Coalgebras as Types Determined by their Elimination Rules Anton Setzer Swansea University (Wales, UK)

(Conference dedicated to Per Martin-Löf on occasion of his retirement, May 5 - 8, 2009)

- 1. Inductive and coinductive types
- 2. Model for a type theory with coinductive types.
- **3.** Meaning explanations inductive and coinductive.

Prelim: Notation for Disjoint Union

 $\operatorname{nil}' + \operatorname{cons}'(\mathbb{N}, X)$

is the disjoint union of the elements nil' and cons' n x for $n : \mathbb{N}$ and x : X.

So we have

nil' : nil' + cons'(\mathbb{N}, X) , cons' n l : nil' + cons'(\mathbb{N}, X) [$n : \mathbb{N}, l : X$] .

Notation for Disjoint Union

And

$$t := \operatorname{case} s \text{ of } \{ (\operatorname{nil}') \longrightarrow \operatorname{case_{nil}} \\ (\operatorname{cons}' n l) \longrightarrow \operatorname{case_{cons}} n l \}$$

is the term s.t.

$$t = \begin{cases} case_{\rm nil} & \text{if } s = {\rm nil'}, \\ case_{\rm cons} n \ l & \text{if } s = {\rm cons'} n \ l & . \end{cases}$$

1. Inductive and Coinductive Types

- Inductive types are determined by their introduction rules.
- Example List:
 - List : Set nil : List cons : $(n : \mathbb{N}, l : \text{List}) \rightarrow \text{List}$
- Elimination rules express List is the least set introduced by those introduction rules:

Elimination Rules for List

Assume

 $A : \text{List} \to \text{Set}$ $step_{\text{nil}} : A \text{nil} ,$ $step_{\text{cons}} : (n: \mathbb{N}, l: \text{List}, ih: A l) \to A (\text{cons } n l)$

Then we have

$$f := \text{elim } A \ step_{\text{nil}} \ step_{\text{cons}} : (l : \text{List}) \to A \ l$$

$$f \ \text{nil} \qquad = \ step_{\text{nil}}$$

$$f \ (\text{cons } n \ l) \ = \ step_{\text{cons}} \ n \ l \ (f \ l)$$

List as an Initial Algebra

The above rules correspond to List being the initial algebra for the functor

$$F(X) := \operatorname{nil}' + \operatorname{cons}'(\mathbb{N}, X)$$

That List is an algebra for F means that we have a function

intro :
$$(\operatorname{nil}' + \operatorname{cons}'(\mathbb{N}, \operatorname{List})) \to \operatorname{List}$$

From this we obtain the introduction rules for List:

nil := intro nil' : List ,

$$\cos n l$$
 := intro $(\cos' n l)$: List .

So formation/introduction rules express List is an algebra for F.

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules

List as an Initial Algebra

That List is an initial algebra means that if f is as below there exists a unique g := elim f s.t. the following commutes:

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules

🧢 Let

List as an Initial Algebra

We obtain iteration and can derive the principle of dependent higher type prim. recursion from uniqueness of iteration.

Colist

- Let coList be the weakly final coalgebra for F.
- coList is a coalgebra means that we have

 $_.unfold : coList \rightarrow (nil' + cons'(\mathbb{N}, coList))$

(used as postfix operation).

So, if l : coList **then**

l.unfold = nil' or l.unfold = cons' n l

Colist as Weakly Final Coalgebra

Assume f as below. Then there exists g (called intro X f) s.t.

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules

Guarded Recursion

 $(g \ x).unfold =$ $case (f \ x) of {(nil')} \longrightarrow nil'$ $(cons' n \ y) \longrightarrow cons' n (g \ y)}$

• *f* contains the information needed to define a simple but generic case of guarded recursion: We can define $f: X \to \text{coList s.t.}$

$$(f x).unfold = nil'$$
 or
 $(f x).unfold = cons' n (f y)$ for some n, y

More general cases of guarded recursion can be derived assuming a final coalgebra.

Example

inc : $\mathbb{N} \to \text{coList}$ (inc n).unfold = cons' n (inc (n + 1))

 $\cos' n \left(\cos' \left(n+1 \right) \left(\cos' \left(n+2 \right) \cdots \right) \right)$

But the unfolding is controlled by unfold, which avoids non-normalisation.

