Anton Setzer
Swansea University

With contributions by Peter Hancock, Andreas Abel, Brigitte Pientka,
David Thibodeau

20 April2016

«0O0» «Fr» «=)r» « » Q>

Operations, Sets, Types, Miinchenwiler near Bern, Switzerland

http://www.cs.swan.ac.uk/~csetzer/index.html
http://www.swansea.ac.uk/compsci/

Motivation

(Co)lteration — (Co)Recursion — (Co)Induction

Generalisation (Petersson-Synek Trees)

Schemata for Corecursive Definitions and Coinductive Proofs

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 2/ 59

Motivation

(Co)lteration — (Co)Recursion — (Co)Induction

Generalisation (Petersson-Synek Trees)

Schemata for Corecursive Definitions and Coinductive Proofs

«0>» «Fr «=>» 4 > Q>

Motivation

Need for Coinductive Proofs

» In the beginning of computing, computer programs were batch
programs.
» One input one output
» Correct programs correspond to well-founded structures
(termination).
» Nowadays most programs are interactive;
» A possibly infinite sequence of interactions, often concurrently.
» Correspond to hon-well-founded structures.

» For instance non-concurrent computations can be represented as
10-trees.

» A simple form of objects in object-oriented programs can be
represented as non-well-founded trees.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs

4/ 59

pelo

P’ €10

(r’ S R(C'))
p’ €10 oo
(r € R(c))
ceC

a

" ecC

p € I0(s)

«0>» «Fr «=)>» 4 .

p” € IO(S”) (S” = n(s’, c', r’))

e C(S//)
(r € R(s'.)

P’ € Io(s’) (S' _ n(s’ . r))

e C(s’)

(r € R(s, c))

ceC(s)

i
v

o € Object(s)

o’ € Object(s”’) (s"" = next(s’, m’,r"))
(m’ € Method(s’))

o’ € Object(s’) (s" = next(s, m,r))

r € Result(s, m)
(m € Method(s))

r’ € Result(s’, m’)

DA

a
u]
v
a
v
a
i
v
a
it
-
it

Motivation

Need for Good Framework for Coinductive Structures

» Non-well-founded trees are defined coinductively.
» Relations between coinductive structures are coinductively defined

» Need suitable notion of reasoning coinductively.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 8/ 59

Motivation

Coinductive Proofs

» Reasoning about bisimulation is often very formalist. Consider an
unlabelled Transition system:

O U N N
) 2

* 0

» For showing * ~ n one defines
> Ri={(x,n) | neN}
» Shows that R is a bisimulation relation:
> Let (a,b) € R. Then a=x%, b= n € N for some n.
» Assume a = x — a’.

Then 2’ = . We have b=n—> n+1and (x,n+1) € R.
» Assume b=n— b’

Then b’ = n+1. We have a=+* — * and (x,n+ 1) € R.
» Therefore x ~ y for (x,y) € R.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 9/ 59

Motivation

Comparison

» Above is similar when carrying an inductive proof, e.g. of
@ :=Vn,mk(n+m)+k=n+(m+k)
to defining
A={k|(n+m)+k=n+(m+k)}
and showing that A is closed under 0 and successor.

» Instead we prove ¢ by induction on k using in the successor case the
IH.

» Both proofs amount the same, but the second one would be far more
difficult to teach and cumbersome to use.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 10/ 59

Motivation

Desired Coinductive Proof

(D~
1 2

* 0

» We show Vn € N.x ~ n by coinduction on ~.

» Assume x — x. We need to find y s.t. n —> y and x ~ y. Choose
y=n+1 Byco-H x~n+1.

> Assume n —> y. We need to find x s.t. * — x and x ~ y. Choose
x =x*. By co-lH x ~ n+ 1.

