Proof Theory of Martin-Löf Type Theory

Anton Setzer

Swansea University, Swansea UK

Oxford, 15 October 2012

Anton Setzer

Proof Theory of Martin-Löf Type Theory

Э

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Rôle of Type Theory in a Proof Theoretic Program

W-Type, Universes, Induction-Recursion

Mahlo

Extended Predicative Mahlo

 Π_3 -Reflection

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

The Rôle of Type Theory in a Proof Theoretic Program

W-Type, Universes, Induction-Recursion

Mahlo

Extended Predicative Mahlo

 Π_3 -Reflection

3

From Hilbert to Gentzen

- Hilbert's program.
 - Proof consistency of mathematical theories by finitary methods.
- Doesn't work because of Gödel's Incompleteness theorem.
- Gentzen: Reduction of consistency of PA to well-foundedness of ordinal notation systems.

Gentzen's Argument (Modern Version)

- Essentially
 - interpret proofs of PA as infinitary proofs in a semi formal system, e.g. induction interpreted as

$$\frac{A(0)}{A(0)} = \frac{A(0)}{A(0) \to A(1)} = \frac{A(0)}{A(0) \to A(1)} = \frac{A(0)}{A(0) \to A(1)} = \frac{A(0) \to A(1)}{A(1) \to A(2)} = \frac{A(0)}{A(2)} = \frac{A(0)}{A(1) \to A(2)} = \frac{A(0)}{A(2)} = \frac{A(0)}{A(2)}$$

イロト 不得 トイヨト イヨト 二日

Gentzen's Argument (Modern Version)

If you omit the cut rule

$$\frac{\Gamma, A \qquad \Gamma, \neg A}{\Gamma}$$
(Cut)

the calculus is just a truth definition, which can only prove true formulas.

- Proof that cuts can be eliminated using induciton over the height of trees.
- ► Height can be measured by ordinals, therefore induction over trees can be replaced by transfinite induction over an ordinal notation system of strength e₀.

So

$$PRA + TI(\epsilon_0) \vdash Cons(PA)$$

イロト 不得 トイヨト イヨト 二日

Wellfoundedness of Ordinal Notation System

- ► In case of \(\epsilon_0\) some insight into the well-foundedness of the ordinal notation system can be achieved.
- Works as well for theories up to strength $(\Pi_1^1 CA)_0$.
 - Sufficient by reverse mathematics for proving most mathematical theorems.
 - ► Argument carried out in articles on "Ordinal systems" by the author.
- ► Beyond (Π¹₁ CA)₀ it becomes difficult to get a direct insight into the well-foundedness of the ordinal notation system.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Wellfoundedness of the Ordinal Notation System

- Need for a second theory in which we can prove the well-foundedness of the ordinal notation system.
 - ► That theory will then (if it contains PRA) prove the consistency of the theory in question.
 - In fact usually more follows, at least validity of Π_2^0 -sentences.
 - Requires a theory for which we have an insight that everything proved in it is valid.
 - Most successful (but not necessarily only) approach: constructive theories.
 - Candidates could be
 - Frege structures,
 - Feferman's systems of explicit mathematics
 - Martin-Löf Type Theory.

イロト 不得 トイヨト イヨト 二日

Wellfoundedness of the Ordinal Notation System

- Most effort has been taken to develop Martin-Löf Type Theory for that purpose.
 - Argument for validity of its judgements: meaning explanations.
 - If argument formalised mathematically we prove the consistency of the theory in question.
 - Requires by Gödel's Second Incompleteness theorem more strength than the theory itself.
 - Therefore consistency argument needs to be necessarily philosophical in nature.
 - Each consistency argument neeeds to rely on a philosophical argument (even if it is not reflected properly).
 - According to Martin-Löf his type theory is the most serious attempt to create a theory where we have an insight into the validity of its judgements.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Two Step Approach

So we arrive at a two step approach:

- ► First step:
 - ► Prove the consistency of a theory *T* in PRA extended by transfinite induction up to over an ordinal notation system OT.
- Second Step:
 - Proof well-foundedness (transfinite induction) of OT in an extension of Martin-Löf's Type Theory ML⁺.
- \blacktriangleright Since ${\rm PRA}$ can be embedded into ${\rm ML^+},$ we obtain that

$$\mathrm{ML}^+ \vdash \mathrm{Cons}(T)$$

We obtain even usually more namely that all Π⁰₂-statements of T are provable in ML⁺.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

The Rôle of Type Theory in a Proof Theoretic Program

Need for Proof Theoretically Extensions of Martin-Löf Type Theory

- Needed: development of strong extensions of Martin-Löf Type Theory with an insight into the validity of what can be shown into it.
- ► Applications:
 - Discovery of advanced data structures for use in programming.