Other examples of Coalgebras

Interactive programs as coalgebras:

Let

coalg IO : Set where $_.command : IO \rightarrow (read + write(String))$ $_.next : (p:IO) \rightarrow R (command p)$

where

 _.unfold, _.command, _.next above are destructors, dual of a constructor.

Example Program

mutual

$echo_0$	•	IO
$echo_0.command$	=	read
$echo_0.next s$	=	$echo_1 s$

$echo_1$	•	String \rightarrow IO
$(echo_1 s).command$	=	write s
$(echo_1 s).next$	=	$echo_0$

Failure of Logic in Computer Science

Mark Priestley in a talk in Swansea:

- Failure of logic to contribute to computer science.
 - Substantial contribution of logic to development of Algol.
 - Since emergence of object-oriented programming lead of development taken by practical computing.
- Possible explanation (A. S.):
 - Programs in computer science switched from batch programs to interactive programs.
 - Interactive programs correspond to coinductive rather than inductive definitions.
 - Coinductive definitions underdeveloped in logic.

Other examples of Coalgebras

• The set of real numbers in [-1, 1] having a binary expansion:

$$r = 0.d_0 d_1 d_2 \cdots$$

with $d_i \in \{-1, 0, 1\}$ is given by

coalg $\mathcal{R} : \mathbb{R} \to \text{Set where}$ $_\cdot p : \{r : \mathbb{R}\} \to (q : \mathcal{R} r) \to r \in [-1, 1]$ $_.\text{digit} : \{r : \mathbb{R}\} \to (q : \mathcal{R} r) \to \{-1, 0, 1\}$ $_.\text{tail} : \{r : \mathbb{R}\} \to (q : \mathcal{R} r) \to \mathcal{R} (2 \cdot r - q.\text{digit})$

($\{r : \mathbb{R}\}$ is a hidden argument.)

Binary expansion of $\frac{1}{3}$

● E.g.

mutual $q_0 \qquad : \mathcal{R} \frac{1}{3}$ $q_0.p = \cdots : \frac{1}{3} \in [-1, 1]$ $q_0.\mathrm{digit} = 0$ $q_0.tail = q_1 : \mathcal{R} \left(2 \cdot \frac{1}{3} - 0 \right)$ $q_1 \qquad : \mathcal{R} \frac{2}{3}$ $q_{1}.p = \cdots : \frac{2}{3} \in [-1, 1]$ $q_1.digit = 1$ $q_1.tail = q_0 : \mathcal{R} \left(2 \cdot \frac{2}{3} - 1\right)$

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules

Informal Treatment of the above

- The set of real numbers with binary expansion is coinductively defined as follows:
 - If $r \in [-1, 1]$, and there exists a digit $\in \{-1, 0, 1\}$ s.t. $2 \cdot r \text{digit}$ has a binary expansion, then r has a binary expansion.
- We prove that $\frac{1}{3}$ and $\frac{2}{3}$ have binary expansion simultaneously:
 - Both are in [-1,1].
 - For $r := \frac{1}{3}$ we have with $\operatorname{digit}_0 := 0$ that $2 \cdot r \operatorname{digit}_0$ has a binary expansion by co-IH.
 - For $r := \frac{2}{3}$ we have with $\operatorname{digit}_1 := 1$ that $2 \cdot r \operatorname{digit}_1$ has a binary expansion by co-IH.

(Bi)simulation

- ▲ Let an A-labelled transition system T₁, → be given by T₁: Set and a relation R ⊆ T₁ × A × T₁ written as $t \xrightarrow{a} t'$ for $(t, a, t') \in \mathbb{R}$.
- Let T_1 , T_2 be A-labelled transition system.
- Simulation between T_1 and T_2 is the largest relation $\leq \subseteq T_1 \times T_2$ s.t.

$$\forall t_1 \in \mathcal{T}_1. \forall t_2 \in \mathcal{T}_2. \forall a \in A. \forall t'_1 \in \mathcal{T}_1. t_1 \leq t_2 \to t_1 \xrightarrow{a} t'_1 \to \\ \exists t_2 \in \mathcal{T}_2. t_2 \xrightarrow{a} t'_2 \wedge t'_1 \leq t'_2$$

(Bi)simulation

Defined as a coalgebra as

coalg $\leq: T_1 \to T_2 \to \text{Set where}$ $_.unfold : \{t_1 : T_1, t_2 : T_2\} \to (t_1 \leq t_2, t'_1 : T_1, a : A, t_1 \stackrel{a}{\longrightarrow} t'_1$ $\to (t'_2 : T_2) \times (t_2 \stackrel{a}{\longrightarrow} t'_2) \times (t'_1 \leq t'_2)$

Example

• Let T_1 be given as

$$a_1 \xrightarrow{\operatorname{tick}} a_2 \xrightarrow{\operatorname{tick}} a_3 \xrightarrow{\operatorname{tick}} \cdots$$

• Let
$$T_1 = \{a\}$$
 with $a \xrightarrow{tick} a$.

