The Role of the Coinduction Hypothesis in Coinductive Proofs

Anton Setzer

Swansea University

With contributions by Peter Hancock, Andreas Abel, Brigitte Pientka, David Thibodeau

Operations, Sets, Types, Münchenwiler near Bern, Switzerland 20 April2016

Motivation

(Co)Iteration – (Co)Recursion – (Co)Induction

Generalisation (Petersson-Synek Trees)

Schemata for Corecursive Definitions and Coinductive Proofs

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Motivation

(Co)Iteration – (Co)Recursion – (Co)Induction

Generalisation (Petersson-Synek Trees)

Schemata for Corecursive Definitions and Coinductive Proofs

3

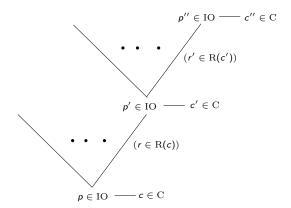
ヘロト 人間ト ヘヨト ヘヨト

Need for Coinductive Proofs

- In the beginning of computing, computer programs were batch programs.
 - One input one output
 - Correct programs correspond to well-founded structures (termination).
- Nowadays most programs are interactive;
 - A possibly infinite sequence of interactions, often concurrently.
 - Correspond to non-well-founded structures.
 - For instance non-concurrent computations can be represented as IO-trees.
 - A simple form of objects in object-oriented programs can be represented as non-well-founded trees.

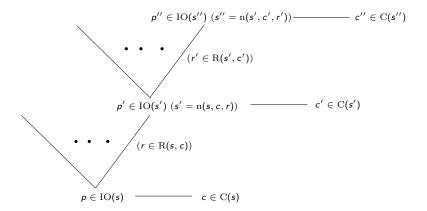
イロト 不得 トイヨト イヨト 二日

IO-Trees (Non-State Dependent)



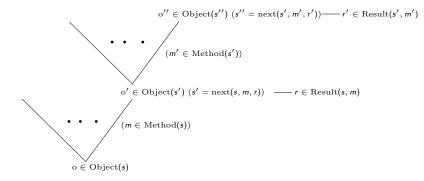
<ロト <部ト < 注ト < 注ト = 注

IO-Trees State Dependent



<ロト <部ト < 国ト < 国ト = 国

Objects (State Dependent)



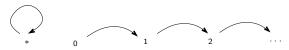
<ロ> <部> < 部> < き> < き> < き</p>

Need for Good Framework for Coinductive Structures

- Non-well-founded trees are defined coinductively.
- ► Relations between coinductive structures are coinductively defined
- ► Need suitable notion of reasoning coinductively.

Coinductive Proofs

 Reasoning about bisimulation is often very formalist. Consider an unlabelled Transition system:



- ▶ For showing * ~ *n* one defines
 - $R := \{(*, n) \mid n \in \mathbb{N}\}$
 - Shows that R is a bisimulation relation:
 - Let $(a, b) \in R$. Then $a = *, b = n \in \mathbb{N}$ for some n.
 - ► Assume $a = * \longrightarrow a'$. Then a' = *. We have $b = n \longrightarrow n+1$ and $(*, n+1) \in R$.
 - Assume $b = n \longrightarrow b'$. Then b' = n + 1. We have $a = * \longrightarrow *$ and $(*, n + 1) \in R$.
 - Therefore $x \sim y$ for $(x, y) \in R$.

イロト イポト イヨト イヨト

Comparison

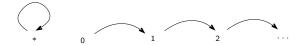
$$A := \{k \mid (n+m) + k = n + (m+k)\}$$

and showing that A is closed under 0 and successor.

- \blacktriangleright Instead we prove φ by induction on k using in the successor case the IH.
- Both proofs amount the same, but the second one would be far more difficult to teach and cumbersome to use.

イロト 不得 トイヨト イヨト 二日

Desired Coinductive Proof



• We show $\forall n \in \mathbb{N} . * \sim n$ by coinduction on \sim .

- Assume $* \longrightarrow x$. We need to find y s.t. $n \longrightarrow y$ and $x \sim y$. Choose y = n + 1. By **co-IH** $* \sim n + 1$.
- Assume n → y. We need to find x s.t. * → x and x ~ y. Choose x = *. By co-IH * ~ n + 1.
- In essence same proof, but hopefully easier to teach and use.