» In essence same proof, but hopefully easier to teach and use.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 11/ 59

Motivation

Desired Coinductive Proof for Streams

» Consider Stream : Set given by coinductively by

head : Stream — N
tail : Stream — Stream

» Consider

inc, inc’, inc” : N — Stream

head(inc(n)) = head(inc’(n)) = head(inc’(n)) = n

tail(inc(n)) = inc(n+1)
tail(inc’(n)) = inc’(n+1)
tail(inc”(n)) = ind(n+1)

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 12/ 59

» We show

Vn € N.inc(n) = inc’(n) A inc(n) = inc”(n)
by coinduction on Stream.

» head(inc(n)) = n = head(inc’(n)) = head(inc”(n))
» tail(inc(n)) = inc(n + 1) “°="" inc”(n + 1) = tail(inc’(n))
» tail(inc(n)) = inc(n + 1) “°="" inc/(n + 1) = tail(inc” (n))

it
-

«0O0» «Fr» «=)r» « Q>

v vV Vv Vv

Identify the precised dual of iteration, primitive recursion, induction.
Identify the correct use of co-IH.

Use of coalgebras as defined by their elimination rules.

Generalise to indexed coinductively defined sets.

«O0>» «Fr «=» « =) = Q>

Motivation

(Co)lteration — (Co)Recursion — (Co)Induction

Generalisation (Petersson-Synek Trees)

Schemata for Corecursive Definitions and Coinductive Proofs

a
o
v
a
v
a
it
v
a
it
-
it

DA

(Co)lteration — (Co)Recursion — (Co)Induction

Introduction/Elimination of Inductive/Coinductive Sets

» Introduction rules for Natural numbers means that we have

0eN
S:N—» N

so we have an N-algebra
(N,0,S) € (X € Set) x X x (X — X)

» Dually, coinductive sets are given by their elimination rules i.e. by
observations or eliminators.
As an example we consider Stream:

head : Stream — N
tail : Stream — Stream

We obtain a Stream-coalgebra
(Stream, head, tail) € (X € Set) x (X — N) x (X = X)

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 16/ 59

(Co)lteration — (Co)Recursion — (Co)Induction

Problem of Defining Coalgebras by their Introduction Rules

» Commonly one defines coalgebras by their introduction rules:
Stream is the largest set closed under

cons : Stream x N — Stream

» Problem:
» In set theory cons cannot be defined as a constructor such as

cons(n, s) := ([cons], n, s)

as for inductively defined sets, since we would need
non-well-founded sets.

We can define a set Stream closed under a function cons, but that's no
longer the same operation one would use for defining a corresponding
inductively defined set.

» In a term model we obtain hon-normalisation:
We get elements such as

zerostream := cons(0, cons(0, cons(0, - - -))) € Stream

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 17/ 59

(Co)lteration — (Co)Recursion — (Co)Induction

Problem of Defining Coalgebras by their Introduction Rules

> If we define Stream by its elimination rules, problems vanish:

> In set theory Set is a set which allows operations head : Set — N,
tail : Set — Set.
For instance we can take

Stream = N — N
head(f) := £(0)
tail(f) = foS

and obtain a largest set in the sense given below.

» In a term model zerostream can be a term such that
head(zerostream) — 0, tail(zerostream) — zerostream.
zerostream itself is in normal form.

» In both cases cons can now be defined by the principle of coiteration.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 18/ 59

(Co)lteration — (Co)Recursion — (Co)Induction

Unique lteration

» That (N,0,S) are minimal can be given by:
» Assume another N-algebra (X, z,s), i.e.

ze X
s: X=X
» Then there exist a unique homomorphism g : (N, 0,S) — (X, z,s),
i.e.
g:N—=> X
g0) = z

g(5(n) = s(g(n)
» This is the same as saying N is an initial Fy-algebra.
» This means we can define uniquely

g N—=X
g(0) = x forsome x € X
g(S(n)) = x’ for some x’ € X depending on g(n)

» This is the principle of unique iteration.
» Definition by pattern matching.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 19/ 59

