Schemata for Proofs by Coinduction

Anton Setzer
Swansea University
With contributions by Andreas Abel, Ulrich Berger,
Peter Hancock, Brigitte Pientka, David Thibodeau

Bergerfest and PCC, LMU Munich, 5 May 2016

Happy Birthday

http://www.cs.swan.ac.uk/~csetzer/index.html
http://www.swansea.ac.uk/compsci/

(Co)lteration — (Co)Recursion — (Co)Induction

Schemata for Corecursive Definitions and Coinductive Proofs

N°°, CoEven, CoOdd

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 2/ 27

(Co)lteration — (Co)Recursion — (Co)Induction

Desired Coinductive Proof

v

We want to have coinductive proof which are similar to inductive
proofs

v

Consider an unlabelled Transition system:

(D
1 2

* 0

v

A proof of ¥n € N.x ~ n by coinduction could be as follows:
» We show Vn € N.x ~ n by coinduction on ~.
> Assume * —> x. We need to find y s.t. n — y and x ~ y. Choose
y=n+1 Byco-IH x~n+1.
> Assume n — y. We need to find x s.t. * — x and x ~ y. Choose
x =x%. By co-IH * ~ n+ 1.

v

In essence same proof, but hopefully easier to teach and use.

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 3/ 27

(Co)lteration — (Co)Recursion — (Co)Induction

Introduction/Elimination of Inductive/Coinductive Sets

» Introduction rules for the inductive set of natural numbers means

that we have
0eN
S:N— N

so we have an N-algebra
(N,0,S) € (X € Set) x X x (X = X)

» Dually, coinductive sets are given by their elimination rules i.e. by
observations or eliminators.
As an example we consider Stream:

head : Stream — N
tail : Stream — Stream

We obtain a Stream-coalgebra
(Stream, head, tail) € (X € Set) x (X — N) x (X = X)

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 4/ 27

(Co)lteration — (Co)Recursion — (Co)Induction

Unique lteration

» That (N,0,S) are minimal can be given by:
» Assume another N-algebra (X, z,s), i.e.

ze X
s: X=X
» Then there exist a unique homomorphism g : (N, 0,S) — (X, z,s),
i.e.
g:N—=> X
g0) = z

g(5(n) = s(g(n)
» This is the same as saying N is an initial Fy-algebra.
» This means we can define uniquely

g N—=X
g(0) = x forsome x € X
g(S(n)) = x’ for some x’ € X depending on g(n)

» This is the principle of unique iteration.
» Definition by pattern matching.

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 5/ 27

(Co)lteration — (Co)Recursion — (Co)Induction

Unique Coiteration

» Dually, that (Stream, head, tail) is maximal can be given by:
» Assume another Stream-coalgebra (X, h, t):

h : X—=N
t : X=X

» Then there exist a unique homomorphism
g : (X, h,t) — (Stream, head, tail), i.e.:

g : X — Stream
head(g(x)) = h(x)
tail(g(x)) = g(t(x))

» Means we can define uniquely

g : X — Stream
head(g(x)) = n for some n € N depending on x
tail(g(x)) = g(x’) for some x’ € X depending on x

This is the principle of unique coiteration.
» Definition by copattern matching.

Anton Setzer (Swansea) Schemata for Proofs by Coinduction

6/ 27

(Co)lteration — (Co)Recursion — (Co)Induction

Unique Primitive (Co)Recursion

» From unique iteration for N we can derive the principle of
unique primitive recursion:

» We can define uniquely

g N—=X
g(0) = x forsomexe X
g(S(n)) = x’ for some x’ € X depending on n, g(n)

» From unique coiteration we can derive the principle of
unique primitive corecursion:

» We can define uniquely

g : X — Stream

head(g(x)) = n for some n € N depending on x
tail(g(x))) = g(x’) for some x’ € X depending on x
or

= s for some s € Stream depending on x

Anton Setzer (Swansea) Schemata for Proofs by Coinduction

7/ 27

(Co)lteration — (Co)Recursion — (Co)Induction

Induction

» Induction is essentially used to prove uniqueness of iteration and
primitive recursion.

Theorem
Let (N,0,S) be an N-algebra. The following is equivalent
1. The principle of unique iteration.
2. The principle of unique primitive recursion.
3. The principle of iteration + induction.
4

The principle of primitive recursion + induction.

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 8/ 27

(Co)lteration — (Co)Recursion — (Co)Induction

Coinduction

» Uniqueness in coiteration is equivalent to the principle:
Bisimulation implies equality
» Bisimulation on Stream is the largest relation ~ on Stream s.t.

s ~ s’ — head(s) = head(s’) A tail(s) ~ tail(s")

» Largest can be expressed as ~ being an indexed coinductively defined
set.

