How to Reason Informally Coinductively

Anton Setzer

Swansea University

PCC, Oslo, 22 May 2015

With contributions from Peter Hancock, Thorsten Altenkirch, Andreas Abel, Brigitte Pientka and David Thibodeau.

Goal

1

Inductive Definition	Coinductive Definition
Determined by Introduction	?
Iteration	?
Primitive Recursion	?
Pattern matching	?
Induction	?
Induction-Hypothesis	?

 $^{^{1}}$ Part of this table is due to Peter Hancock, see acknowledgements at the end.

Introduction/Elimination of Inductive/Coinductive Sets

▶ Introduction rules for Natural numbers means that we have

$$0 \in \mathbb{N}$$
$$S: \mathbb{N} \to \mathbb{N}$$

Dually, coinductive sets are given by their elimination rules i.e. by observations.

As an example we consider Stream:

head : Stream $\rightarrow \mathbb{N}$

tail : Stream \rightarrow Stream

Duality

Inductive Definition	Coinductive Definition
Determined by Introduction	Determined by Observation
Iteration	?
Primitive Recursion	?
Pattern matching	?
Induction	?
Induction-Hypothesis	?

Unique Iteration

- ▶ That $(\mathbb{N}, 0, S)$ are minimal can be given by:
 - ▶ Assume another \mathbb{N} -structure (X, z, s), i.e.

$$z \in X$$

 $s: X \to X$

► Then there exist a unique homomorphism $g:(\mathbb{N},0,\mathrm{S})\to(X,z,s)$:

$$g: \mathbb{N} \to X$$

 $g(0) = z$
 $g(S(n)) = s(g(n))$

► This means we can define uniquely

$$g: \mathbb{N} \to X$$
 $g(0) = x$ for some $x \in X$ $g(S(n)) = x'$ for some $x' \in X$ depending on $g(n)$

Unique Coiteration

- ▶ Dually, that (Stream, head, tail) is maximal can be given by:
 - ▶ Assume another Stream-structure (X, h, t):

$$\begin{array}{ccc} h & : & X \to \mathbb{N} \\ t & : & X \to X \end{array}$$

► Then there exist a unique homomorphism $g:(X,h,t)\to (\operatorname{Stream},\operatorname{head},\operatorname{tail})$:

$$g: X \to \text{Stream}$$

 $\text{head}(g(x)) = h(x)$
 $\text{tail}(g(x)) = g(t(x))$

Means we can define uniquely

$$g: X o ext{Stream}$$

 $\operatorname{head}(g(x)) = n$ for some $n \in \mathbb{N}$ depending on x
 $\operatorname{tail}(g(x)) = g(x')$ for some $x' \in X$ depending on x

Duality

Inductive Definition	Coinductive Definition
Determined by Introduction	Determined by Observation
Iteration	Coiteration
Primitive Recursion	?
Pattern matching	?
Induction	?
Induction-Hypothesis	?

Unique Primitive Recursion

- ► From unique iteration we can derive principle of unique primitive recursion
 - ► We can define uniquely

$$g: \mathbb{N} \to X$$
 $g(0) = x$ for some $x \in X$ $g(S(n)) = x'$ for some $x' \in X$ depending on n , $g(n)$

► Primitive pattern matching.

Unique Primitive Corecursion

- ► From unique coiteration we can derive principle of unique primitive corecursion
 - ► We can define uniquely

```
g: X \to \text{Stream}

\text{head}(g(x)) = n \text{ for some } n \in \mathbb{N} \text{ depending on } x

\text{tail}(g(x))) = g(x') \text{ for some } x' \in X \text{ depending on } x

or

= s \text{ for some } s \in \text{Stream depending on } x
```

- **Note:** No application of a function to g(x') allowed.
- Primitive copattern matching.

Example

$$s \in \text{Stream}$$

 $\text{head}(s) = 0$
 $\text{tail}(s) = s$
 $s' : \mathbb{N} \to \text{Stream}$
 $\text{head}(s'(n)) = 0$
 $\text{tail}(s'(n)) = s'(n+1)$
 $\text{cons} : (\mathbb{N} \times \text{Stream}) \to \text{Stream}$
 $\text{head}(\text{cons}(n, s)) = n$
 $\text{tail}(\text{cons}(n, s)) = s$

Duality

Inductive Definition	Coinductive Definition
Determined by Introduction	Determined by Observation
Iteration	Coiteration
Primitive Recursion	Primitive Corecursion
Pattern matching	Copattern matching
Induction	?
Induction-Hypothesis	?

