
Beyond Inductive Definitions – Induction-Recursion,
Induction-Induction, Coalgebras

Anton Setzer

Swansea University, Swansea UK

1 March 2012

1/ 26



A Proof Theoretic Programme

Sets in Martin-Löf Type Theory

Induction-Recursion, Induction-Induction and Coalgebras

2/ 26



A Proof Theoretic Programme

A Proof Theoretic Programme

Sets in Martin-Löf Type Theory

Induction-Recursion, Induction-Induction and Coalgebras

3/ 26



A Proof Theoretic Programme

Foundations of Mathematics

I By Gödel’s Incompleteness Theorem we know we cannot prove
absolutely that any reasonably strong axiomatization of mathematics
is consistent.

I Even though we have a verified proof of Fermat’s last theorem, we
cannot exclude that there is a counterexample.

I This is of course highly unlikely.

I When giving a mathematical proof of a number theoretic theorem, all
we know is that it is extremely highly likely that it is correct.

I Mathematics doesn’t have an entirely rational (in the sense of logical)
foundation.

I Any foundation of mathematics will necessarily rely on a philosophical
argument.

I Such arguments are never as robust as mathematical arguments.
I Such arguments need to rely on intuitive insights.

4/ 26



A Proof Theoretic Programme

Foundations based on Ordinal Notation Systems

I The best we can do is to formulate certain principles in which we can
put our trust.

I Gentzen’s analysis of Peano Arithmetic based its trust on the
well-foundedness of an ordinal notation system up to ε0.

I One can push this further up to (Π1
1 − CA)0

(AS: Ordinal systems).

I However, it becomes increasingly difficult to get a direct insight into
the well-foundedness of ordinal notation systems.

I Proof theoretic strong ordinal notation systems are currently too
complicated to get a direct insight into their well-foundedness.

5/ 26



A Proof Theoretic Programme

Constructive Foundations

I An alternative is to formulate theories in which we can directly put
our trust.

I If we prove in such theories the well-foundedness of strong ordinal
notation system we can prove the consistency of strong mathematical
theories.

I The best approach seem to be based on constructive approaches:
I Elements of sets are programs or terms with reductions.
I One constructs from below sets (or types) based on principles into

which we have a certain insight.
I Then one formulates principles for adding elements into those sets and

constructing elements of other sets from elements of this set.
I We need to get an intuitive argument why this combination of

introduction and elimination principle always gives correct results
(termination).

6/ 26



A Proof Theoretic Programme

Picture

Mathematical Theory

Well-foundedness of

Ordinal Notation System

Ordinal Analysis

Constructive Theory

Well-foundedness Proof

7/ 26



A Proof Theoretic Programme

No Need to Change Mathematical Practice Completely

I It is not necessary to completely switch to constructive mathematics.

I Once the consistency of a mathematical theory is shown, one has a
mathematically sound working environment.

I And one knows that at least numerical Π0
1-statements, and with some

deeper analysis Π0
2-statements are correct (provable in the

constructive theory).

8/ 26



A Proof Theoretic Programme

Two Main Candidates for Constructive Theories

I Martin-Löf Type Theory.
I Based on type theory with total functions.
I Philosophically the best developed theory (meaning explanations).
I According to Martin-Löf the most serious attempt to build a theory

into which we can put our trust.
I Or: a theory which formulates the reasons why we can put our trust

into it.

I Feferman’s theory of explicit mathematics.
I Based on partial functions.
I Everything can be applied to everything.
I Formulated axiomatically with an attempt to get a short definition.

I Makes it more easy to carry out metamathematical analysis.
I However this destroys some of its philosophical clarity.

I More suitable for giving foundations of principles for Mahlo and beyond.
(AS and R. Kahle: Formulation of extended predicative Mahlo.)

I In the following we follow mainly Martin-Löf Type Theory.

9/ 26



A Proof Theoretic Programme

Applications

I In order to formulate proof theoretically strong theories, new sets or
data types need to be introduced.

I These data types can be used in general computing.
I Best example: The Mahlo universe.

I Was introduced to define a very strong predicatively justified type
theory.

I The data type of inductive-recursive definitions was defined using the
same principles as the Mahlo universe.

I This data type was
I applied to generic programming,
I is related to generic extensions of Haskell.

10/ 26



Sets in Martin-Löf Type Theory

A Proof Theoretic Programme

Sets in Martin-Löf Type Theory

Induction-Recursion, Induction-Induction and Coalgebras

11/ 26



Sets in Martin-Löf Type Theory

Principles for Formulating Sets – Finite Sets

I Finite sets.
I There are finitely many fixed elements which are elements of it.
I If from each of these finitely many elements we can construct an

element of another set, then we can construct an element from an
arbitrary element of this set by case distinction.

12/ 26



Sets in Martin-Löf Type Theory

Principles for Formulating Sets – (x : A)× B[x ]

I B[a] stands for B[x := a] for some variable x .
I Dependent sum type (x : A)× B[x ].

I If a : A and b : B[a] then can introduce 〈a, b〉 : (x : A)× B[x ].
I If c : (x : A)× B[x ], we obtain π0(c) : A and π1(c) : B[π0(c)].

I Using BHK interpretation
I ∃x : A.ϕ(x) = (x : A)× ϕ[x ]
I ϕ ∧ ψ = ϕ× ψ.

13/ 26



Sets in Martin-Löf Type Theory

Principles for Formulating Sets – (x : A)→ B[x ]

I Formulation of the dependent function type (x : A)→ B[x ].
I Elements of (x : A)→ B[x ] are programs f which if applied to a : A

compute an element of B[a].
I If from x : A we can construct an element b[x ] : B[x ], then λx .b[x ] is

an element of (x : A)→ B[x ].
Comutes from a : A the element b[a].