(Co)lteration — (Co)Recursion — (Co)Induction

Unique Coiteration

» Dually, that (Stream, head, tail) is maximal can be given by:
» Assume another Stream-coalgebra (X, h, t):

h : X—=N
t : X=X

» Then there exist a unique homomorphism
g : (X, h,t) — (Stream, head, tail), i.e.:

g : X — Stream
head(g(x)) = h(x)
tail(g(x)) = g(t(x))

» Means we can define uniquely

g : X — Stream
head(g(x)) = n for some n € N depending on x
tail(g(x)) = g(x’) for some x’ € X depending on x

This is the principle of unique coiteration.
» Definition by copattern matching.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs

20/ 59

» When using iteration the instance of g we can use is restricted, but
we can apply an arbitrary function to it.

» When using coiteration we can choose any instance a of g, but
cannot apply any function to g(a).

«O0> «F>» «=)r» «=)» = QR

(Co)lteration — (Co)Recursion — (Co)Induction

Duality
1
Inductive Definition Coinductive Definition
Determined by Introduction | Determined by Observation/Elimination
Iteration Coiteration
Pattern matching Copattern matching
Primitive Recursion ?
Induction ?
Induction-Hypothesis ?

'Part of this table is due to Peter Hancock, see acknowledgements at theend.
Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 22/ 59

» From unique iteration for N we can derive principle of
unique primitive recursion

» We can define uniquely

g N—=X
g(0) = x
g(8(n) = X

for some x € X

for some x’ € X depending on n, g(n)

«0O0» «Fr» «=)r» « » Q>

(Co)lteration — (Co)Recursion — (Co)Induction

Unique Primitive Corecursion

» From unique coiteration we can derive principle of
unique primitive corecursion

» We can define uniquely

g : X — Stream

head(g(x)) = n for some n € N depending on x
tail(g(x))) = g(x’) for some x’ € X depending on x
or

= s for some s € Stream depending on x

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 24/ 59

» For primitive recursion we could make use of the pair (n, g(n))
consisting of n and the IH, i.e. an element of

N x X

» For primitive corecursion we can make use of either s € Stream or
g(x’), i.e. of an element of

Stream + X
» -+ is the dual of x.

«0O0» «Fr» «=)r» « Q>

it
-

(Co)lteration — (Co)Recursion — (Co)Induction

Duality
Inductive Definition Coinductive Definition
Determined by Introduction | Determined by Observation/Elimination
Iteration Coiteration
Pattern matching Copattern matching
Primitive Recursion Primitive Corecursion
Induction ?
Induction-Hypothesis ?

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 26/ 59

s € Stream
head(s) = 0
tail(s) = s

s’ : N — Stream
head(s'(n)) = 0
tail(s'(n)) = s'(n+1)

cons : (N x Stream) — Stream

head(cons(n,s)) = n
tail(cons(n,s)) = s

«O0>» «Fr «=» « =) = Q>

(Co)lteration — (Co)Recursion — (Co)Induction

Induction

» From unique iteration one can derive principle of induction:
We can prove Vn € N.ip(n) by proving
©(0)
Vn € N.p(n) — ¢(S(n))

» Using induction we can prove (assuming extensionality of functions)
uniqueness of iteration and primitive recursion.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 28/ 59

Let (N,0,S) be an N-algebra. The following is equivalent
1. The principle of unique iteration.

= W

The principle of unique primitive recursion.
The principle of iteration + induction.

The principle of primitive recursion + induction.

«40>» «F»r « =) «

(Co)lteration — (Co)Recursion — (Co)Induction

Coinduction

» Uniqueness in coiteration is equivalent to the principle:
Bisimulation implies equality
» Bisimulation on Stream is the largest relation ~ on Stream s.t.

s ~ s’ — head(s) = head(s’) A tail(s) ~ tail(s")

» Largest can be expressed as ~ being an indexed coinductively defined
set.

