
The Role of the Coinduction Hypothesis in Coinductive
Proofs

Anton Setzer

Swansea University
With contributions by Peter Hancock, Andreas Abel, Brigitte Pientka,

David Thibodeau

Operations, Sets, Types, Münchenwiler near Bern, Switzerland
20 April2016

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 1/ 59

http://www.cs.swan.ac.uk/~csetzer/index.html
http://www.swansea.ac.uk/compsci/


Motivation

(Co)Iteration – (Co)Recursion – (Co)Induction

Generalisation (Petersson-Synek Trees)

Schemata for Corecursive Definitions and Coinductive Proofs

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 2/ 59



Motivation

Motivation

(Co)Iteration – (Co)Recursion – (Co)Induction

Generalisation (Petersson-Synek Trees)

Schemata for Corecursive Definitions and Coinductive Proofs

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 3/ 59



Motivation

Need for Coinductive Proofs

I In the beginning of computing, computer programs were batch
programs.

I One input one output
I Correct programs correspond to well-founded structures

(termination).

I Nowadays most programs are interactive;
I A possibly infinite sequence of interactions, often concurrently.
I Correspond to non-well-founded structures.
I For instance non-concurrent computations can be represented as

IO-trees.
I A simple form of objects in object-oriented programs can be

represented as non-well-founded trees.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 4/ 59



Motivation

IO-Trees (Non-State Dependent)

�������� ����

�������� ����

p ∈ IO c ∈ C

(r ∈ R(c))

p′ ∈ IO c′ ∈ C

(r ′ ∈ R(c′))

p′′ ∈ IO c′′ ∈ C

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 5/ 59



Motivation

IO-Trees State Dependent

�������� ����

�������� ����

p ∈ IO(s) c ∈ C(s)

(r ∈ R(s, c))

p′ ∈ IO(s′) (s′ = n(s, c, r)) c′ ∈ C(s′)

(r ′ ∈ R(s′, c′))

p′′ ∈ IO(s′′) (s′′ = n(s′, c′, r ′)) c′′ ∈ C(s′′)

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 6/ 59



Motivation

Objects (State Dependent)

�������� ����

�������� ����

o ∈ Object(s)

(m ∈ Method(s))

(m′ ∈ Method(s′))

o′′ ∈ Object(s′′) (s′′ = next(s′,m′, r′))

o′ ∈ Object(s′) (s′ = next(s,m, r))

r′ ∈ Result(s′,m′)

r ∈ Result(s,m)

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 7/ 59



Motivation

Need for Good Framework for Coinductive Structures

I Non-well-founded trees are defined coinductively.

I Relations between coinductive structures are coinductively defined

I Need suitable notion of reasoning coinductively.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 8/ 59



Motivation

Coinductive Proofs

I Reasoning about bisimulation is often very formalist. Consider an
unlabelled Transition system:

1 20 · · ·∗

I For showing ∗ ∼ n one defines
I R := {(∗, n) | n ∈ N}
I Shows that R is a bisimulation relation:

I Let (a, b) ∈ R. Then a = ∗, b = n ∈ N for some n.
I Assume a = ∗ −→ a′.

Then a′ = ∗. We have b = n −→ n + 1 and (∗, n + 1) ∈ R.
I Assume b = n −→ b′.

Then b′ = n + 1. We have a = ∗ −→ ∗ and (∗, n + 1) ∈ R.

I Therefore x ∼ y for (x , y) ∈ R.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 9/ 59



Motivation

Comparison

I Above is similar when carrying an inductive proof, e.g. of
ϕ := ∀n,m, k .(n + m) + k = n + (m + k)
to defining

A := {k | (n + m) + k = n + (m + k)}

and showing that A is closed under 0 and successor.

I Instead we prove ϕ by induction on k using in the successor case the
IH.