・ロト ・同ト ・ヨト ・ヨト

Some Type Theoretic Notations

► We have judgements:

- ► The latter expresses that A is a small type (= Set)
- We have the dependent function type:

$$(x:A) \rightarrow B$$

- Elements are functions f mapping a : A to f a : B[x := a].
- Example Matrix multiplication:

matmult :
$$(n, m, k : \mathbb{N}) \to \mathbb{R}^{n, m} \to \mathbb{R}^{m, k} \to \mathbb{R}^{n, k}$$

イロト 不得 トイヨト イヨト 二日

The Rôle of Type Theory in a Proof Theoretic Program

W-Type, Universes, Induction-Recursion

Mahlo

Extended Predicative Mahlo

 Π_3 -Reflection

Anton Setzer

3

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Version of MLTT of Strength PA

- ► MLTT (which includes N) and a small universe we obtain the strength of PA (e₀).
 - ► We call this microscopic universe Atom and the theory MLTT + Atom.
 - Only problematic principle: \mathbb{N} .
 - Trust in the validity requires an insight into the understanding the concept of a least set introduced by finitary introduction rules.
 - Insight closely related to the concept of time.

W-Type, Universes, Induction-Recursion

Principles for Adding Strength

- ► Two principles added in order to increase the strength of type theory:
 - ► The W-type.
 - Universes.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

The W-Type

Formation rule:

$$\frac{A:\operatorname{Set} \quad B:A\to\operatorname{Set}}{\operatorname{W}(A,B):\operatorname{Set}}$$

Introduction rule:

$$\frac{a:A \quad b:B(a) \to W(A,B)}{\sup(a,b):W(A,B)}$$

Elimination/equality rule:

Induction over trees.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □

W-Type

W(A, B) is the type of well-founded recursive trees with branching degrees $(B(a))_{a:A}$.

3

ヘロト 人間ト ヘヨト ヘヨト

Understanding of the W-Type

- Understanding the meaning of the W-type requires understanding the existence of a type containing exactly those elements introduced by the introduction rules.
- Leastness more difficult than elements of the W-type not introduced in finitely many steps.
 - We can only draw an analogy from the concept of time.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Strength of the W-Type

- ► MLTT + Atom + W has strength of finitely iterated inductive definitions or (Π¹₁ CA)₀.
 - ► In proof theory considered as truely impredicative theory.
 - Requires substantially more complex techniques and ordinal notation systems in order to understand them.
 - As mentioned before some direct insight into the well-foundedness can still be obtained.
- By the above mendioned results of reverse mathematics sufficient for proving most mathematical theorems.
- ► So most mathematics actually used is secured, if we trust in validity of judgements in MLTT + Atom + W.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 - つへつ

- A universe is a family of sets
- ► Given by
 - a set U : Set of **codes** for sets,
 - a decoding function $T: U \rightarrow Set$.

3

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Universes

Formation rules:

$$U:Set \qquad T:U\to Set$$

Introduction and Equality rules:

$$\widehat{\mathbb{N}} : \mathbb{U} \qquad \mathrm{T}(\widehat{\mathbb{N}}) = \mathbb{N}$$
$$\underline{a : \mathbb{U} \qquad b : \mathrm{T}(a) \to \mathbb{U}}$$
$$\widehat{\Sigma}(a, b) : \mathbb{U}$$
$$\mathrm{T}(\widehat{\Sigma}(a, b)) = \Sigma(\mathrm{T}(a), \mathrm{T} \circ b)$$

Similarly for other type formers (except for $\mathrm{U}).$

 Elimination/equality rules: Induction over U. (Not needed in order to obtain their strength).

