
Schemata for Proofs by Coinduction

Anton Setzer
Swansea University

With contributions by Andreas Abel, Ulrich Berger,
Peter Hancock, Brigitte Pientka, David Thibodeau

Bergerfest and PCC, LMU Munich, 5 May 2016

Happy Birthday

http://www.cs.swan.ac.uk/~csetzer/index.html
http://www.swansea.ac.uk/compsci/


(Co)Iteration – (Co)Recursion – (Co)Induction

Schemata for Corecursive Definitions and Coinductive Proofs

N∞, CoEven, CoOdd

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 2/ 27



(Co)Iteration – (Co)Recursion – (Co)Induction

Desired Coinductive Proof

I We want to have coinductive proof which are similar to inductive
proofs

I Consider an unlabelled Transition system:

1 20 · · ·∗

I A proof of ∀n ∈ N.∗ ∼ n by coinduction could be as follows:
I We show ∀n ∈ N.∗ ∼ n by coinduction on ∼.

I Assume ∗ −→ x . We need to find y s.t. n −→ y and x ∼ y . Choose
y = n + 1. By co-IH ∗ ∼ n + 1.

I Assume n −→ y . We need to find x s.t. ∗ −→ x and x ∼ y . Choose
x = ∗. By co-IH ∗ ∼ n + 1.

I In essence same proof, but hopefully easier to teach and use.

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 3/ 27



(Co)Iteration – (Co)Recursion – (Co)Induction

Introduction/Elimination of Inductive/Coinductive Sets

I Introduction rules for the inductive set of natural numbers means
that we have

0 ∈ N
S : N→ N

so we have an N-algebra

(N, 0,S) ∈ (X ∈ Set)× X × (X → X )

I Dually, coinductive sets are given by their elimination rules i.e. by
observations or eliminators.
As an example we consider Stream:

head : Stream→ N
tail : Stream→ Stream

We obtain a Stream-coalgebra

(Stream, head, tail) ∈ (X ∈ Set)× (X → N)× (X → X )

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 4/ 27



(Co)Iteration – (Co)Recursion – (Co)Induction

Unique Iteration

I That (N, 0, S) are minimal can be given by:
I Assume another N-algebra (X , z , s), i.e.

z ∈ X
s : X → X

I Then there exist a unique homomorphism g : (N, 0,S)→ (X , z , s),
i.e.

g : N→ X
g(0) = z
g(S(n)) = s(g(n))

I This is the same as saying N is an initial FN-algebra.
I This means we can define uniquely

g : N→ X
g(0) = x for some x ∈ X
g(S(n)) = x ′ for some x ′ ∈ X depending on g(n)

I This is the principle of unique iteration.
I Definition by pattern matching.

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 5/ 27



(Co)Iteration – (Co)Recursion – (Co)Induction

Unique Coiteration

I Dually, that (Stream, head, tail) is maximal can be given by:
I Assume another Stream-coalgebra (X , h, t):

h : X → N
t : X → X

I Then there exist a unique homomorphism
g : (X , h, t)→ (Stream,head, tail), i.e.:

g : X → Stream
head(g(x)) = h(x)
tail(g(x)) = g(t(x))

I Means we can define uniquely

g : X → Stream
head(g(x)) = n for some n ∈ N depending on x
tail(g(x)) = g(x ′) for some x ′ ∈ X depending on x

This is the principle of unique coiteration.
I Definition by copattern matching.

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 6/ 27



(Co)Iteration – (Co)Recursion – (Co)Induction

Unique Primitive (Co)Recursion

I From unique iteration for N we can derive the principle of
unique primitive recursion:

I We can define uniquely

g : N→ X
g(0) = x for some x ∈ X
g(S(n)) = x ′ for some x ′ ∈ X depending on n, g(n)

I From unique coiteration we can derive the principle of
unique primitive corecursion:

I We can define uniquely

g : X → Stream
head(g(x)) = n for some n ∈ N depending on x
tail(g(x))) = g(x ′) for some x ′ ∈ X depending on x

or
= s for some s ∈ Stream depending on x

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 7/ 27



(Co)Iteration – (Co)Recursion – (Co)Induction

Induction

I Induction is essentially used to prove uniqueness of iteration and
primitive recursion.

