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Motivation

Need for Coinductive Proofs

I In the beginning of computing, computer programs were batch
programs.

I One input one output
I Correct programs correspond to well-founded structures

(termination).

I Nowadays most programs are interactive;
I A possibly infinite sequence of interactions, often concurrently.
I Correspond to non-well-founded structures.
I For instance non-concurrent computations can be represented as

IO-trees.
I A simple form of objects in object-oriented programs can be

represented as non-well-founded trees.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 4/ 59



Motivation

IO-Trees (Non-State Dependent)
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p ∈ IO c ∈ C

(r ∈ R(c))

p′ ∈ IO c′ ∈ C

(r ′ ∈ R(c′))

p′′ ∈ IO c′′ ∈ C
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Motivation

IO-Trees State Dependent
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p ∈ IO(s) c ∈ C(s)

(r ∈ R(s, c))

p′ ∈ IO(s′) (s′ = n(s, c, r)) c′ ∈ C(s′)

(r ′ ∈ R(s′, c′))

p′′ ∈ IO(s′′) (s′′ = n(s′, c′, r ′)) c′′ ∈ C(s′′)
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Motivation

Objects (State Dependent)
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o ∈ Object(s)

(m ∈ Method(s))

(m′ ∈ Method(s′))

o′′ ∈ Object(s′′) (s′′ = next(s′,m′, r′))

o′ ∈ Object(s′) (s′ = next(s,m, r))

r′ ∈ Result(s′,m′)

r ∈ Result(s,m)
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Motivation

Need for Good Framework for Coinductive Structures

I Non-well-founded trees are defined coinductively.

I Relations between coinductive structures are coinductively defined

I Need suitable notion of reasoning coinductively.
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Motivation

Coinductive Proofs

I Reasoning about bisimulation is often very formalist. Consider an
unlabelled Transition system:

1 20 · · ·∗

I For showing ∗ ∼ n one defines
I R := {(∗, n) | n ∈ N}
I Shows that R is a bisimulation relation:

I Let (a, b) ∈ R. Then a = ∗, b = n ∈ N for some n.
I Assume a = ∗ −→ a′.

Then a′ = ∗. We have b = n −→ n + 1 and (∗, n + 1) ∈ R.
I Assume b = n −→ b′.

Then b′ = n + 1. We have a = ∗ −→ ∗ and (∗, n + 1) ∈ R.

I Therefore x ∼ y for (x , y) ∈ R.
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Motivation

Comparison

I Above is similar when carrying an inductive proof, e.g. of
ϕ := ∀n,m, k .(n + m) + k = n + (m + k)
to defining

A := {k | (n + m) + k = n + (m + k)}

and showing that A is closed under 0 and successor.

I Instead we prove ϕ by induction on k using in the successor case the
IH.

I Both proofs amount the same, but the second one would be far more
difficult to teach and cumbersome to use.
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Motivation

Desired Coinductive Proof

1 20 · · ·∗

I We show ∀n ∈ N.∗ ∼ n by coinduction on ∼.
I Assume ∗ −→ x . We need to find y s.t. n −→ y and x ∼ y . Choose

y = n + 1. By co-IH ∗ ∼ n + 1.
I Assume n −→ y . We need to find x s.t. ∗ −→ x and x ∼ y . Choose

x = ∗. By co-IH ∗ ∼ n + 1.

I In essence same proof, but hopefully easier to teach and use.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 11/ 59



Motivation

Desired Coinductive Proof for Streams

I Consider Stream : Set given by coinductively by

head : Stream→ N ,
tail : Stream→ Stream .

I Consider

inc, inc′, inc′′ : N→ Stream
head(inc(n)) = head(inc′(n)) = head(inc′′(n)) = n
tail(inc(n)) = inc(n + 1)
tail(inc′(n)) = inc′′(n + 1)
tail(inc′′(n)) = inc′(n + 1)
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Motivation

Desired Coinductive Proof for Streams

I We show

∀n ∈ N.inc(n) = inc′(n) ∧ inc(n) = inc′′(n)

by coinduction on Stream.
I head(inc(n)) = n = head(inc′(n)) = head(inc′′(n))

I tail(inc(n)) = inc(n + 1)
co−IH

= inc′′(n + 1) = tail(inc′(n))

I tail(inc(n)) = inc(n + 1)
co−IH

= inc′(n + 1) = tail(inc′′(n))
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Motivation

Goal

I Identify the precised dual of iteration, primitive recursion, induction.