I Both proofs amount the same, but the second one would be far more
difficult to teach and cumbersome to use.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 10/ 59



Motivation

Desired Coinductive Proof

1 20 · · ·∗

I We show ∀n ∈ N.∗ ∼ n by coinduction on ∼.
I Assume ∗ −→ x . We need to find y s.t. n −→ y and x ∼ y . Choose

y = n + 1. By co-IH ∗ ∼ n + 1.
I Assume n −→ y . We need to find x s.t. ∗ −→ x and x ∼ y . Choose

x = ∗. By co-IH ∗ ∼ n + 1.

I In essence same proof, but hopefully easier to teach and use.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 11/ 59



Motivation

Desired Coinductive Proof for Streams

I Consider Stream : Set given by coinductively by

head : Stream→ N ,
tail : Stream→ Stream .

I Consider

inc, inc′, inc′′ : N→ Stream
head(inc(n)) = head(inc′(n)) = head(inc′′(n)) = n
tail(inc(n)) = inc(n + 1)
tail(inc′(n)) = inc′′(n + 1)
tail(inc′′(n)) = inc′(n + 1)

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 12/ 59



Motivation

Desired Coinductive Proof for Streams

I We show

∀n ∈ N.inc(n) = inc′(n) ∧ inc(n) = inc′′(n)

by coinduction on Stream.
I head(inc(n)) = n = head(inc′(n)) = head(inc′′(n))

I tail(inc(n)) = inc(n + 1)
co−IH

= inc′′(n + 1) = tail(inc′(n))

I tail(inc(n)) = inc(n + 1)
co−IH

= inc′(n + 1) = tail(inc′′(n))

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 13/ 59



Motivation

Goal

I Identify the precised dual of iteration, primitive recursion, induction.

I Identify the correct use of co-IH.

I Use of coalgebras as defined by their elimination rules.

I Generalise to indexed coinductively defined sets.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 14/ 59



(Co)Iteration – (Co)Recursion – (Co)Induction

Motivation

(Co)Iteration – (Co)Recursion – (Co)Induction

Generalisation (Petersson-Synek Trees)

Schemata for Corecursive Definitions and Coinductive Proofs

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 15/ 59



(Co)Iteration – (Co)Recursion – (Co)Induction

Introduction/Elimination of Inductive/Coinductive Sets

I Introduction rules for Natural numbers means that we have

0 ∈ N
S : N→ N

so we have an N-algebra

(N, 0,S) ∈ (X ∈ Set)× X × (X → X )

I Dually, coinductive sets are given by their elimination rules i.e. by
observations or eliminators.
As an example we consider Stream:

head : Stream→ N
tail : Stream→ Stream

We obtain a Stream-coalgebra

(Stream, head, tail) ∈ (X ∈ Set)× (X → N)× (X → X )

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 16/ 59



(Co)Iteration – (Co)Recursion – (Co)Induction

Problem of Defining Coalgebras by their Introduction Rules

I Commonly one defines coalgebras by their introduction rules:
Stream is the largest set closed under

cons : Stream× N→ Stream

I Problem:
I In set theory cons cannot be defined as a constructor such as

cons(n, s) := 〈dconse, n, s〉

as for inductively defined sets, since we would need
non-well-founded sets.
We can define a set Stream closed under a function cons, but that’s no
longer the same operation one would use for defining a corresponding
inductively defined set.

I In a term model we obtain non-normalisation:
We get elements such as

zerostream := cons(0, cons(0, cons(0, · · · ))) ∈ Stream

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 17/ 59



(Co)Iteration – (Co)Recursion – (Co)Induction

Problem of Defining Coalgebras by their Introduction Rules

I If we define Stream by its elimination rules, problems vanish:

I In set theory Set is a set which allows operations head : Set→ N,
tail : Set→ Set.
For instance we can take

Stream := N→ N
head(f ) := f (0)
tail(f ) := f ◦ S

and obtain a largest set in the sense given below.
I In a term model zerostream can be a term such that

head(zerostream) −→ 0, tail(zerostream) −→ zerostream.
zerostream itself is in normal form.

