
GUIs, Object Based Programming, and Processes in
Agda

Anton Setzer
Swansea University, Swansea UK

(Joint work with Andreas Abel, Stephan Adelsberger, and Bashar Igried)
COST Action EUTYPES WG meeting, Lisbon, Portugal

5 October 2016

Anton Setzer GUIs, Objects, and Processes in Agda 1/ 78

Coalgebras in Agda

Interactive Programs in Agda

State-Dependent IO

Objects

State Dependent Objects

GUIs using Objects

Process Algebra CSP in Agda

Conclusion

Bibliography

Anton Setzer GUIs, Objects, and Processes in Agda 2/ 78

Coalgebras in Agda

Coalgebras in Agda

Interactive Programs in Agda

State-Dependent IO

Objects

State Dependent Objects

GUIs using Objects

Process Algebra CSP in Agda

Conclusion

Bibliography

Anton Setzer GUIs, Objects, and Processes in Agda 3/ 78

Coalgebras in Agda

Codata Type

I Idea of Codata Types:

codata Stream : Set where
cons : N→ Stream→ Stream

I Same definition as inductive data type but we are allowed to have
infinite chains of constructors

cons n0 (cons n1 (cons n2 · · ·))

I Problem 1: Non-normalisation.
I Problem 2: Equality between streams is equality between all

elements, and therefore undecidable.
I Problem 3: Underlying assumption is

∀ s : Stream.∃ n, s ′.s = cons n s ′

which results in undecidable equality.
Anton Setzer GUIs, Objects, and Processes in Agda 4/ 78

Coalgebras in Agda

Solution: Coalgebras Defined by Observations

I We define coalgebras by their observations. Tentative syntax

coalg Stream : Set where
head : Stream→ N
tail : Stream→ Stream

I Stream is the largest set of terms which allow arbitrary many
applications of tail followed by head to obtain a natural numbers.

I From this one can develop a general model for coalgebras (see our
paper [Set16]).

I Therefore no infinite expansion of streams:
– for each expansion of a stream one needs one application of tail.

Anton Setzer GUIs, Objects, and Processes in Agda 5/ 78

Coalgebras in Agda

Syntax in Agda

I In Agda the record type has been reused for defining coalgebras:

record Stream (A : Set) : Set where
coinductive
field

head : A
tail : Stream A

const and inc can be defined with the syntax as given before

Anton Setzer GUIs, Objects, and Processes in Agda 6/ 78

Coalgebras in Agda

Principle of Guarded Recursion

I Define
f : A→ Stream
head (f a) = · · · : N
tail (f a) = · · · : Stream

where

tail (f a) = f a′ for some a′ : A
or
tail (f a) = s ′ for some s ′ : Stream given before

I No function can be applied to the corecursion hypothesis.
I Using sized types one can apply size preserving or size increasing

functions to co-IH (Abel).
I Above is example of copattern matching.

Anton Setzer GUIs, Objects, and Processes in Agda 7/ 78

Coalgebras in Agda

Example

I Constant stream of a, a, a, . . .

const : {A : Set} → A→ Stream A
head (const a) = a
tail (const a) = const a

I The increasing stream n, n + 1, n + 2, . . .

inc : N→ Stream N
head (inc n) = n
tail (inc n) = inc (n + 1)

I Cons is defined:

cons : X → Stream X → Stream X
head (cons x l) = x
tail (cons x l) = l

Anton Setzer GUIs, Objects, and Processes in Agda 8/ 78

Coalgebras in Agda

Nested Patter/Copattern Matching

I We can even define functions by a combination of pattern and
copattern matching and nest those:
The following defines the stream

stutterDown n n = n, n, n − 1, n − 1, . . . 0, 0, n, n, n − 1, n − 1, . . .

stutterDown : N → N → Stream N
head (stutterDown n m) = m
head (tail (stutterDown n m)) = m
tail (tail (stutterDown n (suc m))) = stutterDown n m
tail (tail (stutterDown n 0)) = stutterDown n n