< □ > < 同 > < 国

Desired Coinductive Proof for Streams

 \blacktriangleright Consider $\operatorname{Stream}:\operatorname{Set}$ given by coinductively by

Consider

3

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Desired Coinductive Proof for Streams

We show

$$\forall n \in \mathbb{N}.\mathrm{inc}(n) = \mathrm{inc}'(n) \wedge \mathrm{inc}(n) = \mathrm{inc}''(n)$$

by coinduction on Stream.

- head(inc(n)) = n = head(inc'(n)) = head(inc''(n))
- ► $\operatorname{tail}(\operatorname{inc}(n)) = \operatorname{inc}(n+1) \stackrel{\operatorname{co-IH}}{=} \operatorname{inc}''(n+1) = \operatorname{tail}(\operatorname{inc}'(n))$
- ► $\operatorname{tail}(\operatorname{inc}(n)) = \operatorname{inc}(n+1) \stackrel{\operatorname{co-IH}}{=} \operatorname{inc}'(n+1) = \operatorname{tail}(\operatorname{inc}''(n))$

イロト 不得 トイヨト イヨト 二日

Goal

- ► Identify the precised dual of iteration, primitive recursion, induction.
- ► Identify the correct use of co-IH.
- ► Use of coalgebras as defined by their elimination rules.
- Generalise to indexed coinductively defined sets.

イロト イポト イヨト イヨト

Motivation

(Co)Iteration – (Co)Recursion – (Co)Induction

Generalisation (Petersson-Synek Trees)

Schemata for Corecursive Definitions and Coinductive Proofs

Introduction/Elimination of Inductive/Coinductive Sets

► Introduction rules for Natural numbers means that we have

 $\begin{array}{l} 0 \in \mathbb{N} \\ \mathrm{S} : \mathbb{N} \to \mathbb{N} \end{array}$

so we have an \mathbb{N} -algebra

 $(\mathbb{N}, 0, \mathrm{S}) \in (X \in \mathrm{Set}) \times X \times (X \to X)$

 Dually, coinductive sets are given by their elimination rules i.e. by observations or eliminators.

As an example we consider Stream:

We obtain a Stream-coalgebra

 $(\text{Stream, head, tail}) \in (X \in \text{Set}) \times (X \to \mathbb{N}) \times (X \to X)$

Problem of Defining Coalgebras by their Introduction Rules

Commonly one defines coalgebras by their introduction rules: Stream is the largest set closed under

```
\operatorname{cons}:\operatorname{Stream}\times\mathbb{N}\to\operatorname{Stream}
```

- ► Problem:
 - ► In set theory cons cannot be defined as a constructor such as

$$cons(n, s) := \langle \lceil cons \rceil, n, s \rangle$$

as for inductively defined sets, since we would need **non-well-founded sets**.

We can define a set Stream closed under a function cons, but that's no longer the same operation one would use for defining a corresponding inductively defined set.

In a term model we obtain non-normalisation:

We get elements such as

```
\operatorname{zerostream} := \operatorname{cons}(0, \operatorname{cons}(0, \operatorname{cons}(0, \cdots))) \in \operatorname{Stream}
```

Problem of Defining Coalgebras by their Introduction Rules

- ► If we define Stream by its elimination rules, problems vanish:
 - In set theory Set is a set which allows operations head : Set → N, tail : Set → Set.

For instance we can take

$$\begin{array}{rcl} \text{Stream} & := & \mathbb{N} \to \mathbb{N} \\ \text{head}(f) & := & f(0) \\ \text{tail}(f) & := & f \circ S \end{array}$$

and obtain a largest set in the sense given below.

- In a term model zerostream can be a term such that head(zerostream) → 0, tail(zerostream) → zerostream. zerostream itself is in normal form.
- ► In both cases cons can now be **defined** by the principle of coiteration.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Unique Iteration

- \blacktriangleright That $(\mathbb{N},0,\mathrm{S})$ are minimal can be given by:
 - Assume another \mathbb{N} -algebra (X, z, s), i.e.

$$z \in X$$
$$s: X \to X$$

► Then there exist a unique homomorphism g : (N,0,S) → (X,z,s), i.e.