I In both cases cons can now be defined by the principle of coiteration.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 18/ 59



(Co)Iteration – (Co)Recursion – (Co)Induction

Unique Iteration

I That (N, 0, S) are minimal can be given by:
I Assume another N-algebra (X , z , s), i.e.

z ∈ X
s : X → X

I Then there exist a unique homomorphism g : (N, 0,S)→ (X , z , s),
i.e.

g : N→ X
g(0) = z
g(S(n)) = s(g(n))

I This is the same as saying N is an initial FN-algebra.
I This means we can define uniquely

g : N→ X
g(0) = x for some x ∈ X
g(S(n)) = x ′ for some x ′ ∈ X depending on g(n)

I This is the principle of unique iteration.
I Definition by pattern matching.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 19/ 59



(Co)Iteration – (Co)Recursion – (Co)Induction

Unique Coiteration

I Dually, that (Stream, head, tail) is maximal can be given by:
I Assume another Stream-coalgebra (X , h, t):

h : X → N
t : X → X

I Then there exist a unique homomorphism
g : (X , h, t)→ (Stream,head, tail), i.e.:

g : X → Stream
head(g(x)) = h(x)
tail(g(x)) = g(t(x))

I Means we can define uniquely

g : X → Stream
head(g(x)) = n for some n ∈ N depending on x
tail(g(x)) = g(x ′) for some x ′ ∈ X depending on x

This is the principle of unique coiteration.
I Definition by copattern matching.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 20/ 59



(Co)Iteration – (Co)Recursion – (Co)Induction

Comparison

I When using iteration the instance of g we can use is restricted, but
we can apply an arbitrary function to it.

I When using coiteration we can choose any instance a of g , but
cannot apply any function to g(a).

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 21/ 59



(Co)Iteration – (Co)Recursion – (Co)Induction

Duality

Inductive Definition Coinductive Definition

Determined by Introduction Determined by Observation/Elimination

Iteration Coiteration

Pattern matching Copattern matching

Primitive Recursion ?

Induction ?

Induction-Hypothesis ?

1

1Part of this table is due to Peter Hancock, see acknowledgements at the end.
Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 22/ 59



(Co)Iteration – (Co)Recursion – (Co)Induction

Unique Primitive Recursion

I From unique iteration for N we can derive principle of
unique primitive recursion

I We can define uniquely

g : N→ X
g(0) = x for some x ∈ X
g(S(n)) = x ′ for some x ′ ∈ X depending on n, g(n)

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 23/ 59



(Co)Iteration – (Co)Recursion – (Co)Induction

Unique Primitive Corecursion

I From unique coiteration we can derive principle of
unique primitive corecursion

I We can define uniquely

g : X → Stream
head(g(x)) = n for some n ∈ N depending on x
tail(g(x))) = g(x ′) for some x ′ ∈ X depending on x

or
= s for some s ∈ Stream depending on x

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 24/ 59



(Co)Iteration – (Co)Recursion – (Co)Induction

Duality

I For primitive recursion we could make use of the pair (n, g(n))
consisting of n and the IH, i.e. an element of

N× X

I For primitive corecursion we can make use of either s ∈ Stream or
g(x ′), i.e. of an element of

Stream + X

I + is the dual of ×.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 25/ 59



(Co)Iteration – (Co)Recursion – (Co)Induction

Duality

Inductive Definition Coinductive Definition

Determined by Introduction Determined by Observation/Elimination

Iteration Coiteration

Pattern matching Copattern matching

Primitive Recursion Primitive Corecursion

Induction ?

Induction-Hypothesis ?

