Schemata for Proofs by Coinduction

Anton Setzer Swansea University

With contributions by Andreas Abel, Ulrich Berger, Peter Hancock, Brigitte Pientka, David Thibodeau

Bergerfest and PCC, LMU Munich, 5 May 2016

Happy Birthday

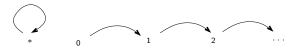
(Co)Iteration – (Co)Recursion – (Co)Induction

Schemata for Corecursive Definitions and Coinductive Proofs

 \mathbb{N}^{∞} , CoEven, CoOdd

Desired Coinductive Proof

- We want to have coinductive proof which are similar to inductive proofs
- Consider an unlabelled Transition system:



- ▶ A proof of $\forall n \in \mathbb{N}.* \sim n$ by coinduction could be as follows:
 - ▶ We show $\forall n \in \mathbb{N}.* \sim n$ by coinduction on \sim .
 - Assume $* \longrightarrow x$. We need to find y s.t. $n \longrightarrow y$ and $x \sim y$. Choose y = n + 1. By **co-IH** $* \sim n + 1$.
 - Assume $n \longrightarrow y$. We need to find x s.t. $* \longrightarrow x$ and $x \sim y$. Choose x = *. By **co-IH** $* \sim n + 1$.
- ▶ In essence same proof, but hopefully easier to teach and use.

Introduction/Elimination of Inductive/Coinductive Sets

► Introduction rules for the **inductive set** of natural numbers means that we have

$$0 \in \mathbb{N}$$
 $S: \mathbb{N} \to \mathbb{N}$

so we have an N-algebra

$$(\mathbb{N}, 0, S) \in (X \in Set) \times X \times (X \to X)$$

Dually, coinductive sets are given by their elimination rules i.e. by observations or eliminators.

As an example we consider Stream:

head : Stream $\rightarrow \mathbb{N}$

tail : Stream \rightarrow Stream

We obtain a Stream-coalgebra

(Stream, head, tail)
$$\in (X \in Set) \times (X \to \mathbb{N}) \times (X \to X)$$

Unique Iteration

- ▶ That $(\mathbb{N}, 0, \mathbb{S})$ are minimal can be given by:
 - ▶ Assume another \mathbb{N} -algebra (X, z, s), i.e.

$$z \in X$$

 $s: X \to X$

▶ Then there exist a **unique homomorphism** $g:(\mathbb{N},0,\mathrm{S})\to (X,z,s)$, i.e.

$$g: \mathbb{N} \to X$$

 $g(0) = z$
 $g(S(n)) = s(g(n))$

- ▶ This is the same as saying $\mathbb N$ is an initial $F_{\mathbb N}$ -algebra.
- This means we can define uniquely

$$g: \mathbb{N} \to X$$
 $g(0) = x$ for some $x \in X$
 $g(S(n)) = x'$ for some $x' \in X$ depending on $g(n)$

- This is the principle of unique iteration.
- Definition by pattern matching.

Unique Coiteration

- ▶ Dually, that (Stream, head, tail) is maximal can be given by:
 - ▶ Assume another Stream-coalgebra (X, h, t):

$$\begin{array}{ccc} h & : & X \to \mathbb{N} \\ t & : & X \to X \end{array}$$

► Then there exist a **unique homomorphism** $g:(X,h,t) \rightarrow (\text{Stream}, \text{head}, \text{tail})$, i.e.:

$$g: X \to \text{Stream}$$

 $\text{head}(g(x)) = h(x)$
 $\text{tail}(g(x)) = g(t(x))$

Means we can define uniquely

$$g: X o ext{Stream}$$

 $\operatorname{head}(g(x)) = n$ for some $n \in \mathbb{N}$ depending on x
 $\operatorname{tail}(g(x)) = g(x')$ for some $x' \in X$ depending on x

This is the principle of unique coiteration.

Definition by copattern matching.

Unique Primitive (Co)Recursion

- ► From unique iteration for N we can derive the principle of unique primitive recursion:
 - ► We can define uniquely

$$g: \mathbb{N} \to X$$
 $g(0) = x$ for some $x \in X$
 $g(S(n)) = x'$ for some $x' \in X$ depending on n , $g(n)$

- From unique coiteration we can derive the principle of unique primitive corecursion:
 - ► We can define uniquely

```
g: X \to \text{Stream}

\text{head}(g(x)) = n \text{ for some } n \in \mathbb{N} \text{ depending on } x

\text{tail}(g(x))) = g(x') \text{ for some } x' \in X \text{ depending on } x

or

= s \text{ for some } s \in \text{Stream depending on } x
```

Induction

Induction is essentially used to prove uniqueness of iteration and primitive recursion.