- \blacktriangleright This is the same as saying $\mathbb N$ is an initial $F_{\mathbb N}\text{-algebra}.$
- This means we can define uniquely

- This is the principle of **unique iteration**.
- Definition by pattern matching.

Anton Setzer (Swansea)

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Unique Coiteration

- \blacktriangleright Dually, that (Stream, head, tail) is maximal can be given by:
 - Assume another Stream-coalgebra (X, h, t):

$$\begin{array}{rrr} h & : & X \to \mathbb{N} \\ t & : & X \to X \end{array}$$

▶ Then there exist a **unique homomorphism** $g: (X, h, t) \rightarrow (\text{Stream, head, tail}), \text{ i.e.}:$

$$g: X \to \text{Stream}$$

head $(g(x)) = h(x)$
tail $(g(x)) = g(t(x))$

Means we can define uniquely

 $g: X \to \text{Stream}$ head(g(x)) = n for some $n \in \mathbb{N}$ depending on xtail(g(x)) = g(x') for some $x' \in X$ depending on x

This is the principle of **unique coiteration**.

Definition by copattern matching.

Anton Setzer (Swansea)

▲ロ▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Comparison

- When using iteration the instance of g we can use is restricted, but we can apply an arbitrary function to it.
- ▶ When using conteration we can choose any instance a of g, but cannot apply any function to g(a).

イロト 不得 トイヨト イヨト 二日

Duality

Inductive Definition	Coinductive Definition
Determined by Introduction	Determined by Observation/Elimination
Iteration	Coiteration
Pattern matching	Copattern matching
Primitive Recursion	?
Induction	?
Induction-Hypothesis	?

¹Part of this table is due to Peter Hancock, see acknowledgements at the end. E = 22

1

(Co)Iteration – (Co)Recursion – (Co)Induction

Unique Primitive Recursion

- From unique iteration for N we can derive principle of unique primitive recursion
 - We can define uniquely

$$egin{array}{rcl} g:\mathbb{N} o X \ g(0) &= x & ext{for some } x \in X \ g(\mathrm{S}(n)) &= x' & ext{for some } x' \in X ext{ depending on } n, \ g(n) \end{array}$$

3

・ロト ・ 一 ト ・ ヨト ・ ヨト

Unique Primitive Corecursion

- From unique coiteration we can derive principle of unique primitive corecursion
 - We can define uniquely

ヘロト 人間ト ヘヨト ヘヨト

Duality

For primitive recursion we could make use of the pair (n, g(n)) consisting of n and the IH, i.e. an element of

$\mathbb{N}\times X$

For primitive corecursion we can make use of either s ∈ Stream or g(x'), i.e. of an element of

Stream + X

 \blacktriangleright + is the dual of \times .

・ロト ・ 同ト ・ ヨト ・ ヨト

Duality

Inductive Definition	Coinductive Definition
Determined by Introduction	Determined by Observation/Elimination
Iteration	Coiteration
Pattern matching	Copattern matching
Primitive Recursion	Primitive Corecursion
Induction	?
Induction-Hypothesis	?

E

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Example

$$s \in \text{Stream}$$

head $(s) = 0$
tail $(s) = s$

 $\begin{array}{lll} s':\mathbb{N}\to \mathrm{Stream}\\ \mathrm{head}(s'(n))&=&0\\ \mathrm{tail}(s'(n))&=&s'(n+1) \end{array}$

 $cons: (\mathbb{N} \times Stream) \rightarrow Stream$ head(cons(n, s)) = ntail(cons(n, s)) = s

Anton Setzer (Swansea)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のの(~

Induction

► From unique iteration one can derive principle of **induction**:

We can prove
$$\forall n \in \mathbb{N}.\varphi(n)$$
 by proving $\varphi(0)$
 $\forall n \in \mathbb{N}.\varphi(n) \rightarrow \varphi(\mathbf{S}(n))$

 Using induction we can prove (assuming extensionality of functions) uniqueness of iteration and primitive recursion.