I Identify the correct use of co-IH.

I Use of coalgebras as defined by their elimination rules.

I Generalise to indexed coinductively defined sets.

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 14/ 59



(Co)Iteration – (Co)Recursion – (Co)Induction
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(Co)Iteration – (Co)Recursion – (Co)Induction

Introduction/Elimination of Inductive/Coinductive Sets

I Introduction rules for Natural numbers means that we have

0 ∈ N
S : N→ N

so we have an N-algebra

(N, 0,S) ∈ (X ∈ Set)× X × (X → X )

I Dually, coinductive sets are given by their elimination rules i.e. by
observations or eliminators.
As an example we consider Stream:

head : Stream→ N
tail : Stream→ Stream

We obtain a Stream-coalgebra

(Stream, head, tail) ∈ (X ∈ Set)× (X → N)× (X → X )
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(Co)Iteration – (Co)Recursion – (Co)Induction

Problem of Defining Coalgebras by their Introduction Rules

I Commonly one defines coalgebras by their introduction rules:
Stream is the largest set closed under

cons : Stream× N→ Stream

I Problem:
I In set theory cons cannot be defined as a constructor such as

cons(n, s) := 〈dconse, n, s〉

as for inductively defined sets, since we would need
non-well-founded sets.
We can define a set Stream closed under a function cons, but that’s no
longer the same operation one would use for defining a corresponding
inductively defined set.

I In a term model we obtain non-normalisation:
We get elements such as

zerostream := cons(0, cons(0, cons(0, · · · ))) ∈ Stream
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(Co)Iteration – (Co)Recursion – (Co)Induction

Problem of Defining Coalgebras by their Introduction Rules

I If we define Stream by its elimination rules, problems vanish:

I In set theory Set is a set which allows operations head : Set→ N,
tail : Set→ Set.
For instance we can take

Stream := N→ N
head(f ) := f (0)
tail(f ) := f ◦ S

and obtain a largest set in the sense given below.
I In a term model zerostream can be a term such that

head(zerostream) −→ 0, tail(zerostream) −→ zerostream.
zerostream itself is in normal form.

I In both cases cons can now be defined by the principle of coiteration.
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(Co)Iteration – (Co)Recursion – (Co)Induction

Unique Iteration

I That (N, 0, S) are minimal can be given by:
I Assume another N-algebra (X , z , s), i.e.

z ∈ X
s : X → X

I Then there exist a unique homomorphism g : (N, 0,S)→ (X , z , s),
i.e.

g : N→ X
g(0) = z
g(S(n)) = s(g(n))

I This is the same as saying N is an initial FN-algebra.
I This means we can define uniquely

g : N→ X
g(0) = x for some x ∈ X
g(S(n)) = x ′ for some x ′ ∈ X depending on g(n)

I This is the principle of unique iteration.
I Definition by pattern matching.
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(Co)Iteration – (Co)Recursion – (Co)Induction

Unique Coiteration

I Dually, that (Stream, head, tail) is maximal can be given by:
I Assume another Stream-coalgebra (X , h, t):

h : X → N
t : X → X

I Then there exist a unique homomorphism
g : (X , h, t)→ (Stream,head, tail), i.e.:

g : X → Stream
head(g(x)) = h(x)
tail(g(x)) = g(t(x))

I Means we can define uniquely

g : X → Stream
head(g(x)) = n for some n ∈ N depending on x
tail(g(x)) = g(x ′) for some x ′ ∈ X depending on x

This is the principle of unique coiteration.
I Definition by copattern matching.
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(Co)Iteration – (Co)Recursion – (Co)Induction

Comparison

I When using iteration the instance of g we can use is restricted, but
we can apply an arbitrary function to it.

