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1. Type Theory

Main Type Theoretic Setting

I We use a variant of Martin-Löf Type Theory based essentially on the
syntax of the theorem prover Agda.

I Abstract formulation work in progress.

I In Martin-Löf Type Theory types denoted by keyword Set.
I Three main constructs:

I dependent function types,
I algebraic data types,
I coalgebraic data types.

4/ 28



1. Type Theory

Dependent Function Types

I

(x : A)→ B

type of functions mapping a : A to an element of type B[x := a].

I Essentially Πx : A.B (subtle differences).

I Formula ∀x : A.B represented by (x : A)→ B.
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1. Type Theory

Algebraic data types

data N : Set
0 : N
S : N→ N

Functions defined by pattern matching

f : N→ N
f 0 = 5
f (S 0) = 12
f (S (S n)) = (f n) ∗ 20
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1. Type Theory

Coalgebraic data types

coalg Stream : Set where
head : Stream→ N
tail : Stream→ Stream

inc : N→ Stream
head (inc n) = n
tail (inc n) = inc (n + 1)

(Non-Agda syntax)
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1. Type Theory

Postulates

postulate A : N→ Set
postulate f : N→ N
postulate lem : f 1 == f (f 0)
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2. Formalising R

Standard Approach to Formulation of R

I Define
N,Z,Q

in a standard way.
I Define using these constructs

I the Cauchy Reals
Σa : N→ Q.Cauchy(a)

I or any other representation of constructive real numbers.

I Problem: Need to prove theorems constructively, even if they have no
computational content.
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2. Formalising R

Ideal Objects

I Use of ideal and concrete objects.

I Use approach by Berger transferred to type theory:
Axiomatize the real numbers abstractly. E.g.

postulate R : Set
postulate 0R, 1R : R
postulate == : R→ R→ Set
postulate + : R→ R→ R
postulate commutative : (r s : R)→ r + s == s + r
· · ·
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2. Formalising R

Concrete Objects

I Formulate N, Z, Q as standard computational data types.

data N : Set where
0 : N
S : N→ N

+ : N→ N→ N
n + 0 = n
n + S m = S (n + m)

∗ : N→ N→ N
· · ·

data Z : Set where
· · ·

data Q : Set where
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2. Formalising R

Embedding of N, Z, Q into R

I Embed N,Z,Q into R:

embedN : N→ R
embedN 0 = 0R
embedN (S n) = embedN n + 1R

embedZ : Z→ R
· · ·

embedQ : Q→ R
· · ·
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2. Formalising R

Signed Digit Representations

I Signed digit (SD) representable real numbers in [−1, 1] are of the form

r = 0. 1︸︷︷︸
d

11(−1)0(−1)01(−1) · · ·︸ ︷︷ ︸
2∗r−d

I So

r ∈ SD⇔ r ∈ [−1, 1] ∧ ∃d ∈ {−1, 0, 1}.2 ∗ r − d ∈ SD

SD = largest fixed point fulfilling that equation.
I Formulation in type theory:

coalg SD : R→ Set where
∈[−1, 1] : (r : R) → SD r → r ∈ [−1, 1]
digit : (r : R) → SD r → {−1, 0, 1}
tail : (r : R) → (p : SD r)

→ SD (2R ∗ r − digit r p)
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2. Formalising R

Extraction of Programs

I From
p : SD r

one can obtain the first n digits of r .

I Show e.g. closure of SD under Q ∩ [−1, 1], + ∩ [−1, 1], ∗, π
10 · · ·

I Then we extract the first n digits of any real number formed using
these operations.

I Has been done (excluding π
10) in Agda, program extraction can be

executed feasibly.
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3. Theory of Program Extraction

Problem with Program Extraction

I We don’t want that
d : Digit
d = · · ·

and evaluation of d to normal form has result

ax1 (ax2 (ax3 · · · ))

I We want that d evaluates to −1 or 0 or 1.
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3. Theory of Program Extraction

Example 1

postulate ax : B ∨ C

f : B ∨ C → B
f (inl x) = tt
f (inr x) = ff

(f ax) in normal form, doesn’t start with a constructor
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3. Theory of Program Extraction

Example 2

postulate ax : A ∧ B

f : A ∧ B → B
f 〈a, b〉 = · · ·

(f ax) in normal form doesn’t start with a constructor
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Example 3

postulate ax : r0 == r1

transfer : (r s : R)→ r == s → SD r → SD s
transfer r r refl p = p

firstdigit : (r : R)→ SD r → Digit
firstdigit r a = · · ·

p : SD r0
p = · · ·

q : SD r1
q = transfer r0 r1 ax

q′ : Digit
q′ = firstdigit r1 q

NF of q′ doesn’t start with a constructor



3. Theory of Program Extraction

Solution

I Problem occurs because an element of an algebraic data type was
I introduced by a postulate
I eliminated by an elimination rule for that type

I Restriction needed: If A is a postulated constant then either
I A : (x1 : B1)→ · · · → (xn : Bn)→ Set or
I A : (x1 : B1)→ · · · → (xn : Bn)→ A′ t1 · · · tn where A′ is a postulated

constant.

I Essentially: postulated constants have result type a postulated type.
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3. Theory of Program Extraction

Theorem

I Assume some healthy conditions (e.g. strong normalisation,
confluence, elements starting with different constructors are different).

I Assume result type of postulated axioms is always a postulated type.

I Then every closed term in normal form which is an element of an
algebraic data type is in canonical normal form (starts with a
constructor).
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3. Theory of Program Extraction

Proof Assuming Simple Pattern Matching

I Assume t : A, t closed in normal form, A algebraic data type.

I Show by induction on length(t) that t starts with a constructor.

I Let t = f t1 · · · tn, f function symbol or constructor.

I f cannot be postulated or directly defined.
I If f is defined by pattern matching on say ti .

I By IH ti starts with a constructor.
I t has a reduction, wasn’t in NF

I So f is a constructor.
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3. Theory of Program Extraction

Reduction of Nested Pattern Matching to Simple Pattern
Matching

Difficult proof in the thesis of Chi Ming Chuang.

24/ 28



3. Theory of Program Extraction

Logic for Ideal Objects

I The following fulfils our conditions:

postulate ∨′ : Set→ Set→ Set
postulate excluded middle : (X : Set)→ X ∨′ ¬X
postulate ∨′elim : (A→ C )→ (B → C )→ A ∨′ B → C

(for postulated C )
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3. Theory of Program Extraction

Negated Axioms

I Not allowed (using ¬A = A→ ⊥

postulate a : ¬A
postulate b : A

c : ⊥ → N
c ()

d : N
d = c (a b)

I However: If the type theory used 6` p : ⊥ and every postulated type
has result type postulate type or ⊥, then conclusions of theorem
fulfilled.
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Conclusion

Conclusion

I If result types of postulated constants are postulated types, then
closed elements of algebraic types evaluate to constructor normal
form.

I Makes develop of programs much easier (by postulating axioms or
proving them using ATP).

I Axiomatic treatment of R.

I Program extraction for proofs with real number computations works
very well.

I Possible application to type theory with partial and total objects.

28/ 28


	1. Type Theory
	2. Formalising R
	3. Theory of Program Extraction
	Conclusion

