
Coalgebras as Types
Determined by their Elimination Rules

Anton Setzer
Swansea University (Wales, UK)

(Conference dedicated to Per Martin-Löf
on occasion of his retirement, May 5 - 8, 2009)

1. Inductive and coinductive types

2. Model for a type theory with coinductive types.

3. Meaning explanations – inductive and coinductive.

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 1

Prelim: Notation for Disjoint Union

nil′ + cons′(N, X)

is the disjoint union of the elements nil′ and cons′ n x

for n : N and x : X.

So we have

nil′ : nil′ + cons′(N, X) ,

cons′ n l : nil′ + cons′(N, X) [n : N, l : X] .

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 2

Notation for Disjoint Union
And

t := case s of {(nil′) → casenil

(cons′ n l) → casecons n l}

is the term s.t.

t =

{

casenil if s = nil′ ,
casecons n l if s = cons′ n l .

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 3

1. Inductive and Coinductive Types
Inductive types are determined by their introduction
rules .

Example List:

List : Set

nil : List

cons : (n : N, l : List) → List

Elimination rules express List is the least set introduced
by those introduction rules:

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 4

Elimination Rules for List
Assume

A : List → Set

stepnil : A nil ,

stepcons : (n : N, l : List, ih : A l) → A (cons n l)

Then we have

f := elim A stepnil stepcons : (l : List) → A l

f nil = stepnil

f (cons n l) = stepcons n l (f l)

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 5

List as an Initial Algebra
The above rules correspond to List being the initial
algebra for the functor

F (X) := nil′ + cons′(N, X)

That List is an algebra for F means that we have a
function

intro : (nil′ + cons′(N,List)) → List

From this we obtain the introduction rules for List:

nil := intro nil′ : List ,

cons n l := intro (cons′ n l) : List .

So formation/introduction rules express List is an
algebra for F .

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 6

List as an Initial Algebra
That List is an initial algebra means that if f is as
below there exists a unique g := elim f s.t. the following
commutes:

nil′ + cons′(N,List)
intro

- List

nil′ + cons′(N, X)

nil′ + cons′(idN, g)

?
f

- X

g

?

Let
stepnil = f nil′

stepcons n l = f (cons′ n l)

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 7

List as an Initial Algebra

nil′ + cons′(N,List)
intro

- List

nil′ + cons′(N, X)

nil′ + cons′(idN, g)

? [stepnil, stepcons]
- X

g

?

g nil = stepnil

g (cons n l) = stepcons n (g l)

We obtain iteration and can derive the principle of
dependent higher type prim. recursion from
uniqueness of iteration.

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 8

Colist
Let coList be the weakly final coalgebra for F .

coList is a coalgebra means that we have

_.unfold : coList → (nil′ + cons′(N, coList))

(used as postfix operation).

So, if l : coList then

l.unfold = nil′ or
l.unfold = cons′ n l

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 9

Colist as Weakly Final Coalgebra
Assume f as below. Then there exists g (called
intro X f) s.t.

X
f

- nil′ + cons′(N, X)

coList

g

?

_.unfold
- nil′ + cons′(N, coList)

nil′ + cons′(id, g)

?

So

(g x).unfold =

case (f x) of {(nil′) −→ nil′

(cons′ n y) −→ cons′ n (g y)

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 10

Guarded Recursion

(g x).unfold =

case (f x) of {(nil′) −→ nil′

(cons′ n y) −→ cons′ n (g y)}

f contains the information needed to define a simple
but generic case of guarded recursion :
We can define f : X → coList s.t.

(f x).unfold = nil′ or
(f x).unfold = cons′ n (f y) for some n, y

More general cases of guarded recursion can be
derived assuming a final coalgebra.

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 11

Example
Define

inc : N → coList

(inc n).unfold = cons′ n (inc (n + 1))

Roughly speaking, inc n is

cons′ n (cons′ (n + 1) (cons′ (n + 2) · · ·))

But the unfolding is controlled by unfold, which avoids
non-normalisation.

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 12

Other examples of Coalgebras
Interactive programs as coalgebras:

Let

coalg IO : Set where

_.command : IO → (read + write(String))

_.next : (p : IO) → R (command p)

where
R read = String → IO

R (write s) = IO

_.unfold, _.command, _.next above are destructors ,
dual of a constructor .

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 13

Example Program

mutual

echo0 : IO

echo0.command = read

echo0.next s = echo1 s

echo1 : String → IO

(echo1 s).command = write s

(echo1 s).next = echo0

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 14

Failure of Logic in Computer Science
Mark Priestley in a talk in Swansea:

Failure of logic to contribute to computer
science.

Substantial contribution of logic to development of
Algol.
Since emergence of object-oriented programming
lead of development taken by practical
computing .

Possible explanation (A. S.):
Programs in computer science switched from
batch programs to interactive programs .
Interactive programs correspond to coinductive
rather than inductive definitions .
Coinductive definitions underdeveloped in logic.