Anton Setzer GUIs, Objects, and Processes in Agda 9/ 78

Interactive Programs in Agda

Coalgebras in Agda

Interactive Programs in Agda

State-Dependent IO

Objects

State Dependent Objects

GUIs using Objects

Process Algebra CSP in Agda

Conclusion

Bibliography

Anton Setzer GUIs, Objects, and Processes in Agda 10/ 78

Interactive Programs in Agda

IO-Trees (Non-State Dependent)

�������� ����

�������� ����

p : IO

(r : R c)

(r ′ : R c′)

p′′ : IO

p′ : IO

c : C

c′′ : C

c′ : C

Anton Setzer GUIs, Objects, and Processes in Agda 11/ 78

Interactive Programs in Agda

IOInterface

An IOInterface is a record having fields Command and Response:

record IOInterface : Set1 where
field Command : Set

Response : Command → Set

Anton Setzer GUIs, Objects, and Processes in Agda 12/ 78

Interactive Programs in Agda

Console Interface

data ConsoleCommand : Set where
getLine : ConsoleCommand
putStrLn : String → ConsoleCommand

ConsoleResponse : ConsoleCommand → Set
ConsoleResponse getLine = String
ConsoleResponse (putStrLn s) = Unit

ConsoleInterface : IOInterface
Command ConsoleInterface = ConsoleCommand
Response ConsoleInterface = ConsoleResponse

Anton Setzer GUIs, Objects, and Processes in Agda 13/ 78

Interactive Programs in Agda

IO

The set of IO programs IO∞ is the coalgebra having as observation an
element of IO.
Elements of IO are IO trees which can have leaves (introduced by return)
and nodes (introduced by do):

mutual
record IO∞ (I : IOInterface) (A : Set) : Set where

coinductive
field force : IO I A

data IO (I : IOInterface) (A : Set) : Set where
do : (c : Command I) (f : Response I c → IO∞ I A)

→ IO I A
return : A → IO I A

Anton Setzer GUIs, Objects, and Processes in Agda 14/ 78

Interactive Programs in Agda

Monadic bind is used to combine programs:

mutual
>>= : ∀{A B} (m : IO I A) (k : A → IO∞ I B) → IO I B

do c f >>= k = do c ń x → f x >>=∞ k
return a >>= k = force (k a)

>>=∞ : ∀{A B} (m : IO∞ I A) (k : A → IO∞ I B)
→ IO∞ I B

force (m >>=∞ k) = force m >>= k

Anton Setzer GUIs, Objects, and Processes in Agda 15/ 78

Interactive Programs in Agda

Running Interactive Programs

{-# NON TERMINATING #-}
translateIO : ∀ {A} (tr : (c : C) → NativeIO (R c)) → IO∞ I A

→ NativeIO A
translateIO tr m = case (force m) of ń

{ (do c f) → (tr c) native>>= ń r → translateIO tr (f r)
; (return a) → nativeReturn a
}

Non termination is unproblematic since this function is only used as part of
the compilation process.

Anton Setzer GUIs, Objects, and Processes in Agda 16/ 78

Interactive Programs in Agda

Console IO

IOConsole : Set → Set
IOConsole = IO∞ ConsoleInterface

translateIOConsoleLocal : (c : ConsoleCommand)
→ NativeIO (ConsoleResponse c)

translateIOConsoleLocal (putStrLn s) = nativePutStrLn s
translateIOConsoleLocal getLine = nativeGetLine

translateIOConsole : {A : Set} → IOConsole A → NativeIO A
translateIOConsole = translateIO translateIOConsoleLocal

Anton Setzer GUIs, Objects, and Processes in Agda 17/ 78

Interactive Programs in Agda

A First Interactive Program

cat : IOConsole Unit
force cat = do getLine ń line →

do∞ (putStrLn line) ń →
cat

I This program doesn’t termination check because in guarded recursion
we are not allowed to apply the defined function do∞o to the
corecursive call of cat.

I Can be repaired using sized Types (Abel).
I Using sized types one can apply size preserving or increasing functions

to corecursive calls.
I The code in the following usually requires decorations by sized types in

order to termination check.