I In fact this is a form of coalgebraic definition.

I Using BHK interpretation
I ∀x : A.ϕ(x) = (x : A)→ ϕ[x ].
I ϕ ⊃ ψ = ϕ→ ψ.

14/ 26



Sets in Martin-Löf Type Theory

Principles for Formulating Sets – N

I Formulation of N.
I 0 : N and if n : N then S n : N.
I Assume we can form

I an element of A[0]
I from n : N and a : A[n] an element of A[S n].

Then we can form from n : N an element of A[n].

15/ 26



Sets in Martin-Löf Type Theory

Principles for Formulating Sets – W

I Assume A : Set and B[x ] : Set whenever x : A.
I We formulate W x : A.B[x ]:

I Whenever a : A and r : B[a]→W x : A.B[x ], then
node a r : W x : A.B[x ].

I Assume that from a : A, r : B[a]→W x : A.B[x ] and
s : (b : B[a])→ C [r b] we can define C [node a r ].
Then we can construct C [c] for every c : W x : A.B[x ].

16/ 26



Sets in Martin-Löf Type Theory

Picture

b : B[a]

r b = node a′ r ′

r ′ b′ r ′ b′′ = node a′′ r ′′
B[a′′] = ∅ therefore leaf

node a r

r b0

17/ 26



Sets in Martin-Löf Type Theory

Principles for Formulating Sets – U

I A universe U is a collection of sets.

I Formulated as a set U of codes for sets and a decoding function
T : U→ Set.

I We define U : Set while recursively defining for every u : U a set T u:
I N̂ : U

T N̂ = N.
I If a : U and b : T a→ U then Π̂ a b : U.

T (Π̂ a b) = (x : T a)→ T (b x).
I Furthermore assume C [x ] : Set depending on x : U. Assume

I we can form C [N̂];
I from a : U, C [a], r : T a → U and (x : T a) → C [b x ] we can form

C [sup a r ].

Then we can form C [r ] from every r : U.

18/ 26



Induction-Recursion, Induction-Induction and Coalgebras

A Proof Theoretic Programme

Sets in Martin-Löf Type Theory

Induction-Recursion, Induction-Induction and Coalgebras

19/ 26



Induction-Recursion, Induction-Induction and Coalgebras

Induction-Recursion

I U is the paradigm example of an inductive-recursive definition.

I In general let D be a type.
We can define an A : Set inductively while recursively defining
B[a] : D for a : A.

I A can defined using constructors which are
I strictly positive in A
I can refer to B[a] for any a : A referred to

I Whenever we introduce an element a : A we need to introduce B[a].

I Induction-Recursion subsumes all standard extensions of Martin-Löf
Type Theory at the time of formulating it.

I Strength of type theory with induction-recursion at least KPM.

20/ 26



Induction-Recursion, Induction-Induction and Coalgebras

Example Fresh Lists

I We define Freshlist : Set inductively defining for l : Freshlist and
n : N the Boolean n ∈ l recursively:

I nil : Freshlist and n ∈ nil = false.
I If l : Freshlist, n : N and n ∈ l = false, then cons n l : Freshlist.

m ∈ cons n l = m ∈ l ∨B (m ==B n).

21/ 26



Induction-Recursion, Induction-Induction and Coalgebras

Induction-Induction

I Joint work with Fredrik Forsberg.

I We define A inductively while defining B a for a : A simultaneously
inductively.

I Constructors of A and B a need to be strictly positive in A and B a′

referred to.

I Complication: B a can refer to B c for elements c constructed using
the constructors of A.

22/ 26



Induction-Recursion, Induction-Induction and Coalgebras

Example

I Syntax of type theory is defined inductive-inductively:
I We define Context : Set and Type Γ for Γ : Context

inductive-inductively:
I ∅ : Context.
I If Γ : Context and A : Type Γ, then (Γ,A) : Context.
I If Γ : Context then N̂ : Type Γ.
I If Γ : Context, A : Type Γ, and B : Type (Γ,A), then Π̂ A B : Type Γ.

I Conways surreal numbers are an example of an extended form of
induction-induction.

23/ 26



Induction-Recursion, Induction-Induction and Coalgebras

Coalgebras in Type Theory

I Whereas inductive data types are given by their introduction rules,
coalgebras are given by their elimination rules.

I Elements of a coalgebras are everything which allows the elimination
principle to be applied for.

24/ 26



Induction-Recursion, Induction-Induction and Coalgebras

Example: coN

I Elements n of coN are programs such that we can define
case n : ({0}+ S N).

I Assume A : Set and f : A→ ({0}+ S A).
Then intro A f : A→ coN.
If f a = 0 then case (intro A f a) = 0.
If f a = S a′ then case (intro A f a) = S (intro A f a′).

I Example: Let A = {0}, f : A→ {0}+ S A, f a = S a.
Let b = intro A f 0.
Then case b = S b.

25/ 26



Induction-Recursion, Induction-Induction and Coalgebras

Research Questions

I Can we extend the principle of Induction-Recursion to include the
Mahlo principle, and combinations of the Mahlo principle and
inductive definitions?

I Can obtain a predicatively justified type theory of strength
(Π1

2 − CA)0 or beyond?

26/ 26


	A Proof Theoretic Programme
	Sets in Martin-Löf Type Theory
	Induction-Recursion, Induction-Induction and Coalgebras