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 26/ 59



(Co)Iteration – (Co)Recursion – (Co)Induction

Example

s ∈ Stream
head(s) = 0
tail(s) = s

s ′ : N→ Stream
head(s ′(n)) = 0
tail(s ′(n)) = s ′(n + 1)

cons : (N× Stream)→ Stream
head(cons(n, s)) = n
tail(cons(n, s)) = s

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 27/ 59



(Co)Iteration – (Co)Recursion – (Co)Induction

Induction

I From unique iteration one can derive principle of induction:

We can prove ∀n ∈ N.ϕ(n) by proving
ϕ(0)
∀n ∈ N.ϕ(n)→ ϕ(S(n))

I Using induction we can prove (assuming extensionality of functions)
uniqueness of iteration and primitive recursion.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 28/ 59



(Co)Iteration – (Co)Recursion – (Co)Induction

Equivalence

Theorem

Let (N, 0,S) be an N-algebra. The following is equivalent

1. The principle of unique iteration.

2. The principle of unique primitive recursion.

3. The principle of iteration + induction.

4. The principle of primitive recursion + induction.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 29/ 59



(Co)Iteration – (Co)Recursion – (Co)Induction

Coinduction

I Uniqueness in coiteration is equivalent to the principle:
Bisimulation implies equality

I Bisimulation on Stream is the largest relation ∼ on Stream s.t.

s ∼ s ′ → head(s) = head(s ′) ∧ tail(s) ∼ tail(s ′)

I Largest can be expressed as ∼ being an indexed coinductively defined
set.

I Primitive corecursion over ∼ means:
We can prove

∀s, s ′.X (s, s ′)→ s ∼ s ′

by showing

X (s, s ′) → head(s) = head(s ′)
X (s, s ′) → X (tail(s), tail(s ′)) ∨ tail(s) ∼ tail(s ′)

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 30/ 59



(Co)Iteration – (Co)Recursion – (Co)Induction

Coinduction

I Combining
I bisimulation implies equality
I bisimulation can be shown corecursively

we obtain the following principle of coinduction

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 31/ 59



(Co)Iteration – (Co)Recursion – (Co)Induction

Schema of Coinduction

I We can prove
∀s, s ′.X (s, s ′)→ s = s ′

by showing

∀s, s ′.X (s, s ′) → head(s) = head(s ′)
∀s, s ′.X (s, s ′) → tail(s) = tail(s ′)

where tail(s) = tail(s ′) can be derived
I directly or
I from a proof of

X (tail(s), tail(s ′))

invoking the co-induction-hypothesis

X (tail(s), tail(s ′))→ tail(s) = tail(s ′)

I Note: Only direct use of co-IH allowed.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 32/ 59



(Co)Iteration – (Co)Recursion – (Co)Induction

Equivalence

Theorem

Let (Stream,head, tail) be a Stream-coalgebra. The following is
equivalent

1. The principle of unique coiteration.

2. The principle of unique primitive corecursion.

3. The principle of coiteration + coinduction

4. The principle of primitive corecursion + coinduction

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 33/ 59



(Co)Iteration – (Co)Recursion – (Co)Induction

Duality

Inductive Definition Coinductive Definition

Determined by Introduction Determined by Observation/Elimination

Iteration Coiteration

Pattern matching Copattern matching

Primitive Recursion Primitive Corecursion

Induction Coinduction

Induction-Hypothesis Coinduction-Hypothesis

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 34/ 59



Generalisation (Petersson-Synek Trees)

Motivation

(Co)Iteration – (Co)Recursion – (Co)Induction

Generalisation (Petersson-Synek Trees)

Schemata for Corecursive Definitions and Coinductive Proofs

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 35/ 59



Generalisation (Petersson-Synek Trees)

General Strictly Positive Indexed Inductive Definitions

I Strictly positive indexed inductively defined sets over index set I are
collection of sets D : I→ Set closed under constructors

Cj : (x1 ∈ A1)× (x2 ∈ A2(x1))× · · · × (xn ∈ An(x1, . . . , xn−1))
→ D(i(x1, . . . , xn))

I Here Ak(~x) is either a non-inductive argument, i.e. a set independent
of A,
or it is an inductive argument, i.e.