» Primitive corecursion over ~ means:
We can prove
Vs, s’ X(s,s') > s~s

by showing

X(s,s') — head(s) = head(s’)
X(s,s') — X(tail(s), tail(s")) V tail(s) ~ tail(s")

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 30/ 59

» Combining

» bisimulation implies equality
» bisimulation can be shown corecursively

we obtain the following principle of coinduction

«Or «Fr «=>» QA

(Co)lteration — (Co)Recursion — (Co)Induction

Schema of Coinduction

» We can prove

Vs, s’ X(s,s') - s=¢

by showing
Vs,s'.X(s,s’) — head(s) = head(s')
Vs,s' X(s,s') — tail(s) = tail(s’)

where tail(s) = tail(s’) can be derived
» directly or

» from a proof of
X(tail(s), tail(s"))

invoking the co-induction-hypothesis
X(tail(s), tail(s")) — tail(s) = tail(s’)
» Note: Only direct use of co-IH allowed.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 32/ 59

(Co)lteration — (Co)Recursion — (Co)Induction

Equivalence

Theorem

Let (Stream, head, tail) be a Stream-coalgebra. The following is
equivalent

The principle of unique coiteration.
The principle of unique primitive corecursion.

The principle of coiteration + coinduction

Sl A

The principle of primitive corecursion + coinduction

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 33/ 59

(Co)lteration — (Co)Recursion — (Co)Induction

Duality

Inductive Definition

Coinductive Definition

Determined by Introduction

Determined by Observation/Elimination

Iteration

Coiteration

Pattern matching

Copattern matching

Primitive Recursion

Primitive Corecursion

Induction

Coinduction

Induction-Hypothesis

Coinduction-Hypothesis

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs

34/ 59

Motivation

(Co)lteration — (Co)Recursion — (Co)Induction

Generalisation (Petersson-Synek Trees)

Schemata for Corecursive Definitions and Coinductive Proofs

a
o
v
a
v
a
it
v
a
it
-
it

DA

Generalisation (Petersson-Synek Trees)

General Strictly Positive Indexed Inductive Definitions

» Strictly positive indexed inductively defined sets over index set I are
collection of sets D : I — Set closed under constructors

Cj:(x1 € A1) x (x2 € Ax(x1)) X -+ X (Xn € An(X1, ..., Xn-1))
— D(i(x1, ..., xn))

» Here A(X) is either a non-inductive argument, i.e. a set independent
of A,
or it is an inductive argument, i.e.

Ak(X) = (b € B(%)) = D(ik(, b))

» Later arguments cannot depend on inductive arguments, only on
non-inductive arguments.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 36/ 59

Generalisation (Petersson-Synek Trees)

Simplification

» Therefore we can move the inductive arguments to the end
(X :=x1,...,Xk)

CJ' : (X1 S Al) X (X2 € A2(X1)) X oo X Xi € Ak(Xl,.. . an—l) X

~
non-inductive arguments

(b € Bi(X)) — D(iy(X, b)) x - -- x (b € B)(X)) — D(ij(%, b)))

inductive arguments

= D(i;(x))

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 37/ 59

Cj : (X1 S Al) X (X2 S A2(X1)) X oo X X € Ak(Xl,

-'~7Xk71) X

-~

non-inductive arguments

(b € Bi(X)) = D(i1(%, b)) x -+~ x (b € B/(X)) = D(ij(X, b))

-~

inductive arguments

— A(1(x))

» We can form now the product of the non-inductive arguments and
obtain a single non-inductive argument.

» We can replace the inductive arguments by one non-inductive
argument

(b€ (Bi(X)+ -+ Bi(X))) = D(@"(%, b))
for some i”.

«40>» «F»r « =) «

> = 9DAC¢

Generalisation (Petersson-Synek Trees)

Simplification

» We obtain for some new sets A;, Bj(x) and function j, i
Cj: ((a € Aj) x ((b € Bj(a)) = D(j(a, b)) — D(i(a))

» We can replace all constructors Cy, ..., C, by one constructor C by
adding an additional argument j € {1,..., n} selecting the
constructor, and then combine it with the non-inductive argument.