I When using coiteration we can choose any instance a of g , but
cannot apply any function to g(a).
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(Co)Iteration – (Co)Recursion – (Co)Induction

Duality

Inductive Definition Coinductive Definition

Determined by Introduction Determined by Observation/Elimination

Iteration Coiteration

Pattern matching Copattern matching

Primitive Recursion ?

Induction ?

Induction-Hypothesis ?

1

1Part of this table is due to Peter Hancock, see acknowledgements at the end.
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(Co)Iteration – (Co)Recursion – (Co)Induction

Unique Primitive Recursion

I From unique iteration for N we can derive principle of
unique primitive recursion

I We can define uniquely

g : N→ X
g(0) = x for some x ∈ X
g(S(n)) = x ′ for some x ′ ∈ X depending on n, g(n)
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(Co)Iteration – (Co)Recursion – (Co)Induction

Unique Primitive Corecursion

I From unique coiteration we can derive principle of
unique primitive corecursion

I We can define uniquely

g : X → Stream
head(g(x)) = n for some n ∈ N depending on x
tail(g(x))) = g(x ′) for some x ′ ∈ X depending on x

or
= s for some s ∈ Stream depending on x
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(Co)Iteration – (Co)Recursion – (Co)Induction

Duality

I For primitive recursion we could make use of the pair (n, g(n))
consisting of n and the IH, i.e. an element of

N× X

I For primitive corecursion we can make use of either s ∈ Stream or
g(x ′), i.e. of an element of

Stream + X

I + is the dual of ×.
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(Co)Iteration – (Co)Recursion – (Co)Induction

Duality

Inductive Definition Coinductive Definition

Determined by Introduction Determined by Observation/Elimination

Iteration Coiteration

Pattern matching Copattern matching

Primitive Recursion Primitive Corecursion

Induction ?

Induction-Hypothesis ?
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(Co)Iteration – (Co)Recursion – (Co)Induction

Example

s ∈ Stream
head(s) = 0
tail(s) = s

s ′ : N→ Stream
head(s ′(n)) = 0
tail(s ′(n)) = s ′(n + 1)

cons : (N× Stream)→ Stream
head(cons(n, s)) = n
tail(cons(n, s)) = s
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(Co)Iteration – (Co)Recursion – (Co)Induction

Induction

I From unique iteration one can derive principle of induction:

We can prove ∀n ∈ N.ϕ(n) by proving
ϕ(0)
∀n ∈ N.ϕ(n)→ ϕ(S(n))

I Using induction we can prove (assuming extensionality of functions)
uniqueness of iteration and primitive recursion.
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(Co)Iteration – (Co)Recursion – (Co)Induction

Equivalence

Theorem

Let (N, 0,S) be an N-algebra. The following is equivalent

1. The principle of unique iteration.

2. The principle of unique primitive recursion.

3. The principle of iteration + induction.

4. The principle of primitive recursion + induction.
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(Co)Iteration – (Co)Recursion – (Co)Induction

Coinduction

I Uniqueness in coiteration is equivalent to the principle:
Bisimulation implies equality

I Bisimulation on Stream is the largest relation ∼ on Stream s.t.

s ∼ s ′ → head(s) = head(s ′) ∧ tail(s) ∼ tail(s ′)

I Largest can be expressed as ∼ being an indexed coinductively defined
set.

I Primitive corecursion over ∼ means:
We can prove

∀s, s ′.X (s, s ′)→ s ∼ s ′

by showing

X (s, s ′) → head(s) = head(s ′)
X (s, s ′) → X (tail(s), tail(s ′)) ∨ tail(s) ∼ tail(s ′)
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(Co)Iteration – (Co)Recursion – (Co)Induction

Coinduction

I Combining
I bisimulation implies equality
I bisimulation can be shown corecursively

we obtain the following principle of coinduction

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 31/ 59



(Co)Iteration – (Co)Recursion – (Co)Induction

Schema of Coinduction

I We can prove
∀s, s ′.X (s, s ′)→ s = s ′

by showing

∀s, s ′.X (s, s ′) → head(s) = head(s ′)
∀s, s ′.X (s, s ′) → tail(s) = tail(s ′)

where tail(s) = tail(s ′) can be derived
I directly or
I from a proof of

X (tail(s), tail(s ′))

invoking the co-induction-hypothesis

X (tail(s), tail(s ′))→ tail(s) = tail(s ′)