ヘロト 人間ト ヘヨト ヘヨト

Equivalence

Theorem

Let $(\mathbb{N}, 0, S)$ be an \mathbb{N} -algebra. The following is equivalent

- 1. The principle of unique iteration.
- 2. The principle of unique primitive recursion.
- 3. The principle of iteration + induction.
- 4. The principle of primitive recursion + induction.

イロト イポト イヨト イヨト

Coinduction

- Uniqueness in coiteration is equivalent to the principle:
 Bisimulation implies equality
- \blacktriangleright Bisimulation on Stream is the largest relation \sim on Stream s.t.

$$s \sim s'
ightarrow \mathrm{head}(s) = \mathrm{head}(s') \wedge \mathrm{tail}(s) \sim \mathrm{tail}(s')$$

- ► Largest can be expressed as ~ being an indexed coinductively defined set.
- Primitive corecursion over ~ means:
 We can prove

$$orall s, s'. X(s, s') o s \sim s'$$

by showing

$$egin{array}{rcl} X(s,s') &
ightarrow & \mathrm{head}(s) = \mathrm{head}(s') \ X(s,s') &
ightarrow & X(\mathrm{tail}(s),\mathrm{tail}(s')) \lor \mathrm{tail}(s) \sim \mathrm{tail}(s') \end{array}$$

ヘロト 人間ト ヘヨト ヘヨト

Coinduction

- Combining
 - bisimulation implies equality
 - bisimulation can be shown corecursively

we obtain the following principle of coinduction

Э

・ロト ・ 一 ト ・ ヨト ・ ヨト

Schema of Coinduction

► We can prove

$$\forall s, s'. X(s, s')
ightarrow s = s'$$

by showing

$$\begin{array}{rcl} \forall s, s'. X(s, s') & \rightarrow & \mathrm{head}(s) = \mathrm{head}(s') \\ \forall s, s'. X(s, s') & \rightarrow & \mathrm{tail}(s) = \mathrm{tail}(s') \end{array}$$

where tail(s) = tail(s') can be derived

- directly or
- from a proof of

X(tail(s), tail(s'))

invoking the **co-induction-hypothesis**

$$X(\operatorname{tail}(s),\operatorname{tail}(s'))
ightarrow \operatorname{tail}(s) = \operatorname{tail}(s')$$

▶ Note: Only direct use of co-IH allowed.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Equivalence

Theorem

Let (Stream, head, tail) be a Stream-coalgebra. The following is equivalent

- 1. The principle of unique coiteration.
- 2. The principle of unique primitive corecursion.
- 3. The principle of coiteration + coinduction
- 4. The principle of primitive corecursion + coinduction

Duality

Inductive Definition	Coinductive Definition
Determined by Introduction	Determined by Observation/Elimination
Iteration	Coiteration
Pattern matching	Copattern matching
Primitive Recursion	Primitive Corecursion
Induction	Coinduction
Induction-Hypothesis	Coinduction-Hypothesis

E

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Motivation

(Co)Iteration – (Co)Recursion – (Co)Induction

Generalisation (Petersson-Synek Trees)

Schemata for Corecursive Definitions and Coinductive Proofs

General Strictly Positive Indexed Inductive Definitions

 \blacktriangleright Strictly positive indexed inductively defined sets over index set I are collection of sets $D:I \to Set$ closed under constructors

$$\begin{array}{l} \mathrm{C}_j: (x_1 \in A_1) \times (x_2 \in A_2(x_1)) \times \cdots \times (x_n \in A_n(x_1, \ldots, x_{n-1})) \\ \rightarrow \mathrm{D}(\mathrm{i}(x_1, \ldots, x_n)) \end{array}$$

• Here $A_k(\vec{x})$ is either a non-inductive argument, i.e. a set independent of A,

or it is an inductive argument, i.e.

$$A_k(\vec{x}) = (b \in B(\vec{x})) \rightarrow D(\mathrm{i}'_k(\vec{x}, b))$$

 Later arguments cannot depend on inductive arguments, only on non-inductive arguments.