Theorem

Let (N, 0,S) be an N-algebra. The following is equivalent

1. The principle of unique iteration.

2. The principle of unique primitive recursion.

3. The principle of iteration + induction.

4. The principle of primitive recursion + induction.

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 8/ 27



(Co)Iteration – (Co)Recursion – (Co)Induction

Coinduction

I Uniqueness in coiteration is equivalent to the principle:
Bisimulation implies equality

I Bisimulation on Stream is the largest relation ∼ on Stream s.t.

s ∼ s ′ → head(s) = head(s ′) ∧ tail(s) ∼ tail(s ′)

I Largest can be expressed as ∼ being an indexed coinductively defined
set.

I Primitive corecursion over ∼ means:
We can prove

∀s, s ′.X (s, s ′)→ s ∼ s ′

by showing

X (s, s ′) → head(s) = head(s ′)
X (s, s ′) → X (tail(s), tail(s ′)) ∨ tail(s) ∼ tail(s ′)

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 9/ 27



(Co)Iteration – (Co)Recursion – (Co)Induction

Schema of Coinduction

I Combining
I bisimulation implies equality
I bisimulation can be shown corecursively

we obtain the following principle of coinduction:
I We can prove

∀s, s ′.X (s, s ′)→ s = s ′

by showing

∀s, s ′.X (s, s ′) → head(s) = head(s ′)
∀s, s ′.X (s, s ′) → tail(s) = tail(s ′)

where tail(s) = tail(s ′) can be derived
I directly or
I from a proof of

X (tail(s), tail(s ′))

invoking the co-induction-hypothesis (which can be only used
directly)

X (tail(s), tail(s ′))→ tail(s) = tail(s ′)

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 10/ 27



(Co)Iteration – (Co)Recursion – (Co)Induction

Example

I Define by primitive corecursion

s ∈ Stream
head(s) = 0
tail(s) = s

s ′ : N→ Stream
head(s ′(n)) = 0
tail(s ′(n)) = s ′(n + 1)

cons : N→ Stream→ Stream
head(cons(n, s)) = n
tail(cons(n, s)) = s

I We show ∀n ∈ N.s = s ′(n) by coinduction:
Assume n ∈ N. head(s) = head(s ′(n)) and
tail(s) = s = s ′(n + 1) = tail(s ′(n)), where s = s ′(n + 1) follows by
the co-IH.

I We show cons(0, s) = s by coinduction:
head(cons(0, s)) = 0 = head(s) and tail(cons(0, s)) = s = tail(s),
where we did not use the co-IH.

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 11/ 27



(Co)Iteration – (Co)Recursion – (Co)Induction

Equivalence

Theorem

Let (Stream,head, tail) be a Stream-coalgebra. The following is
equivalent

1. The principle of unique coiteration.

2. The principle of unique primitive corecursion.

3. The principle of coiteration + coinduction

4. The principle of primitive corecursion + coinduction

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 12/ 27



(Co)Iteration – (Co)Recursion – (Co)Induction

Duality

Inductive Definition Coinductive Definition

Determined by Introduction Determined by Observation/Elimination

Iteration Coiteration

Pattern matching Copattern matching

Primitive Recursion Primitive Corecursion

Induction Coinduction

Induction-Hypothesis Coinduction-Hypothesis

1

1This table is essentially due to Peter Hancock.
Anton Setzer (Swansea) Schemata for Proofs by Coinduction 13/ 27



Schemata for Corecursive Definitions and Coinductive Proofs

(Co)Iteration – (Co)Recursion – (Co)Induction

Schemata for Corecursive Definitions and Coinductive Proofs

N∞, CoEven, CoOdd

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 14/ 27



Schemata for Corecursive Definitions and Coinductive Proofs

Generalisation: Petersson-Synek Trees
(or Fixed Points of Containers)