< ∃ >

< 17 ▶ <

Understanding of Universes

- Insight into validity of rules for universes is not much more complex than insight into validity of rules for W-type.
- MLTT + W + U has strength KPI⁺ (AS) which is a slight extension of KPI which is Kripke Platek set theory plus one recursively inaccessible ordinal.
 - ► KPI corresponds roughly speaking to an inductive definition which refers to closure under another inductive definition.
- Proof theoretically there are some complications but not dramatic ones.

イロト イポト イヨト イヨト 二日

Understanding of Universes

- In the ordinal notation system, something happens when making the step from (Π¹₁ − CA)₀ to (Π¹₁ − CA).
 - Strength of KPI is $\Delta_2^1 CA + BI$ which is much stronger than $(\Pi_1^1 CA)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Generalisation to Inductive-Recursive Definitions

- Inductive-Recursive Definitions originally defined by Dybjer, closed formalisation by Dybjer + AS.
- Definition of a type theory containing all standard (inductive) definitions, universes, and many generalisations.
- Generalise the principles.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Induction-Recursion

 \blacktriangleright We have one set U:Set with constructors:

 $C: \underbrace{(a:A)}_{non-inductive argument}$ $\rightarrow \underbrace{(b:B \ a \rightarrow U)}_{inductive argument depending on a}$ $\rightarrow \underbrace{(c:(x:D \ a) \times T \ (b \ (f \ x)))}_{inductive argument depending on a}$

non-inductive arguments depending on a and $\mathrm{T}\circ\textit{b}$

 $\rightarrow \cdots$

 \rightarrow U

・ロト ・母 ト ・ヨ ト ・ ヨ ・ つへぐ

Induction-Recursion

 \blacktriangleright We have $T:U \rightarrow Set$ with recursive equations for each constructor:

$$T (C a b c \cdots) = t[a, T \circ b, c, \ldots] : Set$$

- Generalisation to T u : D for some type D.
- If $D = \{*\}$, we obtain the special case of inductive definitions.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Universe

Strength of Induction-Recursion

- Proof theoretic strength in $[KPM, KPM^+]$.
- ▶ KPM = Kripke-Platek set theory plus one recursively Mahlo ordinal.
- $KPM^+ = slight extension of KPM.$
- (Upper bound not formally proved yet).

イロト イポト イヨト イヨト

The Rôle of Type Theory in a Proof Theoretic Program

W-Type, Universes, Induction-Recursion

Mahlo

Extended Predicative Mahlo

 Π_3 -Reflection

Anton Setzer

Э

イロト イヨト イヨト

Steps Towards Mahlo

- First step beyond standard universe
 - The super universe (Palmgren).
 - He introduced a universe <u>V</u>,
 - ▶ together with a universe operator $U : Fam(V) \to V$,
 - Fam(V) is the set of families of sets in V indexed over elements of V, roughly speaking

 $\{(B_x)_{x:B}|B: \mathcal{V}, x: B \Rightarrow B_x: \mathcal{V}\}$

► s.t. for any family of sets A in V, U(A) is a universe containing all elements of A.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Steps Towards Mahlo

- A Universe is a family of sets closed under constructions for forming sets.
- We can now form a universe, closed under the formation of the next universe above a family of sets.
- (The next slide doesn't exhaust the strength, it shows only universes containing one set, not universes containing family of sets)

・ロト ・ 同ト ・ ヨト ・ ヨト

Illustration of the Super Universe

Proof Theory of Martin-Löf Type Theory

Illustration of the Super Universe

Proof Theory of Martin-Löf Type Theory

Illustration of the Super Universe

Proof Theory of Martin-Löf Type Theory

Superⁿ-Universes

- The above can be continued: We can form a
 - ► super²-universe V,
 - closed under a super-universe operator, forming a super universe above a family of sets in V.
- ► And we can iterate the above *n*-many times, and even go beyond.
- Up to now everything was inductive-recursive

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Mahlo Universe

- The Mahlo universe is
 - ► a universe <u>V</u>,
 - which has not only subuniverses corresponding to some operators, but subuniverses corresponding to all operators it is closed under:
 - ► for every universe operator on V,
 - i.e. every $f : Fam(V) \to Fam(V)$,
 - there exists a universe U_f closed under f.
 - which is represented in V.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Illustration of the Mahlo Universe

