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Consistency, Gödel’s Incompleteness Theorem, and Physics

Uncertainty in Mathematics

I We have a proof of Fermat’s last Theorem, by now thoroughly
checked.

I We can’t exclude that there is a counter example.
I Reason: By Gödel’s Incompleteness Theorem we cannot exclude that

axiomatization of mathematics used is consistent.

I A counter example could exist, and would imply that the
axiomatization used is inconsistent.

I Although this uncertainty is well known, it is not discussed openly.
I Almost as if we were hiding the truth.

I Different in physics – physicists are proud of the limitation of physics
(e.g. limit of speed of light, Heisenberg’s uncertainty principle).
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Consistency, Gödel’s Incompleteness Theorem, and Physics

Comparison with Physics

I This lack of absolute certainty is similar to the situation in physics.

I The laws of physics cannot be tested completely.
I We cannot exclude that in other parts of the universe different laws of

physics hold.
I They only need to be in such a way that they appear to us as if they

were following the laws of physics as we know them on our planet.

I Because of the lack of a unifying theory we know that the laws of
physics are incorrect.

I Laws of physics had to be changed several times in history (relativity
theory, quantum mechanics, string theory?).
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Consistency, Gödel’s Incompleteness Theorem, and Physics

Effects of Changes of Laws in Physics

I When the laws of physics had to be changed, they didn’t affect most
calculations done before.

I Results were thoroughly checked through experiments, so these results
are still unaffected.

I Effects happened only in extreme cases (high speed, small distances).
In ordinary life we don’t notice the effects of quantum mechanics or
relativity theory.
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Consistency, Gödel’s Incompleteness Theorem, and Physics

Effects of a Potential Inconsistency in Mathematics

I Reverse mathematics has shown hat most mathematical theorems use
very little proof theoretic strength.

I If there were an inconsistency, it would most likely affect proof
theoretically very strong theories.

I Most mathematical theorems would not be affected.

I In fact as in physics mathematical axioms have been thoroughly
“tested”.

I If there were an inconsistency, it must be very involved and would
probably not have been used in most mathematical proofs.
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Experiments in Physics

I In Physics experiments are used in order to obtain a high degree of
certainty.

I They will never provide absolute certainty.
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Consistency, Gödel’s Incompleteness Theorem, and Physics

Experiments in Mathematics

I In Logic lots of “experiments” are carried out as well.

I Simplest form is searching for an inconsistency.
I More involved “experiments are:

I Proof theoretic analysis:
Reduction of the consistency of mathematical theories to the
well-foundedness of an ordinal notation system.

I Normalisation proofs.
I Type theoretic foundations:

Proof of the consistency of a mathematical theory in a type theory
together with some philosophical insight into its consistency (meaning
explanations.

I Modelling of one theory in another.
I Reverse mathematics.
I Lots of other meta-mathematical investigations.
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Certainty in Mathematics

I No meta-mathematical investigation, even in combination with
philosophical investigations, can get around Gödel’s Incompleteness
Theorem.

I Therefore we cannot obtain absolute certainty.

I However we can consider them as experiments and get a certainty
similar to what we have in physics.
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Consistency, Gödel’s Incompleteness Theorem, and Physics

Conclusion (Part 1)

I Mathematics can be seen as an Empirical Science.

I Mathematics tries to determine laws of the infinite and derive
conclusions from those laws.

I We form models of the infinite (axiom systems).

I We carry out experiments.

I We have obtained a high degree of certainty, but will never obtain
absolute certainty.

I If an inconsistency were found it probably wouldn’t have a huge direct
impact on the results obtained in mathematics.
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Coinduction

Lists

I We assume
I a set of terms Term formed from

I constructors
I variables,
I function symbols,
I λ-abstraction

I together with confluent reduction rules for terms starting with a
function symbol.

I Equality on terms is the equivalence relation generated from

(s −→ s)⇒ (s = t)

I We identify terms which are equal.

I The set of lists is defined as

List :=
⋂
{X ⊆ Term | nil ∈ X∧

∀n ∈ N.∀a ∈ X .cons(n, a) ∈ X}
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Coinduction

Example Proof using the Definition of List

I Assume function symbol append together with reduction rules

append(nil, l) −→ l
append(cons(n, l), l ′) −→ cons(n, append(l , l ′))

I We show ∀l ∈ List.append(l ,nil) = l :
I A := {l ∈ List | append(l ,nil) = l}.
I nil ∈ A, since append(nil,nil) = nil.
I ∀n ∈ N.∀l ∈ A.cons(n, l) ∈ A

since append(cons(n, l),nil) = cons(n, append(l ,nil))
l∈A
= cons(n, l).