Theorem

Let $(\mathbb{N}, 0, S)$ be an \mathbb{N} -algebra. The following is equivalent

- 1. The principle of unique iteration.
- 2. The principle of unique primitive recursion.
- 3. The principle of iteration + induction.
- 4. The principle of primitive recursion + induction.

Coinduction

- ► Uniqueness in coiteration is equivalent to the principle: **Bisimulation implies equality**
- ▶ Bisimulation on Stream is the largest relation \sim on Stream s.t.

$$s \sim s' \to \operatorname{head}(s) = \operatorname{head}(s') \wedge \operatorname{tail}(s) \sim \operatorname{tail}(s')$$

- ightharpoonup Largest can be expressed as \sim being an indexed coinductively defined set.
- \blacktriangleright Primitive corecursion over \sim means:

We can prove

$$\forall s, s'. X(s, s') \rightarrow s \sim s'$$

by showing

$$X(s, s') \rightarrow \operatorname{head}(s) = \operatorname{head}(s')$$

 $X(s, s') \rightarrow X(\operatorname{tail}(s), \operatorname{tail}(s')) \vee \operatorname{tail}(s) \sim \operatorname{tail}(s')$

Schema of Coinduction

- Combining
 - bisimulation implies equality
 - bisimulation can be shown corecursively

we obtain the following principle of **coinduction**:

▶ We can prove

$$\forall s, s'. X(s, s') \rightarrow s = s'$$

by showing

$$\forall s, s'. X(s, s') \rightarrow \operatorname{head}(s) = \operatorname{head}(s')$$

 $\forall s, s'. X(s, s') \rightarrow \operatorname{tail}(s) = \operatorname{tail}(s')$

where tail(s) = tail(s') can be derived

- directly or
- from a proof of

invoking the **co-induction-hypothesis** (which can be only used directly)

$$X(\operatorname{tail}(s), \operatorname{tail}(s')) \to \operatorname{tail}(s) = \operatorname{tail}(s')$$

Example

▶ Define by primitive corecursion

```
\begin{array}{lll} s \in \operatorname{Stream} & & s' : \mathbb{N} \to \operatorname{Stream} \\ \operatorname{head}(s) & = & 0 & \operatorname{head}(s'(n)) & = & 0 \\ \operatorname{tail}(s) & = & s & \operatorname{tail}(s'(n)) & = & s'(n+1) \end{array}
```

 $cons : \mathbb{N} \to Stream \to Stream$ head(cons(n, s)) = ntail(cons(n, s)) = s

- ▶ We show $\forall n \in \mathbb{N}.s = s'(n)$ by **coinduction**: Assume $n \in \mathbb{N}$. head(s) = head(s'(n)) and tail(s) = s = s'(n+1) = tail(s'(n)), where s = s'(n+1) follows by the **co-IH**.
- ▶ We show cons(0, s) = s by coinduction: head(cons(0, s)) = 0 = head(s) and tail(cons(0, s)) = s = tail(s), where we did not use the co-IH.

Equivalence

Theorem

Let (Stream, head, tail) be a Stream-coalgebra. The following is equivalent

- 1. The principle of unique coiteration.
- 2. The principle of unique primitive corecursion.
- 3. The principle of coiteration + coinduction
- 4. The principle of primitive corecursion + coinduction

Duality

Inductive DefinitionCoinductive DefinitionDetermined by IntroductionDetermined by Observation/EliminationIterationCoiterationPattern matchingCopattern matchingPrimitive RecursionPrimitive CorecursionInductionCoinductionInduction-HypothesisCoinduction-Hypothesis

-

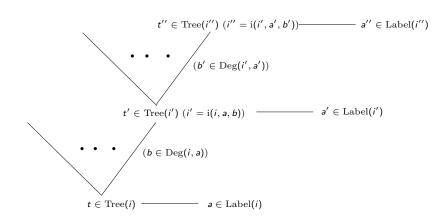
¹This table is essentially due to Peter Hancock.