Induction

► From unique iteration one can derive principle of **induction**:

We can prove
$$\forall n \in \mathbb{N}.\varphi(n)$$
 by proving $\varphi(0)$
 $\forall n \in \mathbb{N}.\varphi(n) \to \varphi(\mathbf{S}(n))$

▶ Using induction we can prove (assuming extensionality of functions) uniqueness of iteration and primitive recursion.

Equivalence

Theorem

Let $(\mathbb{N}, 0, S)$ be an \mathbb{N} -algebra. The following is equivalent

- 1. The principle of unique iteration.
- 2. The principle of unique primitive recursion.
- 3. The principle of iteration + induction.
- 4. The principle of primitive recursion + induction.

Coinduction

► Uniqueness in coiteration is equivalent to the principle:

Bisimulation implies equality

▶ Bisimulation on Stream is the largest relation \sim on Stream s.t.

$$s \sim s' \to \mathrm{head}(s) = \mathrm{head}(s') \wedge \mathrm{tail}(s) \sim \mathrm{tail}(s')$$

- \blacktriangleright Largest can be expressed as \sim being an indexed coinductively defined set.
- ► Primitive corecursion over ~ means: We can prove

$$\forall s, s'. X(s, s') \rightarrow s \sim s'$$

by showing

$$egin{array}{lll} X(s,s') &
ightarrow & \mathrm{head}(s) = \mathrm{head}(s') \ X(s,s') &
ightarrow & X(\mathrm{tail}(s),\mathrm{tail}(s')) \lor \mathrm{tail}(s) \sim \mathrm{tail}(s') \end{array}$$

Coinduction

- Combining
 - bisimulation implies equality
 - bisimulation can be shown corecursively

we obtain the following principle of coinduction

Schema of Coinduction

We can prove

$$\forall s, s'. X(s, s') \rightarrow s = s'$$

by showing

$$\forall s, s'. X(s, s') \rightarrow \operatorname{head}(s) = \operatorname{head}(s')$$

 $\forall s, s'. X(s, s') \rightarrow \operatorname{tail}(s) = \operatorname{tail}(s')$

where tail(s) = tail(s') can be derived

- directly or
- ▶ from a proof of

invoking the co-induction-hypothesis

$$X(\operatorname{tail}(s), \operatorname{tail}(s')) \to \operatorname{tail}(s) = \operatorname{tail}(s')$$

▶ Note: Only direct use of co-IH allowed.

Indexed Coinduction

For using coinduction, one typically wants to show for some f, g: X → Stream

$$\forall x \in X. f(x) = g(x)$$

▶ Using $X(s, s') = \{x \mid f(x) = s \land g(x) = s'\}$ we obtain the principle of **indexed coinduction**

Schema Indexed Coinduction

▶ We can prove

$$\forall x \in X. f(x) = g(x)$$

by showing

$$\forall x \in X.\text{head}(f(x)) = \text{head}(g(x))$$

 $\forall x \in X.\text{tail}(f(x)) = \text{tail}(g(x))$

where tail(f(x)) = tail(g(x)) can be derived

- ► directly or
- by

$$tail(f(x)) = f(x')$$
 $tail(g(x)) = g(x')$

and using the co-induction-hypothesis

$$f(x') = g(x')$$

- Again only direct use of co-IH allowed (otherwise you can derive tail(f(x)) = tail(g(x)) from f(x) = g(x)).
- ▶ In fact the above is the same as uniqueness of corecursion.

Equivalence

Theorem

Let (Stream, head, tail) be a Stream-coalgebra. The following is equivalent

- 1. The principle of unique coiteration.
- 2. The principle of unique primitive corecursion.
- 3. The principle of coiteration + coinduction
- 4. The principle of primitive corecursion + coinduction
- 5. The principle of coiteration + indexed coinduction.
- 6. The principle of primitive corecursion + indexed coinduction.

Example

Remember

$$head(s) = 0$$
 $tail(s) = s$
 $head(s'(n)) = 0$ $tail(s'(n)) = s'(n+1)$

- ▶ We show $\forall n \in \mathbb{N}.s = s'(n)$ by indexed coinduction:
 - ► head(s) = 0 = head(s'(n)).
 - $tail(s) = s \stackrel{\text{co-IH}}{=} s'(n+1) = tail(s'(n)).$

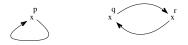
Example

$$head(s) = 0$$
 $tail(s) = s$

- We show s = cons(0, s) by indexed coinduction:
 - $\blacktriangleright \operatorname{head}(s) = 0 = \operatorname{head}(\operatorname{cons}(0, s)).$
 - ► tail(s) = s = tail(cons(0, s)) (no use of co-IH).

