk−1 s i ,1

1 · · · s i ,1
ni r i ,1

k+1 · · · r
i ,1
n = t i ,1[· · · ]

· · ·
gi x1 · · · xk−1 s i ,j ′′

1 · · · s i ,j ′′
ni r i ,j ′′

k+1 · · · r
i ,j ′′
n = t i ,j ′′ [· · · ]

31/ 34



4. Proof Part 2: Reduction to simple pattern matching

Termination of this Procudure

I Difficulty: find a well-founded measure for Agda code such that after
carrying out several steps 1 and one step 2 the measure is reduced.

I Problem: Step 1 increases the length of the pattern matching.

32/ 34



5. Conclusion

1. Introduction

2. Restrictions and assumptions about Agda

3. Proof Part 1: Proof of Theorem assuming simple pattern matching

4. Proof Part 2: Reduction to simple pattern matching

5. Conclusion

33/ 34



5. Conclusion

Conclusion

I We can extract in Agda programs from proofs using postulated
axioms, if restrictions are applied.

I Chi Ming Chuang has shown that signed digit reals are closed under
av and ∗ and contain the rationals.

I We could obtain programs normalising to signed digit representations
for some real numbers.

I In order to execute them the compiled version of Agda needed to be
used.

34/ 34


	1. Introduction
	2. Restrictions and assumptions about Agda
	3. Proof Part 1: Proof of Theorem assuming simple pattern matching
	4. Proof Part 2: Reduction to simple pattern matching
	5. Conclusion