» So we have one constructor

C:((acA)x((be B(a) = D(i(a, b)) = D(i(a))

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 39/ 59

Generalisation (Petersson-Synek Trees)

Restricted Indexed (Co)Inductively Defined Sets

C: ((a € A) x (b e B(a) - D(j(a, b)))) — D(i(a))

» In order to obtain the corresponding observations/eliminators for the
corresponding co-inductive definitions, we need to invert the arrows.

» The more natural dual is obtained if we use restricted indexed
inductive definitions:

C:(iel)—=((ac A(i)) x ((b € B(i,a)) = D(j(i,a, b)))) — D(i)
» The corresponding observations/eliminators are
E:(iel)—=D(i)— ((a € A(i)) x (b€ B(i,a)) — D(j(i, a,b))))
or
E:((iel)xD(i) — ((a € A(i)) x ((b € B(i,a)) = D(j(i, a, b))))

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 40/ 59

Generalisation (Petersson-Synek Trees)

Petersson-Synek Trees

» D(/i) form the Petersson-Synek trees (observation by Hancock), which
correspond as well to the containers by Abbott, Altenkirch and Ghani.
» Replacing D by the more meaningful name Tree we obtain

data Tree : I — Set where
C:((iel)x
(a € A(i)) x ((b € B(i,a)) = Tree(j(i, a, b))))
— Tree(/)
» For the corresponding coinductive defined set Tree™ we divide E into
its two components and obtain
coalg Tree™ : I — Set where
E1 @ ((1 €I) x Tree>(i)) — A(i)
Ex : ((i €I) x (t € Tree>(i)) x (b € B(i,E1(i, t))))
— Tree™(j(i, E1(i, t), b))

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 41/ 59

t € Tree(/) ————————

t" € Tree(i’’) (i" =i(i’",a’, b))

(b" € B(i",3"))
t' € Tree(i’) (i =1i'(i,a, b)) ———

(b € B(i, a))

a’ € A(i")

a € A(i)

it
a

it

v

«Or «Fr o« > QA

3! c A(’-//)

Generalisation (Petersson-Synek Trees)

Equivalence of unique (Co)induction, (Co)recursion,
(Co)induction

» The notions of (co)iteration, primitive (co)recursion, (co)induction
can be generalised in a straightforward way to Petersson-Synek Trees
and Co-Trees.

» One can show the equivalence of

> unique iteration, unique primitive recursion, iteration + induction,
primitive recursion + induction

> unique coiteration, unique primitive corecursion, coiteration +
coinduction, primitive corecursion + coinduction

» We call Petersson-Synek algebras fulfilling unique iteration initial
Petersson-Synek algebras.

» We call Petersson-Synek coalgebras fulfilling unique coiteration final
Petersson-Synek coalgebras.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 43/ 59

Generalisation (Petersson-Synek Trees)

Concrete Model of Tree™

» Tree can be modelled in a straightforward way set theoretically.

» A very concrete model of Tree™ can be defined by following the
principle that a coalgebra is given by its observations.
» The result of E; can be observed directly.
» The result of E; is an element of Tree® (/") for some i’ which can be
observed by carrying out more observations.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 44/ 59

Generalisation (Petersson-Synek Trees)

Concrete Model of Tree™

» Let foriel

Path[[”[‘reeoo]](i) = {<i0,ao,b0, i,a1, bi,..., i,,,a,,> |
n>0,ip=1,
(Vk € {0,...,n—1}.bx € B(ik, ax)A
ik+1 :j(ikaa/ﬂbk)))
Wk € {0,...,n}.ax € Ai)}

» Let [Tree™]|(i) be the set of t C Path[Treeoo]](i) which form the set

of paths of a tree:
> <i0, ao, bo, . . ., I.,,+1, a,,+1> ct— </0, ao, bo, . .., in, an> et
» dla.(i,a) € t,
> <i0, ap, bo, ..., In, a,,> EtAb, € B(I',,7 a,,) Nipp1 = j(in, an, bn)
— El!an+1.<i0, ao, bo, -+ -5 iny an, b, int1, a,,+1> ct