• Traditional proof of $\forall n : \mathbb{N}.a_n \leq a$:

• Let
$$R := \{ \langle a_n, a \rangle \mid n \in \mathbb{N} \}.$$

- Show R is a simulation relation.
- Need to show that if $\langle a_n, a \rangle \in R$, $a_n \xrightarrow{x} a'$, then there exists a'' s.t. $\langle a', a'' \rangle \in R$ and $a \xrightarrow{x} a''$.
- Now in the above situation we have x = tick, $a' = a_{n+1}$.
- Let a'' := a, then the conditions are fulfilled.
- **s** So R is a simulation relation, $R \subseteq \leq$, so $a_n \leq a$.

Anton Setzer (Swansea): Coalgebras as types determined by their elimination rules

Example

▶ Proof of $\forall n \in \mathbb{N}.a_n \leq a$ using guarded recursion:

 $\text{lem} : (n : \mathbb{N}) \to a_n \leq a$ $(\text{lem } n). \text{unfold } a_{n+1} \text{ tick } \underbrace{\text{triv}}_{:a_n \xrightarrow{\text{tick}} a_{n+1}} = \langle a, \text{triv}, \text{lem } (n+1) \rangle$

Informal Reading of the Proof

- We show $\forall n \in \mathbb{N} . a_n \leq a$ by coinduction on $a_n \leq a$:
 - Assume $a_n \xrightarrow{x} a'$.
 - Then x = tick, $a' = a_{n+1}$.
 - Then we have $a \xrightarrow{x} a$ and by coll $a_{n+1} \leq a$.
 - So $a_n \leq a$.

2. Model

- For simplicity we ignore here equalities.
- Sets modelled as sets of terms.
- Model of List:
 - [[List]] is defined inductively by:
 - If $t \longrightarrow \text{nil}$, then $t \in \llbracket \text{List} \rrbracket$.
 - If $n \in [[N]]$, $l \in [[List]]$, $t \longrightarrow \cos n l$, then $t \in [[List]]$.

Model of $A \to B$

$\quad \blacksquare A \to B \rrbracket := \{ f \mid \forall a \in \llbracket A \rrbracket . f \ a \in \llbracket B \rrbracket \}.$

Model of coList

Define for (Meta-) $n \in \mathbb{N}$

$$\begin{array}{lll} \operatorname{red}_n & : & \operatorname{Term} \to_{\operatorname{partial}} \operatorname{Term} \\ \operatorname{red}_0 a & := & a.\operatorname{unfold} \\ \operatorname{red}_{n+1} a & := & \left\{ \begin{array}{ll} \operatorname{nil}' & \operatorname{if} \operatorname{red}_n a \longrightarrow \operatorname{nil}' \\ a'.\operatorname{unfold} & \operatorname{if} \operatorname{red}_n a \longrightarrow \operatorname{cons}' n a' \\ \operatorname{undefined} & \operatorname{otherwise.} \end{array} \right.$$

Now

$$\begin{bmatrix} \text{coList} \end{bmatrix} := \{t \mid \forall n \in \mathbb{N}. \text{red}_n \ t \downarrow \land \\ (\text{red}_n \ t \longrightarrow \text{nil}' \lor \\ \exists m \in \llbracket \mathbb{N} \rrbracket. \exists t. \text{red}_n \ t \longrightarrow \text{cons}' \ m \ t) \}$$

Definition using largest Fixed point

- The above definition avoids the use of largest fixed points.
- Using largest fixed points we can define

```
\begin{bmatrix} \text{coList} \end{bmatrix} = \text{largest set } X \text{ s.t.} \\ \forall t \in X. \ t.\text{unfold} \longrightarrow \text{nil}' \lor \\ \exists n \in \llbracket \mathbb{N} \rrbracket.t' \in X. \ t.\text{unfold} \longrightarrow \text{cons}' \ n \ t' \end{bmatrix}
```

- or: Coinductive definition of [[coList]]: If
 - $t.unfold \longrightarrow nil'$ or
 - $t.unfold \longrightarrow cons' n t'$ some $n \in [[N]], t' \in [[coList]]$ then $t \in [[coList]]$.