I Note: Only direct use of co-IH allowed.
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(Co)Iteration – (Co)Recursion – (Co)Induction

Equivalence

Theorem

Let (Stream,head, tail) be a Stream-coalgebra. The following is
equivalent

1. The principle of unique coiteration.

2. The principle of unique primitive corecursion.

3. The principle of coiteration + coinduction

4. The principle of primitive corecursion + coinduction
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(Co)Iteration – (Co)Recursion – (Co)Induction

Duality

Inductive Definition Coinductive Definition

Determined by Introduction Determined by Observation/Elimination

Iteration Coiteration

Pattern matching Copattern matching

Primitive Recursion Primitive Corecursion

Induction Coinduction

Induction-Hypothesis Coinduction-Hypothesis
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Generalisation (Petersson-Synek Trees)
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Generalisation (Petersson-Synek Trees)

General Strictly Positive Indexed Inductive Definitions

I Strictly positive indexed inductively defined sets over index set I are
collection of sets D : I→ Set closed under constructors

Cj : (x1 ∈ A1)× (x2 ∈ A2(x1))× · · · × (xn ∈ An(x1, . . . , xn−1))
→ D(i(x1, . . . , xn))

I Here Ak(~x) is either a non-inductive argument, i.e. a set independent
of A,
or it is an inductive argument, i.e.

Ak(~x) = (b ∈ B(~x))→ D(i′k(~x , b))

I Later arguments cannot depend on inductive arguments, only on
non-inductive arguments.
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Generalisation (Petersson-Synek Trees)

Simplification

I Therefore we can move the inductive arguments to the end
(~x := x1, . . . , xk)

Cj : (x1 ∈ A1)× (x2 ∈ A2(x1))× · · · × xk ∈ Ak(x1, . . . , xk−1)︸ ︷︷ ︸
non-inductive arguments

×

(b ∈ B1(~x))→ D(i′1(~x , b))× · · · × (b ∈ Bl(~x))→ D(i′l(~x , b))︸ ︷︷ ︸
inductive arguments

)

→ D(ij(~x))

Anton Setzer (Swansea) Role of Co-IH in Coinductive Proofs 37/ 59



Generalisation (Petersson-Synek Trees)

Simplification

Cj : (x1 ∈ A1)× (x2 ∈ A2(x1))× · · · × xk ∈ Ak(x1, . . . , xk−1)︸ ︷︷ ︸
non-inductive arguments

×

(b ∈ B1(~x))→ D(i′1(~x , b))× · · · × (b ∈ Bl(~x))→ D(i′l(~x , b))︸ ︷︷ ︸
inductive arguments

)

→ A(ij(~x))

I We can form now the product of the non-inductive arguments and
obtain a single non-inductive argument.

I We can replace the inductive arguments by one non-inductive
argument

(b ∈ (B1(~x) + · · ·+ Bl(~x)))→ D(i′′(~x , b))

for some i′′.
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Generalisation (Petersson-Synek Trees)

Simplification

I We obtain for some new sets Aj ,Bj(x) and function j, i

Cj : ((a ∈ Aj)× ((b ∈ Bj(a))→ D(j(a, b))))→ D(i(a))

I We can replace all constructors C1, . . . ,Cn by one constructor C by
adding an additional argument j ∈ {1, . . . , n} selecting the
constructor, and then combine it with the non-inductive argument.

I So we have one constructor

C : ((a ∈ A)× ((b ∈ B(a))→ D(j(a, b))))→ D(i(a))
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Generalisation (Petersson-Synek Trees)

Restricted Indexed (Co)Inductively Defined Sets

C : ((a ∈ A)× ((b ∈ B(a))→ D(j(a, b))))→ D(i(a))

I In order to obtain the corresponding observations/eliminators for the
corresponding co-inductive definitions, we need to invert the arrows.