(Co)Iteration - (Co)Recursion - (Co)Induction

Schemata for Corecursive Definitions and Coinductive Proofs

№, CoEven, CoOdd

Generalisation: Petersson-Synek Trees (or Fixed Points of Containers)



Petersson-Synek Trees (PST)

- Strictly positive inductive definitions can be reduced to the PSTs
- ► Inductive PSTs are the data types

```
data Tree : I \rightarrow Set where

C : (((i \in I) \times (a \in Label(i)) \times ((b \in Deg(i, a)) \rightarrow Tree(j(i, a, b)))

\rightarrow Tree(i)
```

Coinductive PSTs are defined follows:

```
coalg Tree<sup>\infty</sup>: I \rightarrow Set where
label : ((i \in I) \times \text{Tree}^{\infty}(i)) \rightarrow \text{Label}(i)
subtree : ((i \in I) \times (t \in \text{Tree}^{\infty}(i)) \times (b \in \text{Deg}(i, \text{label}(i, t))))
\rightarrow \text{Tree}^{\infty}(j(i, \text{label}(i, t), b))
```

Equivalence of unique (Co)induction, (Co)recursion, (Co)induction

- ► The notions of (co)iteration, primitive (co)recursion, (co)induction can be generalised in a straightforward way to PSTs and Co-PSTs.
- ▶ One can show the equivalence of
 - ▶ unique iteration, unique primitive recursion, iteration + induction, primitive recursion + induction
 - unique coiteration, unique primitive corecursion, coiteration + coinduction, primitive corecursion + coinduction

Schema for Primitive Corecursion

Consider

```
coalg Tree<sup>\infty</sup>: I \rightarrow Set where
label : ((i \in I) \times \text{Tree}^{\infty}(i)) \rightarrow \text{Label}(i)
subtree: ((i \in I) \times (t \in \text{Tree}^{\infty}(i)) \times (b \in \text{Deg}(i, \text{label}(i, t))))
\rightarrow \text{Tree}^{\infty}(j(i, \text{label}(i, t), b))
```

We can define a function

$$f: ((i \in I) \times X(i)) \to \operatorname{Tree}^{\infty}(i)$$

 $label(i, f(i, x)) = a'(i, x) \in Label(i)$
 $subtree(i, f(i, x), b) = t'(i, x, b) \in \operatorname{Tree}^{\infty}(i')$ with $i' := j(i, a', b)$
where $a'(i, x) \in Label(i)$
and $t'(i, x, b)$ can be defined

- ▶ as an element of $\mathrm{Tree}^{\infty}(i')$ defined before
- or corecursively defined as $\operatorname{subtree}(i, f(i, x), b) = f(i', x')$ for some $x' \in X(i')$.

Here f(i', x') will be called the **corecursion hypothesis**.

Schema for Coinduction

Assume

$$\begin{array}{lcl} J & \in & \mathrm{Set} \\ \widehat{i} & : & J \to \mathrm{I} \\ x_0, x_1 & : & (j \in J) \to \mathrm{Tree}^{\infty}(\widehat{i}(j)) \end{array}$$

We can show $\forall j \in J.x_0(j) = x_0(j')$ coinductively by showing

- ▶ label $(\hat{i}(j), x_0(j))$ and label $(\hat{i}(j), x_1(j))$ are equal
- ▶ and for all b that subtree $(\hat{i}(j), x_0(j), b)$ and subtree $(\hat{i}(j), x_0(j), b)$ are equal, where we can use either the fact that
 - this was shown before,
 - or we can use the **coinduction-hypothesis**, which means using the fact subtree(î(j), x₀(j), b) = x₀(j') and subtree(î(j), x₁(j), b) = x₁(j') for some j' ∈ J.

(Co)Iteration – (Co)Recursion – (Co)Induction

Schemata for Corecursive Definitions and Coinductive Proofs

 \mathbb{N}^{∞} , CoEven, CoOdd

Coinduction over Coinductively Defined Predicates

- When carrying out proofs over coinductively defined sets, one often proves a predicate which is defined coinductively indexed over the coinductively defined sets.
- ► So we have indexed coinductively defined sets, which can be introduced by corecursion.
- ▶ A proof by corecursion can be considered as a proof by coinduction.
- ▶ We consider the example of the co-natural numbers.

coalg
$$\mathbb{N}^{\infty} \in \text{Set where}$$

shape: $\mathbb{N}^{\infty} \to (0 + S(\mathbb{N}^{\infty}))$

 $ightharpoonup \mathbb{N}^{\infty}$ can be reduced to non-indexed PSTs:

$$\begin{array}{lll} \operatorname{coalg} \ \mathbb{N}^{\infty} \in \operatorname{Set} \ \operatorname{where} \\ \operatorname{label} & : \ \mathbb{N}^{\infty} \to \{0, \mathrm{S}\} \\ \operatorname{subtree} & : \ ((n \in \mathbb{N}^{\infty}) \times \operatorname{Deg}(\operatorname{label}(n))) \to \mathbb{N}^{\infty} \\ \operatorname{where} & \operatorname{Deg}(0) & = \ \emptyset \\ \operatorname{Deg}(\mathrm{S}) & = \ \{*\} \end{array}$$