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 45/ 59

» Define

El(i, t) ‘= a
» Define

Ey: (i €I) — [Tree™ (i) — A(i)
if (i,a)et

Ey: ((i €I) = (t € [Tree>*](i)) — (b € B(i, E1(i, t)))
— [Tree™ (i, E1(i, t), b))

Ez(i, t, b) = {<i1, ai, b1, ey in+1, a,,+1)

| <i:E1(ia t)vba i17alab17' '7in—|—17an—|—1> S t}

«O0> «F>» «=)r» «=)» = Q>

([Tree>]|, E1, Ep) is a final Tree™-coalgebra.
«Or «Fr «=>» QA
~ Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 47/ 59

Schemata for Corecursive Definitions and Coinductive Proofs

Schemata for Corecursive Definitions and Coinductive Proofs

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 48/ 59

Schemata for Corecursive Definitions and Coinductive Proofs

Schema for Primitive Corecursion

» Assume A : 1 — Set, [Tree™]|, E1, Ep as before. We can define a

function
fo(iel)— X(i)— [Tree™ (/)

corecursively by defining for i € I, x € X (i)
» avalue @ :=E1(/, f(i,x)) € A(V)
» and for b € B(/, a) a value Ey(i, f(i,x), b) € [Tree™ (i, b)
where " :=j(i, d, b)
and we can define Ey (i, f(i, x), b)
> as an element of [Tree™]|(i’) defined before
> or corecursively define Ex(i, f(i, x), b) = f(i’,x")
for some x" € X(i").
Here f(i’,x") will be called the corecursion hypothesis.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 49/ 59

Schemata for Corecursive Definitions and Coinductive Proofs

Example

» Define the set of increasing streams IncStream : N — Set starting
with at least n coinductively by

head : (n:N)— IncStream(n) — N>,

tail : (n:N) — (s:IncStream(n)) — IncStream(head(n,s) + 1)
where N>, .= {m:N | m > n}.
Define
inc,inc,inc¢” : (n:N) — IncStream(n)
head(n,inc(n)) = head(n,inc'(n)) = head(n,inc”(n)) = n
tail(n,inc(n)) = inc(n+1)
tail(n,inc’(n)) = inc’(n+1)
tail(n,inc”(n)) = ind(n+1)

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 50/ 59

Schemata for Corecursive Definitions and Coinductive Proofs

Schema for Corecursively Defined Indexed Functions

» Assume X € Set,j: X =1L
We can define

f:(x e X)— [Tree®](i(x))
corecursively by determining for x € X with / ::7(X),
» a:=E(i,f(x)) € A(i)
» and for b € B(/, a) with i’ :=j(i, a, b) the value
Ex (i, f(x), b) € [Tree>]|(#'
where we can define Ex(i, f(x), b) as
> a previously defined value of [Tree™]|(i")
» or corecursively define E(i, f(x), b) = f(x’) for some x’ such that
ix)=1".

f(x") will be called the corecursion hypothesis.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 51/ 59

Schemata for Corecursive Definitions and Coinductive Proofs

Example

» Define Stack : N — Set coinductively with destructors

top : ((neN) x (n>0)x Stack(n)) - N
pop : ((neN)x(n>0)x Stack(n)) — Stack(n — 1)

» We can define empty : Stack(0), where we do not need to define
anything since 0 > 0 = ().
» We can define
push : (n, m € N) — Stack(n) — Stack(n + 1) s.t.

top(n+ 1, x,push(n,m,s)) = m
pop(n+1,%,push(n, m,s)) = s

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 52/ 59

Schemata for Corecursive Definitions and Coinductive Proofs

Schema for Coinduction

» Assume
J : Set
A =1
xo,x1 : (JjeJ)— [[Treeoo]](/i\(j))

We can show V) € J.xo(j) = xo(j’) coinductively by showing

A~

» Eo(i(j), x0(j)) and Eo(i(j), x1(j)) are equal

» and for all b that

E1(i(j), x0(j), b) and E1(i(j), xo(j), b) are equal,
where we can use either the fact that