I The more natural dual is obtained if we use restricted indexed
inductive definitions:

C : (i ∈ I)→ ((a ∈ A(i))× ((b ∈ B(i , a))→ D(j(i , a, b))))→ D(i)

I The corresponding observations/eliminators are

E : (i ∈ I)→ D(i)→ ((a ∈ A(i))× ((b ∈ B(i , a))→ D(j(i , a, b))))

or

E : ((i ∈ I)×D(i))→ ((a ∈ A(i))× ((b ∈ B(i , a))→ D(j(i , a, b))))
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Generalisation (Petersson-Synek Trees)

Petersson-Synek Trees

I D(i) form the Petersson-Synek trees (observation by Hancock), which
correspond as well to the containers by Abbott, Altenkirch and Ghani.

I Replacing D by the more meaningful name Tree we obtain

data Tree : I→ Set where
C : ((i ∈ I)×

(a ∈ A(i))× ((b ∈ B(i , a))→ Tree(j(i , a, b))))
→ Tree(i)

I For the corresponding coinductive defined set Tree∞ we divide E into
its two components and obtain

coalg Tree∞ : I→ Set where
E1 : ((i ∈ I)× Tree∞(i))→ A(i)
E2 : ((i ∈ I)× (t ∈ Tree∞(i))× (b ∈ B(i ,E1(i , t))))

→ Tree∞(j(i ,E1(i , t), b))
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Generalisation (Petersson-Synek Trees)

Petersson-Synek Trees
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t ∈ Tree(i) a ∈ A(i)

(b ∈ B(i, a))

t′ ∈ Tree(i ′) (i ′ = i′(i, a, b)) a′ ∈ A(i ′)

(b′ ∈ B(i ′, a′))

t′′ ∈ Tree(i ′′) (i ′′ = i(i ′, a′, b′)) a′′ ∈ A(i ′′)
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Generalisation (Petersson-Synek Trees)

Equivalence of unique (Co)induction, (Co)recursion,
(Co)induction

I The notions of (co)iteration, primitive (co)recursion, (co)induction
can be generalised in a straightforward way to Petersson-Synek Trees
and Co-Trees.

I One can show the equivalence of
I unique iteration, unique primitive recursion, iteration + induction,

primitive recursion + induction
I unique coiteration, unique primitive corecursion, coiteration +

coinduction, primitive corecursion + coinduction

I We call Petersson-Synek algebras fulfilling unique iteration initial
Petersson-Synek algebras.

I We call Petersson-Synek coalgebras fulfilling unique coiteration final
Petersson-Synek coalgebras.
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Generalisation (Petersson-Synek Trees)

Concrete Model of Tree∞

I Tree can be modelled in a straightforward way set theoretically.
I A very concrete model of Tree∞ can be defined by following the

principle that a coalgebra is given by its observations.
I The result of E1 can be observed directly.
I The result of E2 is an element of Tree∞(i ′) for some i ′ which can be

observed by carrying out more observations.
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Generalisation (Petersson-Synek Trees)

Concrete Model of Tree∞

I Let for i ∈ I

Path[[Tree∞ ]](i) := {〈i0, a0, b0, i1, a1, b1, . . . , in, an〉 |
n ≥ 0, i0 = i ,
(∀k ∈ {0, . . . , n − 1}.bk ∈ B(ik , ak)∧

ik+1 = j(ik , ak , bk)),
∀k ∈ {0, . . . , n}.ak ∈ A(ik)}

I Let [[Tree∞ ]](i) be the set of t ⊆ Path[[Tree∞ ]](i) which form the set

of paths of a tree:
I 〈i0, a0, b0, . . . , in+1, an+1〉 ∈ t → 〈i0, a0, b0, . . . , in, an〉 ∈ t
I ∃!a.〈i , a〉 ∈ t,
I 〈i0, a0, b0, . . . , in, an〉 ∈ t ∧ bn ∈ B(in, an) ∧ in+1 = j(in, an, bn)

→ ∃!an+1.〈i0, a0, b0, . . . , in, an, bn, in+1, an+1〉 ∈ t
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Generalisation (Petersson-Synek Trees)

Concrete Model of Tree∞

I Define
E1 : (i ∈ I)→ [[Tree∞ ]](i)→ A(i)
E1(i , t) := a if 〈i , a〉 ∈ t

I Define

E2 : ((i ∈ I)→ (t ∈ [[Tree∞ ]](i))→ (b ∈ B(i ,E1(i , t)))
→ [[Tree∞ ]](j(i ,E1(i , t), b))