» Primitive corecursion over ~ means:
We can prove
Vs, s’ X(s,s') > s~s

by showing

X(s,s') — head(s) = head(s’)
X(s,s') — X(tail(s), tail(s")) V tail(s) ~ tail(s")

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 9/ 27

(Co)lteration — (Co)Recursion — (Co)Induction

Schema of Coinduction

» Combining
» bisimulation implies equality
» bisimulation can be shown corecursively
we obtain the following principle of coinduction:
» We can prove
Vs, s’ X(s,s') > s=¢
by showing
Vs,s'.X(s,s’) — head(s) = head(s')
Vs,s'.X(s,s') — tail(s) = tail(s’)
where tail(s) = tail(s’) can be derived
» directly or
» from a proof of
X(tail(s), tail(s"))
invoking the co-induction-hypothesis (which can be only used
directly)
X(tail(s), tail(s")) — tail(s) = tail(s")

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 10/ 27

(Co)lteration — (Co)Recursion — (Co)Induction

Example

» Define by primitive corecursion

s € Stream s’ : N — Stream

head(s) = 0 head(s'(n)) =

tail(s) = s tail(s'(n)) = s'(n+1)
cons : N — Stream — Stream

head(cons(n,s)) = n

tail(cons(n,s)) = s

» We show Vn € N.s = s'(n) by coinduction:
Assume n € N. head(s) = head(s’(n)) and
tail(s) = s = s'(n + 1) = tail(s’(n)), where s = s’(n + 1) follows by
the co-IH.

» We show cons(0, s) = s by coinduction:
head(cons(0,s)) = 0 = head(s) and tail(cons(0,s)) = s = tail(s),
where we did not use the co-IH.

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 11/ 27

(Co)lteration — (Co)Recursion — (Co)Induction

Equivalence

Theorem

Let (Stream, head, tail) be a Stream-coalgebra. The following is
equivalent

The principle of unique coiteration.
The principle of unique primitive corecursion.

The principle of coiteration + coinduction

Sl A

The principle of primitive corecursion + coinduction

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 12/ 27

(Co)lteration — (Co)Recursion — (Co)Induction

Duality

Inductive Definition

Coinductive Definition

Determined by Introduction

Determined by Observation/Elimination

Iteration

Coiteration

Pattern matching

Copattern matching

Primitive Recursion

Primitive Corecursion

Induction

Coinduction

Induction-Hypothesis

Coinduction-Hypothesis

'This table is essentially due to Peter Hancock.

Anton Setzer (Swansea) Schemata for Proofs by Coinduction

13/ 27

Schemata for Corecursive Definitions and Coinductive Proofs

Schemata for Corecursive Definitions and Coinductive Proofs

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 14/ 27

t"” € Tree(i”) (i"” =i(i’,a’, b"))

(b" € Deg(i’,a"))

t' € Tree(i’) (i’ =i(i, a, b))

(b € Deg(i, a))

t € Tree(j) —— a € Label(i)

a’”’ € Label(i”’)

a’ € Label(i")

Schemata for Corecursive Definitions and Coinductive Proofs

Petersson-Synek Trees (PST)

» Strictly positive inductive definitions can be reduced to the PSTs
» Inductive PSTs are the data types

data Tree : I — Set where
C: (((1 € I) x (a € Label(i))
X((b € Deg(i,a)) — Tree(j(i, a, b))
— Tree(/)

» Coinductive PSTs are defined follows:

coalg Tree™ : I — Set where
label : ((7 € I) x Tree®(i)) — Label(/)
subtree : ((i € I) x (t € Tree™(i))
x (b € Deg(i,label(i, t))))
— Tree™(j(i,label(i, t), b))

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 16/ 27

Schemata for Corecursive Definitions and Coinductive Proofs

Equivalence of unique (Co)induction, (Co)recursion,
(Co)induction

» The notions of (co)iteration, primitive (co)recursion, (co)induction
can be generalised in a straightforward way to PSTs and Co-PSTs.
» One can show the equivalence of
> unique iteration, unique primitive recursion, iteration + induction,
primitive recursion + induction

> unique coiteration, unique primitive corecursion, coiteration +
coinduction, primitive corecursion + coinduction

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 17/ 27

Schemata for Corecursive Definitions and Coinductive Proofs

Schema for Primitive Corecursion

» Consider

coalg Tree™ : I — Set where
label : ((i € I) x Tree>(i)) — Label(i)
subtree: ((i € I) x (t € Tree™(i)) x (b € Deg(i,label(i, t))))
— Tree™(j(i,label(i, t), b))

» We can define a function

f:((i €I) x X(i)) = Tree>(i)
label(/, f(i,x)) = 4d'(i,x) € Label(i)
subtree(i, f(i,x),b) = t'(i,x,b) € Tree>®(i") with /" :=j(i,d,b)
where &'(i, x) € Label()
and t'(i, x, b) can be defined
» as an element of Tree™ (i) defined before
» or corecursively defined as subtree(/, (i, x), b) = f(i’, x’)
for some x’ € X(i’).
Here 7(i’,x") will be called the corecursion hypothesis.