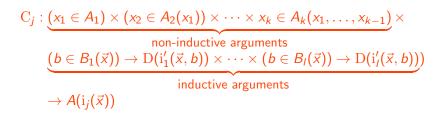
Simplification

► Therefore we can move the inductive arguments to the end (x̄ := x₁,..., x_k)

$$C_{j}: \underbrace{(x_{1} \in A_{1}) \times (x_{2} \in A_{2}(x_{1})) \times \cdots \times x_{k} \in A_{k}(x_{1}, \dots, x_{k-1})}_{\text{non-inductive arguments}} \times \underbrace{(b \in B_{1}(\vec{x})) \rightarrow D(i'_{1}(\vec{x}, b)) \times \cdots \times (b \in B_{l}(\vec{x})) \rightarrow D(i'_{l}(\vec{x}, b))}_{\text{inductive arguments}})_{\text{inductive arguments}}$$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Simplification



- We can form now the product of the non-inductive arguments and obtain a single non-inductive argument.
- We can replace the inductive arguments by one non-inductive argument

$$(b \in (B_1(\vec{x}) + \cdots + B_l(\vec{x}))) \rightarrow D(i''(\vec{x}, b))$$

for some i''.

イロト 不得 トイヨト イヨト 二日

Simplification

• We obtain for some new sets $A_j, B_j(x)$ and function j, i

 $C_j: ((a \in A_j) \times ((b \in B_j(a)) \rightarrow D(j(a, b)))) \rightarrow D(i(a))$

- We can replace all constructors C₁,..., C_n by one constructor C by adding an additional argument j ∈ {1,..., n} selecting the constructor, and then combine it with the non-inductive argument.
- So we have one constructor

$$\mathrm{C}: ((a \in A) \times ((b \in B(a)) \rightarrow \mathrm{D}(\mathrm{j}(a, b)))) \rightarrow \mathrm{D}(\mathrm{i}(a))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 - つへつ

Restricted Indexed (Co)Inductively Defined Sets

$\mathrm{C}: ((a \in A) \times ((b \in B(a)) \rightarrow \mathrm{D}(\mathrm{j}(a, b)))) \rightarrow \mathrm{D}(\mathrm{i}(a))$

- In order to obtain the corresponding observations/eliminators for the corresponding co-inductive definitions, we need to invert the arrows.
- The more natural dual is obtained if we use restricted indexed inductive definitions:

$$\mathrm{C}:(i\in\mathrm{I})
ightarrow((a\in\mathrm{A}(i)) imes((b\in\mathrm{B}(i,a))
ightarrow\mathrm{D}(\mathrm{j}(i,a,b))))
ightarrow\mathrm{D}(i)$$

• The corresponding observations/eliminators are

$$\mathrm{E}: (i \in \mathrm{I}) \rightarrow \mathrm{D}(i) \rightarrow ((a \in \mathrm{A}(i)) \times ((b \in \mathrm{B}(i, a)) \rightarrow \mathrm{D}(\mathrm{j}(i, a, b))))$$

or

$$\mathrm{E}: ((i \in \mathrm{I}) \times \mathrm{D}(i)) \to ((a \in \mathrm{A}(i)) \times ((b \in \mathrm{B}(i, a)) \to \mathrm{D}(\mathrm{j}(i, a, b))))$$

Petersson-Synek Trees

- D(i) form the Petersson-Synek trees (observation by Hancock), which correspond as well to the containers by Abbott, Altenkirch and Ghani.
- \blacktriangleright Replacing D by the more meaningful name ${\rm Tree}$ we obtain

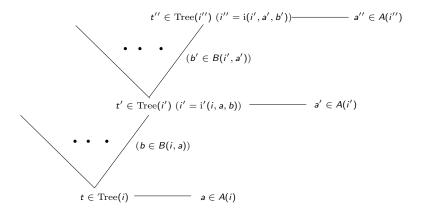
data Tree : I
$$\rightarrow$$
 Set where
C : ((*i* \in I)×
(*a* \in A(*i*)) × ((*b* \in B(*i*, *a*)) \rightarrow Tree(j(*i*, *a*, *b*))))
 \rightarrow Tree(*i*)