Proofs of Other Bisimilarity Relations

- ▶ The above can be used as well for proving other bisimilarity relations.
- ► Consider the following (unlabelled) transition system:



Bisimilarity is the final coalgebra

$$\begin{array}{c} p \sim q \rightarrow (\forall p'.p \longrightarrow p' \\ \qquad \rightarrow \exists q'.q \longrightarrow q' \land p' \sim q') \\ \land \cdots \text{symmetric case} \cdots \} \end{array}$$

Proof using the Definition of \sim

- ▶ We show $p \sim q \land p \sim r$ by indexed coinduction:
- ▶ Coinduction step for $p \sim q$:
 - Assume $p \longrightarrow p'$. Then p' = p. We have $q \longrightarrow r$ and by co-IH $p \sim r$.
 - Assume $q \longrightarrow q'$. Then q' = r. We have $p \longrightarrow p$ and by co-IH $p \sim r$.
- ▶ Coinduction step for $p \sim r$:
 - Assume $p \longrightarrow p'$. Then p' = p. We have $r \longrightarrow q$ and by co-IH $p \sim q$.
 - Assume $r \longrightarrow r'$. Then r' = q. We have $p \longrightarrow p$ and by co-IH $p \sim q$.

Conclusion

Inductive Definition	Coinductive Definition
Determined by Introduction	Determined by Observation
Iteration	Coiteration
Primitive Recursion	Primitive Corecursion
Pattern matching	Copattern matching
Induction	Coinduction (?)
Induction-Hypothesis	Coinduction-Hypothesis

Acknowledgements

- ► To look at iteration, recursion, induction in parallel with coiteration, corecursion, coinduction I learned from Peter Hancock, although we didn't resolve in our discussions what coinduction is and what the precise formulation of corecursion would be.
- ► How to derive from iteration recursion I learned from Thorsten Altenkirch, however that seems to be a well-known fact.

Bibliography

- Anton Setzer, Andreas Abel, Brigitte Pientka and David Thibodeau: Unnesting of Copatterns. In Gilles Dowek (Ed): Rewriting and Typed Lambda Calculi. Proceedings RTA-TLCA 2014. LNCS 8560, 2014, pp. 31 - 45. Doi 10.1007/978-3-319-08918-8_3. Bibtex.
- Andreas Abel, Brigitte Pientka, David Thibodeau and Anton Setzer: Copatterns: programming infinite structures by observations.
 Proceedings of POPL 2013, 2013, pp. 27 - 38. Doi 10.1145/2429069.2429075. Bibtex.
- ► Anton Setzer: Coalgebras as Types determined by their Elimination Rules. In: Peter Dybjer, Sten Lindström, Erik Palmgren, Göran Sundholm: Epistemology versus ontology: Essays on the foundations of mathematics in honour of Per Martin-Löf. Springer, 2012, pp. 351 369, Doi: 10.1007/978-94-007-4435-6_16. Bibtex

Appendix

Difficulty defining Pred Using Iteration

▶ Using iteration pred, the inverse of 0, S is inefficient:

$$\begin{array}{lll} \operatorname{pred} : \mathbb{N} \to \{-1\} \cup \mathbb{N} \\ \operatorname{pred}(0) &= -1 \\ \operatorname{pred}(S(n)) &= \operatorname{S}'(\operatorname{pred}(n)) \\ \\ & \text{where} \\ S' : \{-1\} \cup \mathbb{N} \to \mathbb{N} \\ S'(-1) &= 0 \\ S(n) &= \operatorname{S}(n) \text{ if } n \in \mathbb{N} \\ \\ \operatorname{pred}(2) &= \operatorname{S}'(\operatorname{pred}(1)) &= \operatorname{S}'(\operatorname{S}'(\operatorname{pred}(0))) \\ &= \operatorname{S}'(\operatorname{S}'(-1)) &= \operatorname{S}'(0) = \operatorname{S}(0) = 1 \end{array}$$

Difficulty defining Cons Using Coiteration

▶ Using coiteration cons, the inverse of head, tail is difficult to define

```
\begin{array}{lll} {\rm cons}: (\mathbb{N} \times {\rm Stream}) \to {\rm Stream} \\ {\rm head}({\rm cons}(n,s)) &= n \\ {\rm tail}({\rm cons}(n,s)) &= {\rm cons}({\rm head}(s),{\rm tail}(s)) \\ e.g. {\rm tail}({\rm tail}({\rm cons}(n,s))) &= {\rm cons}({\rm head}({\rm tail}(s)),{\rm tail}({\rm tail}(s))) \end{array}
```