I Therefore List ⊆ A.
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Coinduction

Proof by Induction

I Principle of induction:
I Assume ϕ(nil),
∀n ∈ N.∀l ∈ List.ϕ(l)→ ϕ(cons(n, l)).

I Then ∀l ∈ List.ϕ(l).

I Follows directly from definition of List.
I Using induction we can proof ∀l ∈ List.append(l ,nil) = l :

I Base case: append(nil,nil) = nil.
I Induction step: Assume append(l ,nil) = l . Then

append(cons(n, l),nil) = cons(n, append(l ,nil))
IH
= cons(n, l).

I Therefore ∀l ∈ List.append(l ,nil) = l .
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Coinduction

Comparison of the proofs

I Both proofs are descriptions of the same content.

I Proof by induction is more intuitive.
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Coinduction

From Lists to Colists

I Let F (X ) := {∗}+ N× X .

I Define
nil′ := inl(∗)
cons′(n, l) := inr(〈n, l〉)

I So F (X ) = {nil′} ∪ {cons′(n, l) | n ∈ N ∧ l ∈ X}.
I Define

intro : F (List)→ List
intro(nil′) = nil ,
intro(cons′(n, l)) = cons(n, l) .

I

List =
⋂
{X ⊆ Term | ∀l ∈ F (X ).intro(l) ∈ X}
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Coinduction

From Lists to Colists

I Define

coList :=
⋃
{X ⊆ Term | ∀l ∈ X .case(l) ∈ F (X )}

I Example:
I Assume a function symbol a ∈ Term, case(a) −→ cons′(n, a).
I Let A := {a}.
I ∀x ∈ A.case(x) ∈ F (A).
I Therefore A ⊆ coList, a ∈ coList.
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Coinduction

Proof using the Definition of List

I Assume a function symbol f with reduction rules

case(f (n)) −→ cons′(n, f (n + 1))

I Let A := {f (n) | n ∈ N}.
I ∀a ∈ A.case(a) ∈ F (A).

I Therefore A ⊆ coList, ∀n ∈ N.f (n) ∈ coList.
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Coinduction

Principle of Coinduction

I Assume

∀l .ϕ(l)→ case(l) = nil′∨
∃n ∈ N.∃l ′ ∈ Term.case(l) = cons′(n, l ′) ∧ ϕ(l ′)

Then ∀l ∈ Term.ϕ(l)→ l ∈ coList.

I We show ∀n ∈ N.f (n) ∈ coList by principle of coinduction:

I Let n ∈ N.
I case(f (n)) = cons′(n, f (n + 1)).
I n ∈ N and by co-IH f (n + 1) ∈ coList,
I Therefore f (n) ∈ coList.
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Coinduction

Comparison of the proofs

I Both proofs are descriptions of the same content.

I Second proof is a much more intuitive.

21/ 26



Coinduction

Bisimulation

I A labelled transition system is a triple (P,A,−→) where P,A are sets
and −→⊆ P × A× A.
We write p

a−→ p′ for 〈p, a, p′〉 ∈−→.

I Consider the following transition system:

x x x
p q r

tick

tick
tick

I Bisimulation is given as

∼:=
⋃
{X ⊆ P × P | (∀p, q, p′ ∈ P, a ∈ A.〈p, q〉 ∈ X ∧ p

a−→ p′

→ ∃q′ ∈ P.q
a−→ q′ ∧ 〈p′, q′〉 ∈ X )

∧ · · · symmetric case · · · }
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Coinduction

Proof using the Definition of ∼

x x x
p q r

tick

tick
tick

I Let X := {〈p, q〉, 〈p, r〉}.
I Take 〈p, q〉 ∈ X , and let p

a−→ p′.

Then p′ = p, a = tick, q
tick−→ r and 〈p, r〉 ∈ A.

I Similarly for other cases.

I Therefore X ⊆∼, p ∼ q, p ∼ r .
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Coinduction

Proof by Principle Coinduction

x x x
p q r

tick

tick
tick

I We show p ∼ q and p ∼ r .

I Let p
a−→ p′.

Then p′ = p, a = tick, q
tick−→ r and by co-IH p ∼ r .

I Similarly for other cases.
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Coinduction

Comparison of the proofs

I Both proofs are descriptions of the same content.

I Second proof is a much more intuitive.
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Coinduction

Conclusion (Part 2)

I Principle of induction is well established and makes proofs much
easier.

I In theoretical computer science coinductive principles occur frequently.
I In order to get more intuitive easy proofs we need to establish the use

of coinduction in a similar way.
I Proofs by coinduction are the same as those originating from the

definition of coinductively defined sets.
I However proofs by coinduction can be more intuitive and correspond

directly to more formal proofs.

26/ 26


	Consistency, Gödel's Incompleteness Theorem, and Physics
	Coinduction