Anton Setzer GUIs, Objects, and Processes in Agda 18/ 78

Interactive Programs in Agda

Executable Program

main : NativeIO Unit
main = translateIOConsole cat

Anton Setzer GUIs, Objects, and Processes in Agda 19/ 78

State-Dependent IO

Coalgebras in Agda

Interactive Programs in Agda

State-Dependent IO

Objects

State Dependent Objects

GUIs using Objects

Process Algebra CSP in Agda

Conclusion

Bibliography

Anton Setzer GUIs, Objects, and Processes in Agda 20/ 78

State-Dependent IO

State Dependent IO-Trees

�������� ����

�������� ����

(r : R s c)

(r ′ : R s′ c′)

p : IO s

p′ : IO s′ (s′ = n s c r)

p′′ : IO s′′ (s′′ = n s′ c′ r ′)

c : C s

c′ : C s′

c′′ : C s′′

Anton Setzer GUIs, Objects, and Processes in Agda 21/ 78

State-Dependent IO

State Dependent IO – Interface

record IOInterfaces : Set2 where
field

States : Set1
Commands : States → Set1
Responses : (s : States) → Commands s → Set
nexts : (s : States) → (c : Commands s)

→ Responses s c
→ States

Anton Setzer GUIs, Objects, and Processes in Agda 22/ 78

State-Dependent IO

State Dependent IO

record IOs (A : S → Set) (s : S) : Set1 where
coinductive
field

forces : IOs’ A s

data IOs’ (A : S → Set) : S → Set1 where
dos’ : {s : S} → (c : C s)
→ (f : (r : R s c) → IOs A (next s c r))
→ IOs’ A s

returns’ : {s : S} → (a : A s) → IOs’ A s

Anton Setzer GUIs, Objects, and Processes in Agda 23/ 78

Objects

Coalgebras in Agda

Interactive Programs in Agda

State-Dependent IO

Objects

State Dependent Objects

GUIs using Objects

Process Algebra CSP in Agda

Conclusion

Bibliography

Anton Setzer GUIs, Objects, and Processes in Agda 24/ 78

Objects

Object-Oriented/Based Programming

I Object-oriented (OO) programming is currently main programming
paradigm.

I Good for bundling operations into one objects, hiding implementations
and reuse of code.

I Here restriction to object-based programming.
I Only notion of an object covered.

I Ultimate goal: use objects in order to organise proofs in a better way.

Anton Setzer GUIs, Objects, and Processes in Agda 25/ 78

Objects

Example: cell in Java

class cell <A> {

/∗ Instance Variable ∗/
A content;

/∗ Constructor ∗/
cell (A s) { content = s; }

/∗ Method put ∗/
public void put (A s) { content = s; }

/∗ Method get ∗/
public A get () { return content; }

}

Anton Setzer GUIs, Objects, and Processes in Agda 26/ 78

Objects

Modelling Methods as Objects

I The Type (interface) cell modelled as a coalgebra Cell.
I A method

B m (A x)

is modelled as observation
m : Cell → A → B × Cell

I Return type void is modelled as Unit (one element type).
I A constructor with argument A modelled as a function defined by

guarded recursion
cell : A → Cell

Anton Setzer GUIs, Objects, and Processes in Agda 27/ 78

Objects

Cell in Agda

record Cell (X : Set) : Set where
coinductive
field

put : X → Unit × Cell X
get : Unit → X × Cell X

cell : {X : Set} → X → Cell X
put (cell x) y = (unit , cell y)
get (cell x) = (x , cell x)

Anton Setzer GUIs, Objects, and Processes in Agda 28/ 78

Objects

Generic Version

An interface for an object consist of methods and the result type:

record Interface : Set1 where
field Method : Set

Result : Method → Set

An Object of an interface I has a method which for every method returns
an element of the result type and the updated object:

record Object (I : Interface) : Set where
coinductive
field objectMethod : (m : Method I) → Result I m × Object I

Anton Setzer GUIs, Objects, and Processes in Agda 29/ 78

Objects

Example: A Cell

A cell contains one element.
The methods allow to get its content and put a new value into the cell:

data CellMethod A : Set where
get : CellMethod A
put : A → CellMethod A

CellResult : ∀{A} → CellMethod A → Set
CellResult {A} get = A
CellResult (put) = Unit

cellI : (A : Set) → Interface
Method (cellI A) = CellMethod A
Result (cellI A) m = CellResult m