 \blacktriangleright For the corresponding coinductive defined set $Tree^\infty$ we divide E into its two components and obtain

coalg Tree^{$$\infty$$} : I \rightarrow Set where
E₁ : ((*i* \in I) \times Tree ^{∞} (*i*)) \rightarrow A(*i*)
E₂ : ((*i* \in I) \times (*t* \in Tree ^{∞} (*i*)) \times (*b* \in B(*i*, E₁(*i*, *t*))))
 \rightarrow Tree ^{∞} (j(*i*, E₁(*i*, *t*), *b*))

・ロト ・同ト ・ヨト ・ヨト

Petersson-Synek Trees



3

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Equivalence of unique (Co)induction, (Co)recursion, (Co)induction

- The notions of (co)iteration, primitive (co)recursion, (co)induction can be generalised in a straightforward way to Petersson-Synek Trees and Co-Trees.
- One can show the equivalence of
 - unique iteration, unique primitive recursion, iteration + induction, primitive recursion + induction
 - unique coiteration, unique primitive corecursion, coiteration + coinduction, primitive corecursion + coinduction
- We call Petersson-Synek algebras fulfilling unique iteration initial Petersson-Synek algebras.
- We call Petersson-Synek coalgebras fulfilling unique coiteration final Petersson-Synek coalgebras.

Concrete Model of Tree^{∞}

- ► Tree can be modelled in a straightforward way set theoretically.
- ► A very concrete model of Tree[∞] can be defined by following the principle that a coalgebra is given by its observations.
 - The result of E_1 can be observed directly.
 - ► The result of E₂ is an element of Tree[∞](i') for some i' which can be observed by carrying out more observations.

< ロト < 同ト < ヨト < ヨト -

Concrete Model of $Tree^{\infty}$

• Let for $i \in I$

$$\begin{aligned} \operatorname{Path}_{[\![Tree^{\infty}]\!]}(i) &:= \{ \langle i_0, a_0, b_0, i_1, a_1, b_1, \dots, i_n, a_n \rangle \mid \\ & n \geq 0, i_0 = i, \\ & (\forall k \in \{0, \dots, n-1\}.b_k \in \operatorname{B}(i_k, a_k) \land \\ & i_{k+1} = \operatorname{j}(i_k, a_k, b_k)), \\ & \forall k \in \{0, \dots, n\}.a_k \in \operatorname{A}(i_k) \} \end{aligned}$$

- Let [[Tree[∞]]](i) be the set of t ⊆ Path_{[[Tree[∞]]]}(i) which form the set of paths of a tree:
 - $\blacktriangleright \langle i_0, a_0, b_0, \dots, i_{n+1}, a_{n+1} \rangle \in t \rightarrow \langle i_0, a_0, b_0, \dots, i_n, a_n \rangle \in t$
 - ► $\exists !a.\langle i,a\rangle \in t$,

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Concrete Model of Tree^{∞}

Define

$$\begin{split} & \mathrm{E}_{1}: (i \in \mathrm{I}) \to \llbracket \operatorname{Tree}^{\infty} \rrbracket(i) \to \mathrm{A}(i) \\ & \mathrm{E}_{1}(i,t) := a \quad \text{if } \langle i, a \rangle \in t \end{split}$$

Define

$$\begin{split} & \mathbf{E}_2 : ((i \in \mathbf{I}) \to (t \in \llbracket \operatorname{Tree}^{\infty} \rrbracket(i)) \to (b \in \mathbf{B}(i, \mathbf{E}_1(i, t))) \\ & \to \llbracket \operatorname{Tree}^{\infty} \rrbracket(\mathbf{j}(i, \mathbf{E}_1(i, t), b)) \\ & \mathbf{E}_2(i, t, b) := \{ \langle i_1, a_1, b_1, \dots, i_{n+1}, a_{n+1} \rangle \\ & \quad | \langle i, \mathbf{E}_1(i, t), b, i_1, a_1, b_1, \dots, i_{n+1}, a_{n+1} \rangle \in t \} \end{split}$$

Anton Setzer (Swansea)

<ロ> <同> <同> < 回> < 回> < 回> = 三回

Generalisation (Petersson-Synek Trees)

Concrete Model of $Tree^{\infty}$

Theorem

($\llbracket \operatorname{Tree}^{\infty} \rrbracket, \operatorname{E}_1, \operatorname{E}_2$) is a final $\operatorname{Tree}^{\infty}$ -coalgebra.