Ak(~x) = (b ∈ B(~x))→ D(i′k(~x , b))

I Later arguments cannot depend on inductive arguments, only on
non-inductive arguments.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 36/ 59



Generalisation (Petersson-Synek Trees)

Simplification

I Therefore we can move the inductive arguments to the end
(~x := x1, . . . , xk)

Cj : (x1 ∈ A1)× (x2 ∈ A2(x1))× · · · × xk ∈ Ak(x1, . . . , xk−1)︸ ︷︷ ︸
non-inductive arguments

×

(b ∈ B1(~x))→ D(i′1(~x , b))× · · · × (b ∈ Bl(~x))→ D(i′l(~x , b))︸ ︷︷ ︸
inductive arguments

)

→ D(ij(~x))

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 37/ 59



Generalisation (Petersson-Synek Trees)

Simplification

Cj : (x1 ∈ A1)× (x2 ∈ A2(x1))× · · · × xk ∈ Ak(x1, . . . , xk−1)︸ ︷︷ ︸
non-inductive arguments

×

(b ∈ B1(~x))→ D(i′1(~x , b))× · · · × (b ∈ Bl(~x))→ D(i′l(~x , b))︸ ︷︷ ︸
inductive arguments

)

→ A(ij(~x))

I We can form now the product of the non-inductive arguments and
obtain a single non-inductive argument.

I We can replace the inductive arguments by one non-inductive
argument

(b ∈ (B1(~x) + · · ·+ Bl(~x)))→ D(i′′(~x , b))

for some i′′.
Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 38/ 59



Generalisation (Petersson-Synek Trees)

Simplification

I We obtain for some new sets Aj ,Bj(x) and function j, i

Cj : ((a ∈ Aj)× ((b ∈ Bj(a))→ D(j(a, b))))→ D(i(a))

I We can replace all constructors C1, . . . ,Cn by one constructor C by
adding an additional argument j ∈ {1, . . . , n} selecting the
constructor, and then combine it with the non-inductive argument.

I So we have one constructor

C : ((a ∈ A)× ((b ∈ B(a))→ D(j(a, b))))→ D(i(a))

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 39/ 59



Generalisation (Petersson-Synek Trees)

Restricted Indexed (Co)Inductively Defined Sets

C : ((a ∈ A)× ((b ∈ B(a))→ D(j(a, b))))→ D(i(a))

I In order to obtain the corresponding observations/eliminators for the
corresponding co-inductive definitions, we need to invert the arrows.

I The more natural dual is obtained if we use restricted indexed
inductive definitions:

C : (i ∈ I)→ ((a ∈ A(i))× ((b ∈ B(i , a))→ D(j(i , a, b))))→ D(i)

I The corresponding observations/eliminators are

E : (i ∈ I)→ D(i)→ ((a ∈ A(i))× ((b ∈ B(i , a))→ D(j(i , a, b))))

or

E : ((i ∈ I)×D(i))→ ((a ∈ A(i))× ((b ∈ B(i , a))→ D(j(i , a, b))))

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 40/ 59



Generalisation (Petersson-Synek Trees)

Petersson-Synek Trees

I D(i) form the Petersson-Synek trees (observation by Hancock), which
correspond as well to the containers by Abbott, Altenkirch and Ghani.

I Replacing D by the more meaningful name Tree we obtain

data Tree : I→ Set where
C : ((i ∈ I)×

(a ∈ A(i))× ((b ∈ B(i , a))→ Tree(j(i , a, b))))
→ Tree(i)

I For the corresponding coinductive defined set Tree∞ we divide E into
its two components and obtain

coalg Tree∞ : I→ Set where
E1 : ((i ∈ I)× Tree∞(i))→ A(i)
E2 : ((i ∈ I)× (t ∈ Tree∞(i))× (b ∈ B(i ,E1(i , t))))

→ Tree∞(j(i ,E1(i , t), b))

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 41/ 59



Generalisation (Petersson-Synek Trees)