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 15

Other examples of Coalgebras
The set of real numbers in [−1, 1] having a binary
expansion :

r = 0.d0d1d2 · · ·

with di ∈ {−1, 0, 1}
is given by

coalg R : R → Set where

_.p : {r : R} → (q : R r) → r ∈ [−1, 1]

_.digit : {r : R} → (q : R r) → {−1, 0, 1}

_.tail : {r : R} → (q : R r) → R (2 · r − q.digit)

({r : R} is a hidden argument.)

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 16

Binary expansion of 1
3

E.g.

mutual

q0 : R 1
3

q0.p = · · · : 1
3
∈ [−1, 1]

q0.digit = 0

q0.tail = q1 : R (2 · 1
3
− 0)

q1 : R 2
3

q1.p = · · · : 2
3
∈ [−1, 1]

q1.digit = 1

q1.tail = q0 : R (2 · 2
3
− 1)

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 17

Informal Treatment of the above
The set of real numbers with binary expansion is
coinductively defined as follows:

If r ∈ [−1, 1], and there exists a digit ∈ {−1, 0, 1} s.t.
2 · r − digit has a binary expansion, then r has a
binary expansion.

We prove that 1
3

and 2
3

have binary expansion
simultaneously:

Both are in [−1, 1].

For r := 1
3

we have with digit0 := 0 that 2 · r − digit0
has a binary expansion by co-IH .

For r := 2
3

we have with digit1 := 1 that 2 · r − digit1
has a binary expansion by co-IH .

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 18

(Bi)simulation
Let an A-labelled transition system T1,−→ be given by
T1 : Set and a relation R ⊆ T1 × A × T1 written as
t

a
−→ t′ for (t, a, t′) ∈ R.

Let T1, T2 be A-labelled transition system.

Simulation between T1 and T2 is the largest relation
≤⊆ T1 × T2 s.t.

∀t1 ∈ T1.∀t2 ∈ T2.∀a ∈ A.∀t′1 ∈ T1.t1 ≤ t2 → t1
a

−→ t′1 →

∃t2 ∈ T2.t2
a

−→ t′2 ∧ t′1 ≤ t′2

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 19

(Bi)simulation
Defined as a coalgebra as

coalg ≤: T1 → T2 → Set where

_.unfold : {t1 : T1, t2 : T2} → (t1 ≤ t2, t
′

1 : T1, a : A, t1
a

−→ t′1)

→ (t′2 : T2) × (t2
a

−→ t′2) × (t′1 ≤ t′2)

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 20

Example
Let T1 be given as

a1
tick
−→ a2

tick
−→ a3

tick
−→ · · ·

Let T1 = {a} with a
tick
−→ a.

Traditional proof of ∀n : N.an ≤ a:
Let R := {〈an, a〉 | n ∈ N}.
Show R is a simulation relation.
Need to show that if 〈an, a〉 ∈ R, an

x
−→ a′, then there

exists a′′ s.t. 〈a′, a′′〉 ∈ R and a
x

−→ a′′.
Now in the above situation we have x = tick,
a′ = an+1.
Let a′′ := a, then the conditions are fulfilled.
So R is a simulation relation, R ⊆≤, so an ≤ a.

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 21

Example
Proof of ∀n ∈ N.an ≤ a using guarded recursion:

lem : (n : N) → an ≤ a

(lem n).unfold an+1 tick triv
︸︷︷︸

:an

tick
−→an+1

= 〈a, triv, lem (n + 1)〉

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 22

Informal Reading of the Proof
We show ∀n ∈ N.an ≤ a by coinduction on an ≤ a:

Assume an

x
−→ a′.

Then x = tick, a′ = an+1.

Then we have a
x

−→ a and by coIH an+1 ≤ a.
So an ≤ a.

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 23

2. Model
For simplicity we ignore here equalities.

Sets modelled as sets of terms.

Model of List :
[[List]] is defined inductively by:

If t −→ nil, then t ∈ [[List]].
If n ∈ [[N]], l ∈ [[List]], t −→ cons n l, then
t ∈ [[List]].

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 24

Model of A → B

[[A → B]] := {f | ∀a ∈ [[A]].f a ∈ [[B]]}.

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 25

Model of coList

Define for (Meta-)n ∈ N

redn : Term →partial Term

red0 a := a.unfold

redn+1 a :=







nil′ if redn a −→ nil′

a′.unfold if redn a −→ cons′ n a′

undefined otherwise.

Now

[[coList]] := {t | ∀n ∈ N.redn t ↓ ∧

(redn t −→ nil′ ∨

∃m ∈ [[N]].∃t.redn t −→ cons′ m t)}

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 26

Definition using largest Fixed points
The above definition avoids the use of largest fixed
points.

Using largest fixed points we can define

[[coList]] = largest set X s.t.
∀t ∈ X. t.unfold −→ nil′ ∨

∃n ∈ [[N]].t′ ∈ X. t.unfold −→ cons′ n t′

or: Coinductive definition of [[coList]]:
If

t.unfold −→ nil′ or
t.unfold −→ cons′ n t′ some n ∈ [[N]], t′ ∈ [[coList]]

then t ∈ [[coList]].

