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Consistency, Godel’s Incompleteness Theorem, and Physics

Uncertainty in Mathematics

» We have a proof of Fermat’s last Theorem, by now thoroughly
checked.
» We can't exclude that there is a counter example.
» Reason: By Godel's Incompleteness Theorem we cannot exclude that
axiomatization of mathematics used is consistent.
» A counter example could exist, and would imply that the
axiomatization used is inconsistent.
» Although this uncertainty is well known, it is not discussed openly.
» Almost as if we were hiding the truth.
» Different in physics — physicists are proud of the limitation of physics
(e.g. limit of speed of light, Heisenberg's uncertainty principle).
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Consistency, Godel’s Incompleteness Theorem, and Physics

Comparison with Physics

» This lack of absolute certainty is similar to the situation in physics.
» The laws of physics cannot be tested completely.

» We cannot exclude that in other parts of the universe different laws of
physics hold.
» They only need to be in such a way that they appear to us as if they
were following the laws of physics as we know them on our planet.
» Because of the lack of a unifying theory we know that the laws of
physics are incorrect.

» Laws of physics had to be changed several times in history (relativity
theory, quantum mechanics, string theory?).
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Consistency, Godel’s Incompleteness Theorem, and Physics

Effects of Changes of Laws in Physics

» When the laws of physics had to be changed, they didn't affect most
calculations done before.
» Results were thoroughly checked through experiments, so these results
are still unaffected.
» Effects happened only in extreme cases (high speed, small distances).
In ordinary life we don’t notice the effects of quantum mechanics or
relativity theory.
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Consistency, Godel’s Incompleteness Theorem, and Physics

Effects of a Potential Inconsistency in Mathematics

» Reverse mathematics has shown hat most mathematical theorems use
very little proof theoretic strength.
» If there were an inconsistency, it would most likely affect proof
theoretically very strong theories.
» Most mathematical theorems would not be affected.
» In fact as in physics mathematical axioms have been thoroughly
“tested”.
» If there were an inconsistency, it must be very involved and would
probably not have been used in most mathematical proofs.
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certainty.

» They will never provide absolute certainty.
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» In Physics experiments are used in order to obtain a high degree of
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Consistency, Godel’s Incompleteness Theorem, and Physics

Experiments in Mathematics

» In Logic lots of “experiments” are carried out as well.

» Simplest form is searching for an inconsistency.

» More involved “experiments are:

>

Proof theoretic analysis:
Reduction of the consistency of mathematical theories to the
well-foundedness of an ordinal notation system.

» Normalisation proofs.
» Type theoretic foundations:

Proof of the consistency of a mathematical theory in a type theory
together with some philosophical insight into its consistency (meaning
explanations.

» Modelling of one theory in another.
» Reverse mathematics.
» Lots of other meta-mathematical investigations.
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Consistency, Godel’s Incompleteness Theorem, and Physics

Certainty in Mathematics

» No meta-mathematical investigation, even in combination with
philosophical investigations, can get around Goédel’s Incompleteness
Theorem.

» Therefore we cannot obtain absolute certainty.

» However we can consider them as experiments and get a certainty
similar to what we have in physics.
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Consistency, Godel’s Incompleteness Theorem, and Physics

Conclusion (Part 1)

» Mathematics can be seen as an Empirical Science.

» Mathematics tries to determine laws of the infinite and derive
conclusions from those laws.

» We form models of the infinite (axiom systems).
» We carry out experiments.

» We have obtained a high degree of certainty, but will never obtain
absolute certainty.

» If an inconsistency were found it probably wouldn’t have a huge direct
impact on the results obtained in mathematics.
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Coinduction
Lists

» We assume

» a set of terms Term formed from
» constructors
> variables,
» function symbols,
> \-abstraction

» together with confluent reduction rules for terms starting with a

function symbol.