Petersson-Synek Trees

�������� ����

�������� ����

t ∈ Tree(i) a ∈ A(i)

(b ∈ B(i, a))

t′ ∈ Tree(i ′) (i ′ = i′(i, a, b)) a′ ∈ A(i ′)

(b′ ∈ B(i ′, a′))

t′′ ∈ Tree(i ′′) (i ′′ = i(i ′, a′, b′)) a′′ ∈ A(i ′′)

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 42/ 59



Generalisation (Petersson-Synek Trees)

Equivalence of unique (Co)induction, (Co)recursion,
(Co)induction

I The notions of (co)iteration, primitive (co)recursion, (co)induction
can be generalised in a straightforward way to Petersson-Synek Trees
and Co-Trees.

I One can show the equivalence of
I unique iteration, unique primitive recursion, iteration + induction,

primitive recursion + induction
I unique coiteration, unique primitive corecursion, coiteration +

coinduction, primitive corecursion + coinduction

I We call Petersson-Synek algebras fulfilling unique iteration initial
Petersson-Synek algebras.

I We call Petersson-Synek coalgebras fulfilling unique coiteration final
Petersson-Synek coalgebras.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 43/ 59



Generalisation (Petersson-Synek Trees)

Concrete Model of Tree∞

I Tree can be modelled in a straightforward way set theoretically.
I A very concrete model of Tree∞ can be defined by following the

principle that a coalgebra is given by its observations.
I The result of E1 can be observed directly.
I The result of E2 is an element of Tree∞(i ′) for some i ′ which can be

observed by carrying out more observations.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 44/ 59



Generalisation (Petersson-Synek Trees)

Concrete Model of Tree∞

I Let for i ∈ I

Path[[Tree∞ ]](i) := {〈i0, a0, b0, i1, a1, b1, . . . , in, an〉 |
n ≥ 0, i0 = i ,
(∀k ∈ {0, . . . , n − 1}.bk ∈ B(ik , ak)∧

ik+1 = j(ik , ak , bk)),
∀k ∈ {0, . . . , n}.ak ∈ A(ik)}

I Let [[Tree∞ ]](i) be the set of t ⊆ Path[[Tree∞ ]](i) which form the set

of paths of a tree:
I 〈i0, a0, b0, . . . , in+1, an+1〉 ∈ t → 〈i0, a0, b0, . . . , in, an〉 ∈ t
I ∃!a.〈i , a〉 ∈ t,
I 〈i0, a0, b0, . . . , in, an〉 ∈ t ∧ bn ∈ B(in, an) ∧ in+1 = j(in, an, bn)

→ ∃!an+1.〈i0, a0, b0, . . . , in, an, bn, in+1, an+1〉 ∈ t

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 45/ 59



Generalisation (Petersson-Synek Trees)

Concrete Model of Tree∞

I Define
E1 : (i ∈ I)→ [[Tree∞ ]](i)→ A(i)
E1(i , t) := a if 〈i , a〉 ∈ t

I Define

E2 : ((i ∈ I)→ (t ∈ [[Tree∞ ]](i))→ (b ∈ B(i ,E1(i , t)))
→ [[Tree∞ ]](j(i ,E1(i , t), b))

E2(i , t, b) := {〈i1, a1, b1, . . . , in+1, an+1〉
| 〈i ,E1(i , t), b, i1, a1, b1, . . . , in+1, an+1〉 ∈ t}

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 46/ 59



Generalisation (Petersson-Synek Trees)

Concrete Model of Tree∞

Theorem

([[Tree∞ ]],E1,E2) is a final Tree∞-coalgebra.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 47/ 59



Schemata for Corecursive Definitions and Coinductive Proofs

Motivation

(Co)Iteration – (Co)Recursion – (Co)Induction

Generalisation (Petersson-Synek Trees)