�������� ����

�������� ����

t ∈ Tree(i)

t′′ ∈ Tree(i ′′) (i ′′ = i(i ′, a′, b′))

t′ ∈ Tree(i ′) (i ′ = i(i, a, b))

a ∈ Label(i)

a′ ∈ Label(i ′)

a′′ ∈ Label(i ′′)

(b ∈ Deg(i, a))

(b′ ∈ Deg(i ′, a′))

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 15/ 27



Schemata for Corecursive Definitions and Coinductive Proofs

Petersson-Synek Trees (PST)

I Strictly positive inductive definitions can be reduced to the PSTs

I Inductive PSTs are the data types

data Tree : I→ Set where
C : (((i ∈ I)× (a ∈ Label(i))
×((b ∈ Deg(i , a))→ Tree(j(i , a, b))
→ Tree(i)

I Coinductive PSTs are defined follows:

coalg Tree∞ : I→ Set where
label : ((i ∈ I)× Tree∞(i))→ Label(i)
subtree : ((i ∈ I)× (t ∈ Tree∞(i))

×(b ∈ Deg(i , label(i , t))))
→ Tree∞(j(i , label(i , t), b))

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 16/ 27



Schemata for Corecursive Definitions and Coinductive Proofs

Equivalence of unique (Co)induction, (Co)recursion,
(Co)induction

I The notions of (co)iteration, primitive (co)recursion, (co)induction
can be generalised in a straightforward way to PSTs and Co-PSTs.

I One can show the equivalence of
I unique iteration, unique primitive recursion, iteration + induction,

primitive recursion + induction
I unique coiteration, unique primitive corecursion, coiteration +

coinduction, primitive corecursion + coinduction

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 17/ 27



Schemata for Corecursive Definitions and Coinductive Proofs

Schema for Primitive Corecursion

I Consider

coalg Tree∞ : I→ Set where
label : ((i ∈ I)× Tree∞(i))→ Label(i)
subtree: ((i ∈ I)× (t ∈ Tree∞(i))× (b ∈ Deg(i , label(i , t))))

→ Tree∞(j(i , label(i , t), b))

I We can define a function

f : ((i ∈ I)× X (i))→ Tree∞(i)
label(i , f (i , x)) = a′(i , x) ∈ Label(i)
subtree(i , f (i , x), b) = t ′(i , x , b) ∈ Tree∞(i ′) with i ′ := j(i , a′, b)

where a′(i , x) ∈ Label(i)
and t ′(i , x , b) can be defined

I as an element of Tree∞(i ′) defined before
I or corecursively defined as subtree(i , f (i , x), b) = f (i ′, x ′)

for some x ′ ∈ X (i ′).
Here f (i ′, x ′) will be called the corecursion hypothesis.

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 18/ 27



Schemata for Corecursive Definitions and Coinductive Proofs

Schema for Coinduction

I Assume
J ∈ Set

î : J → I

x0, x1 : (j ∈ J)→ Tree∞(̂i(j))

We can show ∀j ∈ J.x0(j) = x0(j ′) coinductively by showing

I label(̂i(j), x0(j)) and label(̂i(j), x1(j)) are equal
I and for all b that

subtree(̂i(j), x0(j), b) and subtree(̂i(j), x0(j), b) are equal,
where we can use either the fact that

I this was shown before,
I or we can use the coinduction-hypothesis, which means using the

fact
subtree(̂i(j), x0(j), b) = x0(j ′) and subtree(̂i(j), x1(j), b) = x1(j ′) for
some j ′ ∈ J.

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 19/ 27



N∞, CoEven, CoOdd

(Co)Iteration – (Co)Recursion – (Co)Induction

Schemata for Corecursive Definitions and Coinductive Proofs

N∞, CoEven, CoOdd

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 20/ 27



N∞, CoEven, CoOdd

Coinduction over Coinductively Defined Predicates

I When carrying out proofs over coinductively defined sets, one often
proves a predicate which is defined coinductively indexed over the
coinductively defined sets.

I So we have indexed coinductively defined sets, which can be
introduced by corecursion.

