
Extraction of Programs from Proofs using Postulated
Axioms

or
Ideal and Concrete Objects in Type Theory

Anton Setzer

Swansea University, Swansea UK
(Joint work with Chi Ming Chuang)

10 October 2011

1/ 28



1. Type Theory

2. Formalising R

3. Theory of Program Extraction

Conclusion

2/ 28



1. Type Theory

1. Type Theory

2. Formalising R

3. Theory of Program Extraction

Conclusion

3/ 28



1. Type Theory

Main Type Theoretic Setting

I We use a variant of Martin-Löf Type Theory based essentially on the
syntax of the theorem prover Agda.

I Abstract formulation work in progress.

I In Martin-Löf Type Theory types denoted by keyword Set.
I Three main constructs:

I dependent function types,
I algebraic data types,
I coalgebraic data types.

4/ 28



1. Type Theory

Dependent Function Types

I

(x : A)→ B

type of functions mapping a : A to an element of type B[x := a].

I Essentially Πx : A.B (subtle differences).

I Formula ∀x : A.B represented by (x : A)→ B.

5/ 28



1. Type Theory

Algebraic data types

data N : Set
0 : N
S : N→ N

Functions defined by pattern matching

f : N→ N
f 0 = 5
f (S 0) = 12
f (S (S n)) = (f n) ∗ 20

6/ 28



1. Type Theory

Coalgebraic data types

coalg Stream : Set where
head : Stream→ N
tail : Stream→ Stream

inc : N→ Stream
head (inc n) = n
tail (inc n) = inc (n + 1)

(Non-Agda syntax)

7/ 28



1. Type Theory

Postulates

postulate A : N→ Set
postulate f : N→ N
postulate lem : f 1 == f (f 0)

8/ 28



2. Formalising R

1. Type Theory

2. Formalising R

3. Theory of Program Extraction

Conclusion

9/ 28



2. Formalising R

Standard Approach to Formulation of R

I Define
N,Z,Q

in a standard way.
I Define using these constructs

I the Cauchy Reals
Σa : N→ Q.Cauchy(a)

I or any other representation of constructive real numbers.

I Problem: Need to prove theorems constructively, even if they have no
computational content.

10/ 28



2. Formalising R

Ideal Objects

I Use of ideal and concrete objects.

I Use approach by Berger transferred to type theory:
Axiomatize the real numbers abstractly. E.g.

postulate R : Set
postulate 0R, 1R : R
postulate == : R→ R→ Set
postulate + : R→ R→ R
postulate commutative : (r s : R)→ r + s == s + r
· · ·

11/ 28



2. Formalising R

Concrete Objects

I Formulate N, Z, Q as standard computational data types.

data N : Set where
0 : N
S : N→ N

+ : N→ N→ N
n + 0 = n
n + S m = S (n + m)

∗ : N→ N→ N
· · ·

data Z : Set where
· · ·

data Q : Set where
· · · 12/ 28



2. Formalising R

Embedding of N, Z, Q into R

I Embed N,Z,Q into R:

embedN : N→ R
embedN 0 = 0R
embedN (S n) = embedN n + 1R

embedZ : Z→ R
· · ·

embedQ : Q→ R
· · ·

13/ 28



2. Formalising R

Signed Digit Representations

I Signed digit (SD) representable real numbers in [−1, 1] are of the form

r = 0. 1︸︷︷︸
d

11(−1)0(−1)01(−1) · · ·︸ ︷︷ ︸
2∗r−d

I So

r ∈ SD⇔ r ∈ [−1, 1] ∧ ∃d ∈ {−1, 0, 1}.2 ∗ r − d ∈ SD

SD = largest fixed point fulfilling that equation.
I Formulation in type theory:

coalg SD : R→ Set where
∈[−1, 1] : (r : R) → SD r → r ∈ [−1, 1]
digit : (r : R) → SD r → {−1, 0, 1}
tail : (r : R) → (p : SD r)

→ SD (2R ∗ r − digit r p)

14/ 28



2. Formalising R

Extraction of Programs

I From
p : SD r

one can obtain the first n digits of r .

I Show e.g. closure of SD under Q ∩ [−1, 1], + ∩ [−1, 1], ∗, π
10 · · ·

I Then we extract the first n digits of any real number formed using
these operations.