Anton Setzer (Swansea)

Role of Co-IH in Coinductive Proofs

<ロ> <部> < 部> < き> < き> < き</p>

Motivation

(Co)Iteration – (Co)Recursion – (Co)Induction

Generalisation (Petersson-Synek Trees)

Schemata for Corecursive Definitions and Coinductive Proofs

3

ヘロト 人間ト ヘヨト ヘヨト

Schema for Primitive Corecursion

▶ Assume $A : I \to Set$, [[$Tree^{\infty}$]], E_1, E_2 as before. We can define a function

$$f:(i\in \mathrm{I})\to X(i)\to [\![\operatorname{Tree}^\infty]\!](i)$$

corecursively by defining for $i \in I$, $x \in X(i)$

- a value $a' := \operatorname{E}_1(i, f(i, x)) \in \operatorname{A}(i)$
- ▶ and for b ∈ B(i, a) a value E₂(i, f(i, x), b) ∈ [[Tree[∞]]](i', b) where i' := j(i, a', b) and we can define E₂(i, f(i, x), b)
 - ▶ as an element of $\llbracket \operatorname{Tree}^{\infty} \rrbracket(i')$ defined before
 - ► or corecursively define E₂(i, f(i, x), b) = f(i', x') for some x' ∈ X(i'). Here f(i', x') will be called the corecursion hypothesis.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 - つへつ

Example

▶ Define the set of increasing streams $IncStream : \mathbb{N} \to Set$ starting with at least *n* coinductively by

$$\begin{array}{ll} \mathrm{head} & : & (n:\mathbb{N}) \to \mathrm{IncStream}(n) \to \mathbb{N}_{\geq n} \\ \mathrm{tail} & : & (n:\mathbb{N}) \to (s:\mathrm{IncStream}(n)) \to \mathrm{IncStream}(\mathrm{head}(n,s)+1) \end{array}$$

where
$$\mathbb{N}_{\geq n} := \{m : \mathbb{N} \mid m \geq n\}$$
. Define

3

ヘロト 人間ト ヘヨト ヘヨト

Schema for Corecursively Defined Indexed Functions

corecursively by determining for $x \in X$ with $i := \hat{j}(x)$,

•
$$a := \mathrm{E}_1(i, f(x)) \in \mathrm{A}(i)$$

- ▶ and for $b \in B(i, a)$ with i' := j(i, a, b) the value $E_2(i, f(x), b) \in \llbracket \operatorname{Tree}^{\infty} \rrbracket(i')$ where we can define $E_2(i, f(x), b)$ as
 - ► a previously defined value of [[Tree[∞]]](i')
 - or corecursively define $E_2(i, f(x), b) = f(x')$ for some x' such that $\hat{i}(x') = i'$.

f(x') will be called the corecursion hypothesis.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 - つへつ

Example

 \blacktriangleright Define $\mathrm{Stack}:\mathbb{N}\rightarrow\mathrm{Set}$ coinductively with destructors

$$\begin{array}{rll} \mathrm{top} & : & ((n \in \mathbb{N}) \times (n > 0) \times \mathrm{Stack}(n)) \to \mathbb{N} \\ \mathrm{pop} & : & ((n \in \mathbb{N}) \times (n > 0) \times \mathrm{Stack}(n)) \to \mathrm{Stack}(n-1) \end{array}$$

- We can define empty : Stack(0), where we do not need to define anything since 0 > 0 = ∅.
- ► We can define

$$\begin{array}{ll} \text{push}: (n,m\in\mathbb{N})\to \text{Stack}(n)\to \text{Stack}(n+1) & \text{s.t.} \\ \text{top}(n+1,*,\text{push}(n,m,s)) &= m \\ \text{pop}(n+1,*,\text{push}(n,m,s)) &= s \end{array}$$

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Schema for Coinduction

Assume

$$\begin{array}{rcl} J & : & \mathrm{Set} \\ \widehat{i} & : & J \to \mathrm{I} \\ x_0, x_1 & : & (j \in J) \to \llbracket \mathrm{Tree}^\infty \rrbracket (\widehat{i}(j)) \end{array}$$