» Equality on terms is the equivalence relation generated from
(s—s)=(s=1)

» We identify terms which are equal.
» The set of lists is defined as

List := ﬂ{X C Term | nil € XA
Vn € N.Va € X.cons(n, a) € X}
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Coinduction

Example Proof using the Definition of List

» Assume function symbol append together with reduction rules

append(nil, /) —
append(cons(n, /),I'") — cons(n,append(/, "))

» We show V/ € List.append(/,nil) = I
» A:={l € List | append(/,nil) = /}.
» nil € A, since append(nil, nil) = nil.

» ¥ne N.V/ € Acons(n,l) € A
€A

since append(cons(n, /), nil) = cons(n, append(/, nil)) = cons(n, /).

» Therefore List C A.
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Coinduction

Proof by Induction

» Principle of induction:
» Assume ¢(nil),
Vn € N.VI € List.o(/) = p(cons(n, /).
» Then V/ € List.(/).
» Follows directly from definition of List.
» Using induction we can proof V/ € List.append(/, nil) = /:
» Base case: append(nil, nil) = nil.
» Induction step: Assume append(/,nil) = /. Then
append(cons(n, ), nil) = cons(n, append(/, nil)) H cons(n, /).
» Therefore VI € List.append(/, nil) = /.
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» Both proofs are descriptions of the same content.
» Proof by induction is more intuitive.

«0O)» «F)» « =>» Q>



» Let F(X):={x} +Nx X.
» Define

nil’ =
cons'(n,1) = inr((n,/))
» So F(X) = {nil'} U{cons'(n, /) | ne NA T € X}.
» Define

inl(x)

intro : F(List) — List
intro(nil’)

intro(cons’(n, 1))

nil ,

cons(n, /) .

List = ﬂ{X C Term | VI € F(X).intro(/) € X}
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» Define

coList := U{X C Term | VI € X.case(l) € F(X)}
» Example:
» Assume a function symbol a € Term, case(a) — cons’(n, a).
» Let A:={a}.
» Vx € A.case(x) € F(A).
» Therefore A C coList, a € coList.
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» Assume a function symbol f with reduction rules

case(f(n)) — cons'(n, f(n+ 1))
» Let A:={f(n) | ne N},
» Va € A.case(a) € F(A).

» Therefore A C coList, Vn € N.f(n) € colList.
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» Assume

VI.p(l) — case(l) = nil'Vv
dn € N.3/I" € Term.case(/) = cons'(n, I") A p(I')

Then VI € Term.p(/) — | € coList.
» We show Vn € N.f(n) € coList by principle of coinduction:
Let neN.
case(f(n)) = cons’(n, f(n + 1)).
n € N and by co-IH f(n+ 1) € coList,
Therefore f(n) € coList.

vV vy vVYyy
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» Both proofs are descriptions of the same content.

» Second proof is a much more intuitive.
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Coinduction

Bisimulation

» A labelled transition system is a triple (P, A, —) where P, A are sets
and —C P x A x A.
We write p — p’ for (p, a,p’) €—s.

» Consider the following transition system:

tick

p . ar
tick tick

» Bisimulation is given as
~i= U{Xg PxP|(Vp,q,p € P,ac Alp,q) e XNp—p

—3¢ € P.g-2 4 NP, q) € X)
A ---symmetric case- - - }
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tick

p . ™ar
tick tick

v

Let X := {(p,q), (p, 1)}
Take (p,q) € X, and let p -2 p/.

v

Then p' = p, a = tick, g t|_c>k rand (p,r) € A.
Similarly for other cases.

v

v

Therefore X C~, p~q, p~r.
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tick

tick tick

» We show p~qgand p~r.
> Let p - p'.

Then p’' = p, a = tick, g t|_c>k r and by co-IH p ~ r.
» Similarly for other cases.
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» Both proofs are descriptions of the same content.

» Second proof is a much more intuitive.
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Coinduction

Conclusion (Part 2)

» Principle of induction is well established and makes proofs much
easier.
» In theoretical computer science coinductive principles occur frequently.
» In order to get more intuitive easy proofs we need to establish the use
of coinduction in a similar way.
» Proofs by coinduction are the same as those originating from the

definition of coinductively defined sets.
» However proofs by coinduction can be more intuitive and correspond

directly to more formal proofs.
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