E2(i , t, b) := {〈i1, a1, b1, . . . , in+1, an+1〉
| 〈i ,E1(i , t), b, i1, a1, b1, . . . , in+1, an+1〉 ∈ t}
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Generalisation (Petersson-Synek Trees)

Concrete Model of Tree∞

Theorem

([[Tree∞ ]],E1,E2) is a final Tree∞-coalgebra.
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Schemata for Corecursive Definitions and Coinductive Proofs

Motivation

(Co)Iteration – (Co)Recursion – (Co)Induction

Generalisation (Petersson-Synek Trees)

Schemata for Corecursive Definitions and Coinductive Proofs
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Schemata for Corecursive Definitions and Coinductive Proofs

Schema for Primitive Corecursion

I Assume A : I→ Set, [[Tree∞ ]],E1,E2 as before. We can define a
function

f : (i ∈ I)→ X (i)→ [[Tree∞ ]](i)

corecursively by defining for i ∈ I, x ∈ X (i)
I a value a′ := E1(i , f (i , x)) ∈ A(i)
I and for b ∈ B(i , a) a value E2(i , f (i , x), b) ∈ [[Tree∞ ]](i ′, b)

where i ′ := j(i , a′, b)
and we can define E2(i , f (i , x), b)

I as an element of [[Tree∞ ]](i ′) defined before
I or corecursively define E2(i , f (i , x), b) = f (i ′, x ′)

for some x ′ ∈ X (i ′).
Here f (i ′, x ′) will be called the corecursion hypothesis.
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Schemata for Corecursive Definitions and Coinductive Proofs

Example

I Define the set of increasing streams IncStream : N→ Set starting
with at least n coinductively by

head : (n : N)→ IncStream(n)→ N≥n
tail : (n : N)→ (s : IncStream(n))→ IncStream(head(n, s) + 1)

where N≥n := {m : N | m ≥ n}.
Define

inc, inc′, inc′′ : (n : N)→ IncStream(n)
head(n, inc(n)) = head(n, inc′(n)) = head(n, inc′′(n)) = n
tail(n, inc(n)) = inc(n + 1)
tail(n, inc′(n)) = inc′′(n + 1)
tail(n, inc′′(n)) = inc′(n + 1)
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Schemata for Corecursive Definitions and Coinductive Proofs

Schema for Corecursively Defined Indexed Functions

I Assume X ∈ Set, ĵ : X → I.
We can define

f : (x ∈ X )→ [[Tree∞ ]](̂i(x))

corecursively by determining for x ∈ X with i := ĵ(x),
I a := E1(i , f (x)) ∈ A(i)
I and for b ∈ B(i , a) with i ′ := j(i , a, b) the value

E2(i , f (x), b) ∈ [[Tree∞ ]](i ′)
where we can define E2(i , f (x), b) as

I a previously defined value of [[Tree∞ ]](i ′)
I or corecursively define E2(i , f (x), b) = f (x ′) for some x ′ such that

î(x ′) = i ′.
f (x ′) will be called the corecursion hypothesis.
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Schemata for Corecursive Definitions and Coinductive Proofs

Example

I Define Stack : N→ Set coinductively with destructors

top : ((n ∈ N)× (n > 0)× Stack(n))→ N
pop : ((n ∈ N)× (n > 0)× Stack(n))→ Stack(n − 1)

I We can define empty : Stack(0), where we do not need to define
anything since 0 > 0 = ∅.