We can show $\forall j \in J.x_0(j) = x_0(j')$ coinductively by showing

- $E_0(\hat{i}(j), x_0(j))$ and $E_0(\hat{i}(j), x_1(j))$ are equal
- ► and for all b that E₁(i(j), x₀(j), b) and E₁(i(j), x₀(j), b) are equal, where we can use either the fact that
 - this was shown before,
 - or we can use the coinduction-hypothesis, which means using the fact $E_1(\hat{i}(j), x_0(j), b) = x_0(j')$ and $E_1(\hat{i}(j), x_1(j), b) = x_1(j')$ for some $j' \in J$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 - つへつ

Example

Let

 $s \in \text{Stream}$ head(s) = 0tail(s) = s $s' : \mathbb{N} \to \text{Stream}$ head(s'(n)) = 0tail(s'(n)) = s'(n+1)

 $cons : \mathbb{N} \to Stream \to Stream$ head(cons(n, s)) = ntail(cons(n, s)) = s

- We show ∀n ∈ N.s = s'(n) by coinduction: Assume n ∈ N. head(s) = head(s'(n)) and tail(s) = s = s'(n + 1) = tail(s'(n)), where s = s'(n + 1) follows by the coinduction hypothesis.

Anton Setzer (Swansea)

Schema for Bisimulation on Labelled Transition Systems

- Bisimulation is an indexed coinductively defined relation and therefore proofs of bisimulation can be shown by corecursion.
- \blacktriangleright Assume a labelled transition system with states S, labels L and a relation $\longrightarrow \subseteq S \times L \times S$

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Schema for Bisimulation on Labelled Transition Systems

- Let $I \in \text{Set}$, $s, s' : I \to S$.
- We can prove ∀i ∈ I.Bisim(s(i), s'(i)) coinductively by defining for any i ∈ I
 - ▶ for any $i \in L$, $s_0 \in S$ s.t. $s(i) \xrightarrow{i} s_0$ an $s'_0 \in S$ s.t.

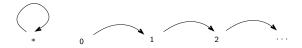
►
$$s'(i) \xrightarrow{i} s'_0$$

• and s.t. $Bisim(s_0, s'_0)$ where one can for prove the latter by invoking the Coinduction Hypothesis

 $\operatorname{Bisim}(s(i'),s'(i'))$ for some i' such that $s(i')=s_0,\ s'(i')=s_0'.$

- ▶ for any $l \in L$, $s'_0 \in S$ s.t. $s'(i) \xrightarrow{l} s'_0$ an $s_0 \in S$ s.t.
 - ► $s(i) \xrightarrow{i} s_0$
 - ▶ and s.t. $\operatorname{Bisim}(s_0, s'_0)$ where one can prove the latter by invoking the Coinduction Hypothesis $\operatorname{Bisim}(s(i'), s'(i'))$ for some i' such that $s(i') = s_0, s'(i') = s'_0$.

Example from Introduction



• We show $\forall n \in \mathbb{N} . * \sim n$ by coinduction on \sim .

- Assume $* \longrightarrow x$. We need to find y s.t. $n \longrightarrow y$ and $x \sim y$. Choose y = n + 1. By **co-IH** $* \sim n + 1$.
- Assume n → y. We need to find x s.t. * → x and x ~ y. Choose x = *. By co-IH * ~ n + 1.
- ► In essence same proof, but hopefully easier to teach and use.

< □ > < 同 > < 国

Generalisation

 The previous example can be generalised to arbitrary coinductively defined relations.

3

ヘロト 人間ト ヘヨト ヘヨト

Conclusion

- Coiteration, primitive corecursion, coinduction are the duals of iteration, primitive recursion, induction.
- In iteration/recursion/induction, the instances of the co-IH used are restricted, but the result can be used in arbitrary functions and formulas.
- In coiteration/corecursion/coinduction, the instances of the co-IH are unrestricted, but the result can be only used directly.
- General case of indexed coinductively defined sets can be reduced to Petersson-Synek Cotrees.
- Schemata for primitive corecursion and coinduction.
- Schemata can be applied to indexed coinductively defined sets and relations.
- Relations on coinductively defined sets seem to be often coinductivel defined indexed relations and can be shown by indexed corecursion.