Define + by primitive corecursion

$$-+$$
 : $(\mathbb{N}^{\infty} \times \mathbb{N}^{\infty}) \to \mathbb{N}^{\infty}$
 $\operatorname{shape}(n+m) = \operatorname{case shape}(m) \text{ of}$
 $\{ \begin{array}{ccc} 0 & \longrightarrow & \operatorname{shape}(n) \\ S(m') & \longrightarrow & S(n+m') \end{array} \}$

CoEven, CoOdd

We define simultaneously coinductively

CoEven: $\mathbb{N}^{\infty} \to \text{Set}$ CoEven $(n) \to \text{CoEvenCond}(\text{shape}(n))$

 $\operatorname{CoOdd}: \mathbb{N}^{\infty} \to \operatorname{Set}$ $\operatorname{CoOdd}(n) \to \operatorname{CoOddCond}(\operatorname{shape}(n))$

where

CoEvenCond(0) is true CoEvenCond(S(m)) = CoOdd(m)

CoOddCond(0) doesn't hold CoOddCond(S(m)) = CoEven(m)

CoEven. CoOdd as PSTs

▶ Define CoEven, CoOdd as one PST indexed over

```
I := \{CoEven, CoOdd\} \times \mathbb{N}^{\infty} \times \mathbb{N}^{\infty}
coalg CoEvenOdd : I \rightarrow Set where
   label : ((i \in I) \times CoEvenOdd(i)) \rightarrow Label(i)
   subtree : ((i \in I) \times (p \in CoEvenOdd(i)) \times Deg(i, label(i, p)))
                     \rightarrow CoEvenOdd(i(i))
```

where

Label
$$(c, n, m)$$
 = $\begin{cases} \emptyset & \text{if shape}(m) = 0 \text{ and } c = \text{CoOdd} \\ \{*\} & \text{otherwise} \end{cases}$
Deg (c, n, m) = $\begin{cases} \emptyset & \text{if shape}(m) = 0 \text{ and } c = \text{CoEven} \\ \{*\} & \text{otherwise} \end{cases}$
j(CoEven, n, m) = (CoOdd, $n, \text{pred}(m)$)
j(CoOdd, n, m) = (CoEven, $n, \text{pred}(m)$)

Closure of CoEven under +

We show simultaneously

$$\forall n, m \in \mathbb{N}^{\infty}. \text{CoEven}(n) \to \text{CoEven}(m) \to \text{CoEven}(n+m)$$

 $\forall n, m \in \mathbb{N}^{\infty}. \text{CoEven}(n) \to \text{CoOdd}(m) \to \text{CoOdd}(n+m)$

by coinduction on CoEven, CoOdd

- Assume n, m, CoEven(n), CoEven(m). For showing CoEven(n+m) we have to show CoEvenCond(shape(n+m)).
 - ▶ If $\operatorname{shape}(m) = \operatorname{zero} \operatorname{then } \operatorname{shape}(n+m) = \operatorname{shape}(n)$ and by $\operatorname{CoEven}(n)$ we have $\operatorname{CoEvenCond}(\operatorname{shape}(n))$.
 - If shape(m) = S(m') then shape(n+m) = S(n+m'), CoEvenCond(shape(n+m)) = CoOdd(n+m') which follows by the colH and CoOdd(m').
- ► The proof of the second condition follows similarly

Conclusion

- Coiteration, primitive corecursion, coinduction are the duals of iteration, primitive recursion, induction.
- In iteration/recursion/induction, the instances of the co-IH used are restricted, but the result can be used in arbitrary functions and formulas.
- ► In coiteration/corecursion/coinduction, the instances of the co-IH are unrestricted, but the result can be only used directly.
- General case of indexed coinductively defined sets can be reduced to co-PSTs.
- ► Schemata for primitive corecursion and coinduction.
- Schemata can be applied to indexed coinductively defined sets and relations.
- ▶ Relations on coinductively defined sets seem to be often coinductively defined indexed relations and can be shown by indexed corecursion.

Happy Birthday