E

・ロト ・部ト ・モト ・モト

Illustration of the Mahlo Universe

E

*ロト *部ト *注ト *注ト

Illustration of the Mahlo Universe

E

*ロト *部ト *注ト *注ト

Illustration of the Mahlo Universe

E

◆□▶ ◆□▶ ◆□▶ ◆□▶

Impredicativity of the Mahlo Universe

\blacktriangleright The introduction rule for V introduces for every

 $f:\operatorname{Fam}(\mathrm{V})\to\operatorname{Fam}(\mathrm{V})$

an element

 $\widehat{\mathrm{U}}_{f}:\mathrm{V}$

► Depends on the totality of V.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Red Mahlo Universe

- If we only have Set as a Mahlo universe, then we obtain a construction which is an example of inductive-recursive definitions.
- Strenght of IRD primarily based on the fact that we can define a universe U_f closed under a function

 $f:\operatorname{Fam}(\operatorname{Set})\to\operatorname{Fam}(\operatorname{Set})$

So we have

$$f:\operatorname{Fam}(\operatorname{Set})\to\operatorname{Fam}(\operatorname{Set})\Rightarrow\operatorname{U}_f:\operatorname{Set}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Red Mahlo Universe

- Therefore Set is essentially a Mahlo universe, called "the red Mahlo universe".
- Highly depends on the use of the logical framework.
- ► Strength of the Red Mahlo universe is expected to be KPM.

・ロト ・ 同ト ・ ヨト ・ ヨト

Red Mahlo Universe

- ► The well-ordering proof requires as well that we have large elimination for W-type and N (elimination into an arbitrary type rather than a set).
 - Can be omitted by forming suitable indexed higher type universes which are sufficiently closed.
- The red Mahlo universe is usually accepted, whereas the black Mahlo universe is often rejected.
- However, the red Mahlo universe is essentially as impredicative as the black Mahlo universe.
- ► It is accepted because one considers Set as an "open concept".
- However introduction rule for Set depends on the the set of total functions

 $f:\operatorname{Fam}(\operatorname{Set})\to\operatorname{Fam}(\operatorname{Set})$

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

The Rôle of Type Theory in a Proof Theoretic Program

W-Type, Universes, Induction-Recursion

Mahlo

Extended Predicative Mahlo

 Π_3 -Reflection

3

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Problems of Mahlo Universe

- This section is joint work with R. Kahle.
- \blacktriangleright Elements of V are constructed, depending on total functions

```
f:\operatorname{Fam}(\mathrm{V})\to\operatorname{Fam}(\mathrm{V})
```

- ► Therefore V has an impredicative definition.
- ► However, for defining U_f, only the restriction of f to Fam(U_f) is required to be total.
- ► In order to define functions for which this restrictions is total, we need to define candidates of U_f for arbitrary (not necessarily total) f.
- ▶ Problem: In Martin-Löf Type Theory all functions are total.
- In Feferman's explicit mathematics reference to arbitrary terms possible.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 - つへつ

Extended Predicative Mahlo (in Explicit. Mathematics)

- We will use syntax borrowed from type theory in Explicit Mathematics.
 - but $a \in B$ instead of a : B.
- \blacktriangleright Explicit mathematics more Russell-style, therefore we can have $V\in Set, \ V\subset Set.$
- ► We can encode Fam(V) into V, therefore need only to consider functions f : V → V.

イロト イポト イヨト イヨト 三日

Step 1: Define Pre f X

- Define V to be closed under universe constructions for explicit mathematics.
- Define for $f, X \in Set, X \subseteq Set$

 $\operatorname{Pre} f X \in \operatorname{Set} \qquad \operatorname{Pre} f X \subseteq X$

- Pre f X is the least subset of X closed under universe constructions and f relative to X.
- So, if
 - ► result of applying a universe operator to Pre f X is in X, then add it to Pre f X.
 - result of applying f to an elemnet of Pre f X is in X, then add it to X.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Pre f X

E

Step 2: Independence of Pre f X

► If, whenever a universe construction or f is applied to elements of Pre f X we get elements in X, then Pre f X is independent of future extensions of X.

$$\begin{split} \mathrm{Indep}(f, \mathrm{Pre}\;f\;X,X) &:= (\forall a \in \mathrm{Pre}\;f\;X.\;\forall b \in a \to \mathrm{Pre}\;f\;X.\;\mathrm{j}\;a\;b \in X)\\ \wedge \cdots \\ \wedge \forall a \in \mathrm{Pre}\;f\;X.\;f\;a \in X \end{split}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Extended Predicative Mahlo