» this was shown before,
> or we can use the coinduction-hypothesis, which means using the fact

E1(i(j), x0(j), b) = xo(j") and Ex(i(j), x1(j), b) = x1(j’) for some j' € J.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 53/ 59

Schemata for Corecursive Definitions and Coinductive Proofs

Example
> Let

s € Stream s’ : N — Stream
head(s) = 0 head(s'(n)) =
tail(s) = s tail(s'(n)) = s'(n+1)
cons : N — Stream — Stream
head(cons(n,s)) = n
tail(cons(n,s)) = s

» We show Vn € N.s = s'(n) by coinduction:
Assume n € N. head(s) = head(s’(n)) and
tail(s) = s = s’(n+ 1) = tail(s'(n)), where s = s'(n + 1) follows by
the coinduction hypothesis.

» We show cons(0,s) = s by coinduction:
head(cons(0,s)) = 0 = head(s) and tail(cons(0,s)) = s = tail(s),
where we did not use the coinduction hypothesis.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 54/ 59

Schemata for Corecursive Definitions and Coinductive Proofs

Schema for Bisimulation on Labelled Transition Systems

» Bisimulation is an indexed coinductively defined relation and therefore
proofs of bisimulation can be shown by corecursion.

» Assume a labelled transition system with states S, labels L and a
relation —C S x L x S

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 55/ 59

Schemata for Corecursive Definitions and Coinductive Proofs

Schema for Bisimulation on Labelled Transition Systems

» Let /| € Set, 5,5’ : | — S.

» We can prove Vi € I.Bisim(s(i), s’(i)) coinductively by defining for
any i€l

N
» forany /€L, sp € Ss.t. s(i) — s an
sy €S s.t.
» §'(i) L5 s
» and s.t. Bisim(so, 55)
where one can for prove the latter by invoking the Coinduction
Hypothesis
Bisim(s(i"), s'(i")) for some i’ such that s(i’) = so, s'(i") = ;.
N
» forany / € L, sy € Ss.t. s'(i) — sp an
Sp € S s.t.
> s(i) L 5
> and s.t. Bisim(so, 55)
where one can prove the latter by invoking the Coinduction Hypothesis
Bisim(s(i’), s’(i")) for some i’ such that s(i') = s, s'(i") = s;.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 56/ 59

Schemata for Corecursive Definitions and Coinductive Proofs

Example from Introduction

(D~
1 2

* 0

» We show Vn € N.x ~ n by coinduction on ~.

» Assume x — x. We need to find y s.t. n —> y and x ~ y. Choose
y=n+1 Byco-H x~n+1.

> Assume n —> y. We need to find x s.t. * — x and x ~ y. Choose
x =x*. By co-lH x ~ n+ 1.

» In essence same proof, but hopefully easier to teach and use.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 57/ 59

defined relations.

» The previous example can be generalised to arbitrary coinductively

«0O)>» «F)»r « > Q>

it
a

it

v

Schemata for Corecursive Definitions and Coinductive Proofs

Conclusion

» Coiteration, primitive corecursion, coinduction are the duals of
iteration, primitive recursion, induction.

» In iteration/recursion/induction, the instances of the co-IH used are
restricted, but the result can be used in arbitrary functions and
formulas.

» In coiteration/corecursion/coinduction, the instances of the co-IH are
unrestricted, but the result can be only used directly.

» General case of indexed coinductively defined sets can be reduced to
Petersson-Synek Cotrees.

» Schemata for primitive corecursion and coinduction.

» Schemata can be applied to indexed coinductively defined sets and
relations.

» Relations on coinductively defined sets seem to be often coinductivel
defined indexed relations and can be shown by indexed corecursion.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 59/ 59

	Motivation
	(Co)Iteration – (Co)Recursion – (Co)Induction
	Generalisation (Petersson-Synek Trees)
	Schemata for Corecursive Definitions and Coinductive Proofs