I We can define

push : (n,m ∈ N)→ Stack(n)→ Stack(n + 1) s.t.
top(n + 1, ∗,push(n,m, s)) = m
pop(n + 1, ∗,push(n,m, s)) = s
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Schemata for Corecursive Definitions and Coinductive Proofs

Schema for Coinduction

I Assume
J : Set

î : J → I

x0, x1 : (j ∈ J)→ [[Tree∞ ]](̂i(j))

We can show ∀j ∈ J.x0(j) = x0(j ′) coinductively by showing

I E0(̂i(j), x0(j)) and E0(̂i(j), x1(j)) are equal
I and for all b that

E1(̂i(j), x0(j), b) and E1(̂i(j), x0(j), b) are equal,
where we can use either the fact that

I this was shown before,
I or we can use the coinduction-hypothesis, which means using the fact

E1(̂i(j), x0(j), b) = x0(j ′) and E1(̂i(j), x1(j), b) = x1(j ′) for some j ′ ∈ J.
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Schemata for Corecursive Definitions and Coinductive Proofs

Example

I Let

s ∈ Stream
head(s) = 0
tail(s) = s

s ′ : N→ Stream
head(s ′(n)) = 0
tail(s ′(n)) = s ′(n + 1)

cons : N→ Stream→ Stream
head(cons(n, s)) = n
tail(cons(n, s)) = s

I We show ∀n ∈ N.s = s ′(n) by coinduction:
Assume n ∈ N. head(s) = head(s ′(n)) and
tail(s) = s = s ′(n + 1) = tail(s ′(n)), where s = s ′(n + 1) follows by
the coinduction hypothesis.

I We show cons(0, s) = s by coinduction:
head(cons(0, s)) = 0 = head(s) and tail(cons(0, s)) = s = tail(s),
where we did not use the coinduction hypothesis.
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Schemata for Corecursive Definitions and Coinductive Proofs

Schema for Bisimulation on Labelled Transition Systems

I Bisimulation is an indexed coinductively defined relation and therefore
proofs of bisimulation can be shown by corecursion.

I Assume a labelled transition system with states S, labels L and a
relation −→⊆ S× L× S
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Schemata for Corecursive Definitions and Coinductive Proofs

Schema for Bisimulation on Labelled Transition Systems

I Let I ∈ Set, s, s ′ : I → S.
I We can prove ∀i ∈ I.Bisim(s(i), s ′(i)) coinductively by defining for

any i ∈ I

I for any l ∈ L, s0 ∈ S s.t. s(i)
l−→ s0 an

s ′0 ∈ S s.t.

I s ′(i)
l−→ s ′0

I and s.t. Bisim(s0, s
′
0)

where one can for prove the latter by invoking the Coinduction
Hypothesis
Bisim(s(i ′), s ′(i ′)) for some i ′ such that s(i ′) = s0, s ′(i ′) = s ′0.

I for any l ∈ L, s ′0 ∈ S s.t. s ′(i)
l−→ s ′0 an

s0 ∈ S s.t.

I s(i)
l−→ s0

I and s.t. Bisim(s0, s
′
0)

where one can prove the latter by invoking the Coinduction Hypothesis
Bisim(s(i ′), s ′(i ′)) for some i ′ such that s(i ′) = s0, s ′(i ′) = s ′0.
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Schemata for Corecursive Definitions and Coinductive Proofs

Example from Introduction

1 20 · · ·∗

I We show ∀n ∈ N.∗ ∼ n by coinduction on ∼.
I Assume ∗ −→ x . We need to find y s.t. n −→ y and x ∼ y . Choose

y = n + 1. By co-IH ∗ ∼ n + 1.
I Assume n −→ y . We need to find x s.t. ∗ −→ x and x ∼ y . Choose

x = ∗. By co-IH ∗ ∼ n + 1.

I In essence same proof, but hopefully easier to teach and use.
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Schemata for Corecursive Definitions and Coinductive Proofs

Generalisation

I The previous example can be generalised to arbitrary coinductively
defined relations.
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Schemata for Corecursive Definitions and Coinductive Proofs

Conclusion

I Coiteration, primitive corecursion, coinduction are the duals of
iteration, primitive recursion, induction.

I In iteration/recursion/induction, the instances of the co-IH used are
restricted, but the result can be used in arbitrary functions and
formulas.

I In coiteration/corecursion/coinduction, the instances of the co-IH are
unrestricted, but the result can be only used directly.

I General case of indexed coinductively defined sets can be reduced to
Petersson-Synek Cotrees.

I Schemata for primitive corecursion and coinduction.

I Schemata can be applied to indexed coinductively defined sets and
relations.

I Relations on coinductively defined sets seem to be often coinductivel
defined indexed relations and can be shown by indexed corecursion.
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