I A proof by corecursion can be considered as a proof by coinduction.

I We consider the example of the co-natural numbers.

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 21/ 27



N∞, CoEven, CoOdd

N∞

coalg N∞ ∈ Set where
shape : N∞ → (0 + S(N∞))

I N∞ can be reduced to non-indexed PSTs:

coalg N∞ ∈ Set where
label : N∞ → {0, S}
subtree : ((n ∈ N∞)×Deg(label(n)))→ N∞

where Deg(0) = ∅
Deg(S) = {∗}

I Define + by primitive corecursion

+ : (N∞ × N∞)→ N∞

shape(n + m) = case shape(m) of
{ 0 −→ shape(n)

S(m′) −→ S(n + m′) }
Anton Setzer (Swansea) Schemata for Proofs by Coinduction 22/ 27



N∞, CoEven, CoOdd

CoEven, CoOdd

I We define simultaneously coinductively

CoEven : N∞ → Set
CoEven(n)→ CoEvenCond(shape(n))

CoOdd : N∞ → Set
CoOdd(n)→ CoOddCond(shape(n))

where
CoEvenCond(0) is true
CoEvenCond(S(m)) = CoOdd(m)

CoOddCond(0) doesn’t hold
CoOddCond(S(m)) = CoEven(m)

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 23/ 27



N∞, CoEven, CoOdd

CoEven, CoOdd as PSTs

I Define CoEven, CoOdd as one PST indexed over
I := {CoEven,CoOdd} × N∞ × N∞

coalg CoEvenOdd : I→ Set where
label : ((i ∈ I)× CoEvenOdd(i))→ Label(i)
subtree : ((i ∈ I)× (p ∈ CoEvenOdd(i))×Deg(i , label(i , p)))

→ CoEvenOdd(j(i))
where

Label(c , n,m) =

{
∅ if shape(m) = 0 and c = CoOdd
{∗} otherwise

Deg(c, n,m) =

{
∅ if shape(m) = 0 and c = CoEven
{∗} otherwise

j(CoEven, n,m) = (CoOdd, n,pred(m))
j(CoOdd, n,m) = (CoEven, n, pred(m))

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 24/ 27



N∞, CoEven, CoOdd

Closure of CoEven under +

I We show simultaneously

∀n,m ∈ N∞.CoEven(n)→ CoEven(m)→ CoEven(n + m)
∀n,m ∈ N∞.CoEven(n)→ CoOdd(m)→ CoOdd(n + m)

by coinduction on CoEven, CoOdd
I Assume n,m, CoEven(n), CoEven(m).

For showing CoEven(n + m) we have to show
CoEvenCond(shape(n + m)).

I If shape(m) = zero then shape(n + m) = shape(n) and by CoEven(n)
we have CoEvenCond(shape(n)).

I If shape(m) = S(m′) then shape(n + m) = S(n + m′),
CoEvenCond(shape(n + m)) = CoOdd(n + m′) which follows by the
coIH and CoOdd(m′).

I The proof of the second condition follows similarly

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 25/ 27



N∞, CoEven, CoOdd

Conclusion

I Coiteration, primitive corecursion, coinduction are the duals of
iteration, primitive recursion, induction.

I In iteration/recursion/induction, the instances of the co-IH used are
restricted, but the result can be used in arbitrary functions and
formulas.

I In coiteration/corecursion/coinduction, the instances of the co-IH are
unrestricted, but the result can be only used directly.

I General case of indexed coinductively defined sets can be reduced to
co-PSTs.

I Schemata for primitive corecursion and coinduction.

I Schemata can be applied to indexed coinductively defined sets and
relations.

I Relations on coinductively defined sets seem to be often coinductively
defined indexed relations and can be shown by indexed corecursion.

Anton Setzer (Swansea) Schemata for Proofs by Coinduction 26/ 27



Happy Birthday


	(Co)Iteration – (Co)Recursion – (Co)Induction
	Schemata for Corecursive Definitions and Coinductive Proofs
	N, CoEven, CoOdd