3. Meaning Explanations

- Meaning explanations of inductive data types correspond to the introduction rules.
- **•** E.g. Meaning of List:
 - nil is a canonical element of List.
 - If n is a natural number, l is a (not necessarily canonical) element of List, then cons n l is a canonical element of List.
 - An arbitrary element of List is a program which evaluates to a canonical element of List.
- Meaning of nil and cons is trivial (they compute canonical elements of List).
- Meaning of the terms introduced by the elimination rules refers to the meaning of elements of List.

Example: Explanation of append

append : List \rightarrow List \rightarrow List append nil l' = l'append (cons n l) l' = cons n (append l l')

- We show how to compute for l, l' elements of List append l l', which is an element of List: append l l' is computed as follows:
 - Compute *l*. We obtain either nil or and cons n l'' for an element *n* of \mathbb{N} and an element l'' introduced before *l*.

Explanation of append

- If we obtain nil, the result of the computation is l' which is an element of List.
- If we obtain cons n l" we know how to compute append l" l' which is an element of List.
 The program evaluates to cons n (append l" l) which is a (canonical) element of List.

Meaning of $A \to B$

- We give the meaning of the logical framework $A \rightarrow B$ (not of $\Pi x : A.B$).
- ▲ An element f of $A \rightarrow B$ is a program, which, taken as input an element of A, computes an element of B.
- Meaning of the result of the elimination rule for $A \rightarrow B$:

$$\begin{array}{cc} f:A \to B & a:A \\ \hline f \ a:B \end{array}$$

Assume $f : A \rightarrow B$. Then f is a program which computes from any element a of A an element of B. f aevaluates to the element computed by f from input a.

Meaning of $A \to B$

• We give an explanation of the term introduced by the introduction rule for $A \rightarrow B$:

$$\frac{x:A \Rightarrow b:B}{(x)b:A \to B}$$

- Assume we have depending on a hypothetical element x of A that b is an element of B.
- Then (x)b is the element $A \rightarrow B$, which if evaluated with input a which is an element of A evaluates to b[x := a], which is an element of B.

Meaning of $A \to B$

- So the meaning of $A \rightarrow B$ is given by its elimination rule.
- The meaning of the terms introduced by the introduction rule is given by referring to this definition.

Meaning of coList

- Meaning of coList:
 - An element of coList is a program which can take as input an unfold operation. If it receives this operation, it computes to either nil' or cons' n l for an element n of \mathbb{N} and an element l of coList.
- *l*.unfold for *l* an element of coList is the program computed by *l* if receiving an unfold.
- As an example of the meaning explanations for the introduction rules, we give the meaning of inc n for n an element of N, where inc is defined as follows:

```
inc : \mathbb{N} \to \text{coList}
(inc n).unfold = cons' n (inc (n + 1))
```

Meaning of coList

- We need to show that inc n is an element of coList for any n of \mathbb{N} .
 - inc *n* is the program, which, if it receives an unfold call, evaluates to cons' n (inc (n + 1)).
 - n is an element of \mathbb{N} .
 - inc (n+1) is an element of coList.

Conclusion

- Coalgebras = dual of algebras.
- In mathematics long tradition of inductive definitions, and proofs by induction.
- Coinductive definitions and proofs by coinduction (= guarded recursion) not much used.
- In computer science coinductive definitions are as important as inductive definitions.

Conclusion

- Meaning for inductive types are given by their introduction rules.
 - Explanation of terms given by elimination rules is introduced in a second step.
- Meaning for the function type and for coinductive types (coalgebras) are given by their elimination rules.
 - Meaning of terms given by introduction rules is defined in a second step.
- So some types are determined by how we introduce them, and some are determined by what we can do with its elements.

Conclusion

- We loose the notion of a canonical element of a set.
- There are introduction rules for elements of a weakly final coalgebra.
- ▲ An element of a weakly final coalgebra C for functor F reduces to intro X f where $f: X \to F(X)$.
 - That's similar to an element of $A \rightarrow B$ reducing to something of the form (x)b for $x : A \Rightarrow b : B$.