Indpt

Extended Predicative Mahlo

Step 3: Introduction Rule for V

► $\forall f. \operatorname{Indep}(f, \operatorname{Pre} f \operatorname{V}, \operatorname{V}) \rightarrow (\operatorname{U} f \in \operatorname{Set} \land \operatorname{U} f =_{\operatorname{ext}} \operatorname{Pre} f \operatorname{V} \land \operatorname{U} f \in \operatorname{V})$.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Extended Predicative Mahlo

Introduction Rule for ${\rm V}$

Interpretation of Axiomatic Mahlo

One can show:

$$\forall f \in \mathbf{V} \to \mathbf{V}$$
. Indep $(f, \operatorname{Pre} f \mathbf{V}, \mathbf{V})$

therefore

$$\forall f \in \mathbf{V} \to \mathbf{V}. \ \mathbf{U} \ f \in \mathbf{V} \ \land \ \mathbf{Univ}(f) \ \land \ f \in \mathbf{U} \ f \to \mathbf{U} \ f$$

- ► So V closed under axiomatic Mahlo constructions.
- Therefore extended predicative Mahlo has at least strength of axiomatic Mahlo.

3

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

4. Π_3 -Reflection

- ► First step: Formation of Hyper-Mahlo Universes:
 - \blacktriangleright A hyper Mahlo universe is a unverse V,T s.t. for every

```
f:\operatorname{Fam}(\mathrm{V})\to\operatorname{Fam}(\mathrm{V})
```

there exists a subuniverse of $\ensuremath{\mathrm{V}}$

- closed under f,
- which is Mahlo.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

П₃-Reflection

Illustration of the Hyper Mahlo Univ.

E

◆ロ > ◆母 > ◆臣 > ◆臣 >

П₃-Reflection

Illustration of the Hyper Mahlo Univ.

Image: A matrix and a matrix

E

글 눈 옷 글 눈

 Π_3 -Reflection

Illustration of the Hyper Mahlo Univ.

E

イロト イポト イヨト イヨト

П₃-Reflection

Illustration of the Hyper Mahlo Univ.

(日)

▶ < ∃ >

E

П₃-Reflection

Illustration of the Hyper Mahlo Univ.

< □ > < □ > < □ > < □</p>

▶ < ∃ >

E

 Π_3 -Reflection

Illustration of the Hyper Mahlo Univ.

E

イロト イポト イヨト イヨト

П₃-Reflection

Illustration of the Hyper Mahlo Univ.

E

イロト イポト イヨト イヨト

- ► Hyper^{*n*}-Mahlo Universe: Straightforward Extension.
- Autonomous Mahlo Universe consists of
 - ► A universe V, S.
 - The set of Mahlo degrees M which is essentially Wx : V.S(x).
 - Rules expressing that V is Hyper^w-Mahlo for any w : M.

3

・ロト ・ 同ト ・ ヨト ・ ヨト

Π₃-Reflecting Universe

- In case of the Π₃-reflecting universe, we obtain Hyper^d-Mahlo universes for Mahlo degrees d.
 - Mahloness of a hyper^d-Mahlo universe depends locally on the hyper^d-Mahlo universe as well.
- Mahlo degrees are introduced by an introduction rule similar to that of the Mahlo universe:
 - For every

```
f : \operatorname{Fam}(V) \to \operatorname{Fam}(V, \operatorname{MDegree})
```

we define a new

 $\operatorname{degree}(f)$: MDegree

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Π_3 -Reflecting Universe

 If Mahlo universe is acceptable, step towards to the Π₃-reflecting universe is essentially a technical difficulty.

3

ヘロト 人間ト ヘヨト ヘヨト

- Consistency problem leads naturally to proofs of consistency using transfinite induction.
- Because of lack of direct insight into well-foundedness need to prove well-foundedness of ordinal notation system in constructive theories.
- ► Up to inductive-reducrsive definition analysis not controversal.
- ► Mahlo universe is controversal because of impredicative characater.
- ► Solution by giving an extended predicative Mahlo universe.
- Extension to Π_3 -reflecting universe.

・ロト ・同ト ・ヨト ・ヨト