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 18/ 27

Schemata for Corecursive Definitions and Coinductive Proofs

Schema for Coinduction

» Assume
J € Set
7 SV |
xo,x1 ¢ (€ J) — Tree(i()))

We can show Vj € J.xo(j) = x0(j’) coinductively by showing

» label(i(j), xo(j)) and label(i(j), x1(j)) are equal
» and for all b that R
subtree(i(j), xo(j), b) and subtree(i(y), xo(j), b) are equal,
where we can use either the fact that
» this was shown before,
> or we can use the coinduction-hypothesis, which means using the

fact
subtree(i(j), xo(j), b) = x0(j’) and subtree(i(j), x1(j), b) = x1(j') for
some j' € J.

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 19/ 27

(Co)lteration — (Co)Recursion — (Co)Induction

Schemata for Corecursive Definitions and Coinductive Proofs

N, CoEven, CoOdd

N°°, CoEven, CoOdd

Coinduction over Coinductively Defined Predicates

» When carrying out proofs over coinductively defined sets, one often
proves a predicate which is defined coinductively indexed over the
coinductively defined sets.

v

So we have indexed coinductively defined sets, which can be
introduced by corecursion.

v

A proof by corecursion can be considered as a proof by coinduction.

v

We consider the example of the co-natural numbers.

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 21/ 27

coalg N°° € Set where
shape : N*© — (0 + S(N*°))
» N can be reduced to non-indexed PSTs:
coalg N*© € Set where
label . N> — {0,S}

subtree : ((n € N*°) x Deg(label(n))) — N>
where Deg(0) = 0
Deg(S) = {+}
» Define + by primitive corecursion
~4 - (N®° x N*°) — N>
shape(n + m) = case shape(m) of
{0 — shape(n)
S(m'y — S(h+m') }
~ Anton Setzer (Swansea) Schemata for Proofs by Coinduction 22/ 21

N°°, CoEven, CoOdd

CoEven, CoOdd

» We define simultaneously coinductively

where

Anton Setzer (Swansea)

CoEven : N*° — Set
CoEven(n) — CoEvenCond(shape(n))

CoOdd : N*° — Set
Co0dd(n) — CoOddCond(shape(n))

CoEvenCond(0) is true
CoEvenCond(S(m)) = CoOdd(m)

Co0OddCond(0) doesn't hold
CoOddCond(S(m)) = CoEven(m)

Schemata for Proofs by Coinduction

23/ 27

N°°, CoEven, CoOdd

CoEven, CoOdd as PSTs

» Define CoEven, CoOdd as one PST indexed over
I := {CoEven, CoOdd} x N> x N

coalg CoEvenOdd : I — Set where
label . ((7 € I) x CoEvenOdd(i)) — Label(/)
subtree : ((i € I) x (p € CoEvenOdd(i)) x Deg(i,label(i, p)))
— CoEvenOdd(j(1))

where

_ f if shape(m) =0 and ¢ = CoOdd
Label(c,n,m) = { {x} otherwise
Deg(c, n, m) _ () if shape(m) =0 and ¢ = CoEven

{*} otherwise

j(CoEven,n,m) = (CoOdd, n,pred(m))
j(CoOdd, n,m) = (CoEven, n,pred(m))

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 24/ 27

N°°, CoEven, CoOdd

Closure of CoEven under +

» We show simultaneously

Vn, m € N*°.CoEven(n) — CoEven(m) — CoEven(n + m)
Vn, m € N*.CoEven(n) — CoOdd(m) — CoOdd(n + m)

by coinduction on CoEven, CoOdd
» Assume n, m, CoEven(n), CoEven(m).
For showing CoEven(n + m) we have to show
CoEvenCond(shape(n + m)).
> If shape(m) = zero then shape(n + m) = shape(n) and by CoEven(n)
we have CoEvenCond(shape(n)).
» If shape(m) = S(m’) then shape(n+ m) = S(n + m’),
CoEvenCond(shape(n + m)) = CoOdd(n + m’) which follows by the
colH and CoOdd(m').

» The proof of the second condition follows similarly

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 25/ 27

N°°, CoEven, CoOdd

Conclusion

» Coiteration, primitive corecursion, coinduction are the duals of
iteration, primitive recursion, induction.

» In iteration/recursion/induction, the instances of the co-IH used are
restricted, but the result can be used in arbitrary functions and
formulas.

» In coiteration/corecursion/coinduction, the instances of the co-IH are
unrestricted, but the result can be only used directly.

» General case of indexed coinductively defined sets can be reduced to
co-PSTs.

» Schemata for primitive corecursion and coinduction.

» Schemata can be applied to indexed coinductively defined sets and
relations.

» Relations on coinductively defined sets seem to be often coinductively
defined indexed relations and can be shown by indexed corecursion.

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 26/ 27

Happy Birthday

	(Co)Iteration – (Co)Recursion – (Co)Induction
	Schemata for Corecursive Definitions and Coinductive Proofs
	N, CoEven, CoOdd