I Has been done (excluding π
10) in Agda, program extraction can be

executed feasibly.

15/ 28



3. Theory of Program Extraction

1. Type Theory

2. Formalising R

3. Theory of Program Extraction

Conclusion

16/ 28



3. Theory of Program Extraction

Problem with Program Extraction

I We don’t want that
d : Digit
d = · · ·

and evaluation of d to normal form has result

ax1 (ax2 (ax3 · · · ))

I We want that d evaluates to −1 or 0 or 1.

17/ 28



3. Theory of Program Extraction

Example 1

postulate ax : B ∨ C

f : B ∨ C → B
f (inl x) = tt
f (inr x) = ff

(f ax) in normal form, doesn’t start with a constructor

18/ 28



3. Theory of Program Extraction

Example 2

postulate ax : A ∧ B

f : A ∧ B → B
f 〈a, b〉 = · · ·

(f ax) in normal form doesn’t start with a constructor

19/ 28



Example 3

postulate ax : r0 == r1

transfer : (r s : R)→ r == s → SD r → SD s
transfer r r refl p = p

firstdigit : (r : R)→ SD r → Digit
firstdigit r a = · · ·

p : SD r0
p = · · ·

q : SD r1
q = transfer r0 r1 ax

q′ : Digit
q′ = firstdigit r1 q

NF of q′ doesn’t start with a constructor



3. Theory of Program Extraction

Solution

I Problem occurs because an element of an algebraic data type was
I introduced by a postulate
I eliminated by an elimination rule for that type

I Restriction needed: If A is a postulated constant then either
I A : (x1 : B1)→ · · · → (xn : Bn)→ Set or
I A : (x1 : B1)→ · · · → (xn : Bn)→ A′ t1 · · · tn where A′ is a postulated

constant.

I Essentially: postulated constants have result type a postulated type.

21/ 28



3. Theory of Program Extraction

Theorem

I Assume some healthy conditions (e.g. strong normalisation,
confluence, elements starting with different constructors are different).

I Assume result type of postulated axioms is always a postulated type.

I Then every closed term in normal form which is an element of an
algebraic data type is in canonical normal form (starts with a
constructor).

22/ 28



3. Theory of Program Extraction

Proof Assuming Simple Pattern Matching

I Assume t : A, t closed in normal form, A algebraic data type.

I Show by induction on length(t) that t starts with a constructor.

I Let t = f t1 · · · tn, f function symbol or constructor.

I f cannot be postulated or directly defined.
I If f is defined by pattern matching on say ti .

I By IH ti starts with a constructor.
I t has a reduction, wasn’t in NF

I So f is a constructor.

23/ 28



3. Theory of Program Extraction

Reduction of Nested Pattern Matching to Simple Pattern
Matching

Difficult proof in the thesis of Chi Ming Chuang.

24/ 28



3. Theory of Program Extraction

Logic for Ideal Objects

I The following fulfils our conditions:

postulate ∨′ : Set→ Set→ Set
postulate excluded middle : (X : Set)→ X ∨′ ¬X
postulate ∨′elim : (A→ C )→ (B → C )→ A ∨′ B → C

(for postulated C )

25/ 28



3. Theory of Program Extraction

Negated Axioms

I Not allowed (using ¬A = A→ ⊥

postulate a : ¬A
postulate b : A

c : ⊥ → N
c ()

d : N
d = c (a b)

I However: If the type theory used 6` p : ⊥ and every postulated type
has result type postulate type or ⊥, then conclusions of theorem
fulfilled.

26/ 28



Conclusion

1. Type Theory

2. Formalising R

3. Theory of Program Extraction

Conclusion

27/ 28



Conclusion

Conclusion

I If result types of postulated constants are postulated types, then
closed elements of algebraic types evaluate to constructor normal
form.

I Makes develop of programs much easier (by postulating axioms or
proving them using ATP).

I Axiomatic treatment of R.

I Program extraction for proofs with real number computations works
very well.

I Possible application to type theory with partial and total objects.

28/ 28


	1. Type Theory
	2. Formalising R
	3. Theory of Program Extraction
	Conclusion