Schemata for Corecursive Definitions and Coinductive Proofs

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 48/ 59



Schemata for Corecursive Definitions and Coinductive Proofs

Schema for Primitive Corecursion

I Assume A : I→ Set, [[Tree∞ ]],E1,E2 as before. We can define a
function

f : (i ∈ I)→ X (i)→ [[Tree∞ ]](i)

corecursively by defining for i ∈ I, x ∈ X (i)
I a value a′ := E1(i , f (i , x)) ∈ A(i)
I and for b ∈ B(i , a) a value E2(i , f (i , x), b) ∈ [[Tree∞ ]](i ′, b)

where i ′ := j(i , a′, b)
and we can define E2(i , f (i , x), b)

I as an element of [[Tree∞ ]](i ′) defined before
I or corecursively define E2(i , f (i , x), b) = f (i ′, x ′)

for some x ′ ∈ X (i ′).
Here f (i ′, x ′) will be called the corecursion hypothesis.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 49/ 59



Schemata for Corecursive Definitions and Coinductive Proofs

Example

I Define the set of increasing streams IncStream : N→ Set starting
with at least n coinductively by

head : (n : N)→ IncStream(n)→ N≥n
tail : (n : N)→ (s : IncStream(n))→ IncStream(head(n, s) + 1)

where N≥n := {m : N | m ≥ n}.
Define

inc, inc′, inc′′ : (n : N)→ IncStream(n)
head(n, inc(n)) = head(n, inc′(n)) = head(n, inc′′(n)) = n
tail(n, inc(n)) = inc(n + 1)
tail(n, inc′(n)) = inc′′(n + 1)
tail(n, inc′′(n)) = inc′(n + 1)

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 50/ 59



Schemata for Corecursive Definitions and Coinductive Proofs

Schema for Corecursively Defined Indexed Functions

I Assume X ∈ Set, ĵ : X → I.
We can define

f : (x ∈ X )→ [[Tree∞ ]](̂i(x))

corecursively by determining for x ∈ X with i := ĵ(x),
I a := E1(i , f (x)) ∈ A(i)
I and for b ∈ B(i , a) with i ′ := j(i , a, b) the value

E2(i , f (x), b) ∈ [[Tree∞ ]](i ′)
where we can define E2(i , f (x), b) as

I a previously defined value of [[Tree∞ ]](i ′)
I or corecursively define E2(i , f (x), b) = f (x ′) for some x ′ such that

î(x ′) = i ′.
f (x ′) will be called the corecursion hypothesis.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 51/ 59



Schemata for Corecursive Definitions and Coinductive Proofs

Example

I Define Stack : N→ Set coinductively with destructors

top : ((n ∈ N)× (n > 0)× Stack(n))→ N
pop : ((n ∈ N)× (n > 0)× Stack(n))→ Stack(n − 1)

I We can define empty : Stack(0), where we do not need to define
anything since 0 > 0 = ∅.

I We can define

push : (n,m ∈ N)→ Stack(n)→ Stack(n + 1) s.t.
top(n + 1, ∗,push(n,m, s)) = m
pop(n + 1, ∗,push(n,m, s)) = s

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 52/ 59



Schemata for Corecursive Definitions and Coinductive Proofs

Schema for Coinduction

I Assume
J : Set

î : J → I

x0, x1 : (j ∈ J)→ [[Tree∞ ]](̂i(j))

We can show ∀j ∈ J.x0(j) = x0(j ′) coinductively by showing

I E0(̂i(j), x0(j)) and E0(̂i(j), x1(j)) are equal
I and for all b that

E1(̂i(j), x0(j), b) and E1(̂i(j), x0(j), b) are equal,
where we can use either the fact that

I this was shown before,
I or we can use the coinduction-hypothesis, which means using the fact

E1(̂i(j), x0(j), b) = x0(j ′) and E1(̂i(j), x1(j), b) = x1(j ′) for some j ′ ∈ J.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 53/ 59



Schemata for Corecursive Definitions and Coinductive Proofs

Example

I Let

s ∈ Stream
head(s) = 0
tail(s) = s

s ′ : N→ Stream
head(s ′(n)) = 0
tail(s ′(n)) = s ′(n + 1)

cons : N→ Stream→ Stream
head(cons(n, s)) = n
tail(cons(n, s)) = s

I We show ∀n ∈ N.s = s ′(n) by coinduction:
Assume n ∈ N. head(s) = head(s ′(n)) and
tail(s) = s = s ′(n + 1) = tail(s ′(n)), where s = s ′(n + 1) follows by
the coinduction hypothesis.