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 27

3. Meaning Explanations
Meaning explanations of inductive data types
correspond to the introduction rules .

E.g. Meaning of List:
nil is a canonical element of List.
If n is a natural number, l is a (not necessarily
canonical) element of List, then cons n l is a
canonical element of List.
An arbitrary element of List is a program which
evaluates to a canonical element of List.

Meaning of nil and cons is trivial (they compute
canonical elements of List).

Meaning of the terms introduced by the elimination
rules refers to the meaning of elements of List.

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 28

Example: Explanation of append

Let

append : List → List → List

append nil l′ = l′

append (cons n l) l′ = cons n (append l l′)

We show how to compute for l, l′ elements of List
append l l′, which is an element of List:
append l l′ is computed as follows:

Compute l. We obtain either nil or and cons n l′′ for
an element n of N and an element l′′ introduced
before l.

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 29

Explanation of append

If we obtain nil, the result of the computation is l′

which is an element of List.
If we obtain cons n l′′ we know how to compute
append l′′ l′ which is an element of List.
The program evaluates to cons n (append l′′ l) which
is a (canonical) element of List.

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 30

Meaning of A → B

We give the meaning of the logical framework A → B

(not of Πx : A.B).

An element f of A → B is a program, which, taken as
input an element of A, computes an element of B.

Meaning of the result of the elimination rule for A → B:

f : A → B a : A

f a : B

Assume f : A → B. Then f is a program which
computes from any element a of A an element of B. f a

evaluates to the element computed by f from input a.

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 31

Meaning of A → B

We give an explanation of the term introduced by the
introduction rule for A → B:

x : A ⇒ b : B
(x)b : A → B

Assume we have depending on a hypothetical
element x of A that b is an element of B.
Then (x)b is the element A → B, which if evaluated
with input a which is an element of A evaluates to
b[x := a], which is an element of B.

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 32

Meaning of A → B

So the meaning of A → B is given by its
elimination rule .

The meaning of the terms introduced by the
introduction rule is given by referring to this definition.

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 33

Meaning of coList

Meaning of coList:
An element of coList is a program which can
take as input an unfold operation . If it receives
this operation, it computes to either nil′ or cons′ n l for
an element n of N and an element l of coList.

l.unfold for l an element of coList is the program
computed by l if receiving an unfold.

As an example of the meaning explanations for the
introduction rules, we give the meaning of inc n for n an
element of N, where inc is defined as follows:

inc : N → coList

(inc n).unfold = cons′ n (inc (n + 1))

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 34

Meaning of coList

We need to show that inc n is an element of coList for
any n of N.

inc n is the program, which, if it receives an unfold
call, evaluates to cons′ n (inc (n + 1)).
n is an element of N.
inc (n + 1) is an element of coList.

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 35

Conclusion
Coalgebras = dual of algebras .

In mathematics long tradition of inductive definitions ,
and proofs by induction.

Coinductive definitions and proofs by coinduction (=
guarded recursion) not much used .

In computer science coinductive definitions are as
important as inductive definitions .

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 36

Conclusion
Meaning for inductive types are given by their
introduction rules .

Explanation of terms given by elimination rules is
introduced in a second step .

Meaning for the function type and for coinductive types
(coalgebras) are given by their elimination rules .

Meaning of terms given by introduction rules n is
defined in a second step .

So some types are determined by how we introduce
them , and some are determined by what we can do
with its elements .

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 37

Conclusion
We loose the notion of a canonical element of a set.

There are introduction rules for elements of a weakly
final coalgebra.

An element of a weakly final coalgebra C for functor F

reduces to intro X f where f : X → F (X).
That’s similar to an element of A → B reducing to
something of the form (x)b for x : A ⇒ b : B.

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules 38

	
	Prelim: Notation for Disjoint Union
	Notation for Disjoint Union
	1. Inductive and Coinductive Types
	Elimination Rules for List
	List as an Initial Algebra
	List as an Initial Algebra
	List as an Initial Algebra
	Colist
	Colist as Weakly Final Coalgebra
	Guarded Recursion
	Example
	Other examples of Coalgebras
	Example Program
	Failure of Logic in Computer Science
	Other examples of Coalgebras
	Binary expansion of $�rac {1}{3}$
	Informal Treatment of the above
	(Bi)simulation
	(Bi)simulation
	Example
	Example
	Informal Reading of the Proof
	2. Model
	Model of $A ar B$
	Model of $coList $
	Definition using largest Fixed points
	3. Meaning Explanations
	Example: Explanation of $append $
	Explanation of $append $
	Meaning of $A ar B$
	Meaning of $A ar B$
	Meaning of $A ar B$
	Meaning of $coList $
	Meaning of $coList $
	Conclusion
	Conclusion
	Conclusion