I We show cons(0, s) = s by coinduction:
head(cons(0, s)) = 0 = head(s) and tail(cons(0, s)) = s = tail(s),
where we did not use the coinduction hypothesis.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 54/ 59



Schemata for Corecursive Definitions and Coinductive Proofs

Schema for Bisimulation on Labelled Transition Systems

I Bisimulation is an indexed coinductively defined relation and therefore
proofs of bisimulation can be shown by corecursion.

I Assume a labelled transition system with states S, labels L and a
relation −→⊆ S× L× S

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 55/ 59



Schemata for Corecursive Definitions and Coinductive Proofs

Schema for Bisimulation on Labelled Transition Systems

I Let I ∈ Set, s, s ′ : I → S.
I We can prove ∀i ∈ I.Bisim(s(i), s ′(i)) coinductively by defining for

any i ∈ I

I for any l ∈ L, s0 ∈ S s.t. s(i)
l−→ s0 an

s ′0 ∈ S s.t.

I s ′(i)
l−→ s ′0

I and s.t. Bisim(s0, s
′
0)

where one can for prove the latter by invoking the Coinduction
Hypothesis
Bisim(s(i ′), s ′(i ′)) for some i ′ such that s(i ′) = s0, s ′(i ′) = s ′0.

I for any l ∈ L, s ′0 ∈ S s.t. s ′(i)
l−→ s ′0 an

s0 ∈ S s.t.

I s(i)
l−→ s0

I and s.t. Bisim(s0, s
′
0)

where one can prove the latter by invoking the Coinduction Hypothesis
Bisim(s(i ′), s ′(i ′)) for some i ′ such that s(i ′) = s0, s ′(i ′) = s ′0.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 56/ 59



Schemata for Corecursive Definitions and Coinductive Proofs

Example from Introduction

1 20 · · ·∗

I We show ∀n ∈ N.∗ ∼ n by coinduction on ∼.
I Assume ∗ −→ x . We need to find y s.t. n −→ y and x ∼ y . Choose

y = n + 1. By co-IH ∗ ∼ n + 1.
I Assume n −→ y . We need to find x s.t. ∗ −→ x and x ∼ y . Choose

x = ∗. By co-IH ∗ ∼ n + 1.

I In essence same proof, but hopefully easier to teach and use.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 57/ 59



Schemata for Corecursive Definitions and Coinductive Proofs

Generalisation

I The previous example can be generalised to arbitrary coinductively
defined relations.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 58/ 59



Schemata for Corecursive Definitions and Coinductive Proofs

Conclusion

I Coiteration, primitive corecursion, coinduction are the duals of
iteration, primitive recursion, induction.

I In iteration/recursion/induction, the instances of the co-IH used are
restricted, but the result can be used in arbitrary functions and
formulas.

I In coiteration/corecursion/coinduction, the instances of the co-IH are
unrestricted, but the result can be only used directly.

I General case of indexed coinductively defined sets can be reduced to
Petersson-Synek Cotrees.

I Schemata for primitive corecursion and coinduction.

I Schemata can be applied to indexed coinductively defined sets and
relations.

I Relations on coinductively defined sets seem to be often coinductivel
defined indexed relations and can be shown by indexed corecursion.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 59/ 59


	Motivation
	(Co)Iteration – (Co)Recursion – (Co)Induction
	Generalisation (Petersson-Synek Trees)
	Schemata for Corecursive Definitions and Coinductive Proofs