Anton Setzer GUIs, Objects, and Processes in Agda 30/ 78

Objects

Definition of Cell

The cell object is defined as follows:

Cell : Set → Set
Cell A = Object (cellI A)

cell : {A : Set} → A → Cell A
objectMethod (cell a) get = (a , cell a)
objectMethod (cell a) (put b) = (unit , cell b)

Anton Setzer GUIs, Objects, and Processes in Agda 31/ 78

Objects

IO objects

IO Objects are like Objects, but methods execute an interactive program
before returning the result:

record IOObject (Iio : IOInterface) (I : Interface) : Set where
coinductive
field method : (m : Method I)
→ IO∞ Iio (Result I m × IOObject Iio I)

Anton Setzer GUIs, Objects, and Processes in Agda 32/ 78

Objects

IOCell

We define an IOcell which writes on console a trace of its method calls:

IOCell : Set
IOCell = IOObject ConsoleInterface (cellI String)

ioCell : (s : String) → IOCell
force (method (ioCell s) get) =

do (putStrLn ("getting (" ++ s ++ ")")) ń →
return∞ (s , ioCell s)

force (method (ioCell) (put t)) =
do (putStrLn ("putting (" ++ t ++ ")")) ń →
return∞ (, ioCell t)

Anton Setzer GUIs, Objects, and Processes in Agda 33/ 78

Objects

Example Program using IOCell

program : IOCell → IO∞ ConsoleInterface Unit
force (program c) =

do getLine ń s →
method c (put s) >>=∞ ń{ (, c) →
method c get >>=∞ ń{ (t , c) →
do∞ (putStrLn t) ń →
program c }}

main : NativeIO Unit
main = translateIOConsole (program (ioCell "Start"))

Anton Setzer GUIs, Objects, and Processes in Agda 34/ 78

State Dependent Objects

Coalgebras in Agda

Interactive Programs in Agda

State-Dependent IO

Objects

State Dependent Objects

GUIs using Objects

Process Algebra CSP in Agda

Conclusion

Bibliography

Anton Setzer GUIs, Objects, and Processes in Agda 35/ 78

State Dependent Objects

State Dependent Interface

record Interfaces : Set1 where
field

States : Set
Methods : States → Set
Results : (s : States) → (m : Methods s) → Set
nexts : (s : States) → (m : Methods s) → Results s m

→ States

Anton Setzer GUIs, Objects, and Processes in Agda 36/ 78

State Dependent Objects

State Dependent Object

Assuming I : Interfaces we define the set of state dependent objects:

record Objects (I : Interfaces) (s : States I) : Set where
coinductive
field

objectMethod : (m : Methods I s)
→ Σ[r ∈ Results I s m] Objects I (nexts I s m r)

Anton Setzer GUIs, Objects, and Processes in Agda 37/ 78

State Dependent Objects

Example Safe Stack

StackStates = N

data StackMethods (A : Set) : StackStates → Set where
push : {n : StackStates} → A → StackMethods A n
pop : {n : StackStates} → StackMethods A (suc n)

StackResults : (A : Set) → (s : StackStates) → StackMethods A s
→ Set

StackResults A .n (push { n } x1) = Unit
StackResults A (suc .n) (pop {n}) = A

ns : (A : Set) → (s : StackStates) → (m : StackMethods A s)
→ (r : StackResults A s m) → StackStates

ns A .n (push { n } x) r = suc n
ns A (suc .n) (pop { n }) r = n
Anton Setzer GUIs, Objects, and Processes in Agda 38/ 78

State Dependent Objects

Safe Stack

StackInterfaces : (A : Set) → Interfaces

States (StackInterfaces A) = StackStates

Methods (StackInterfaces A) = StackMethods A
Results (StackInterfaces A) = StackResults A
nexts (StackInterfaces A) = ns A

stackO : ∀{E : Set} {n : N} (v : Vec E n)
→ Objects (StackInterfaces E) n

objectMethod (stackO es) (push e) = (, stackO (e :: es))
objectMethod (stackO (e :: es)) pop = (e , stackO es)

Anton Setzer GUIs, Objects, and Processes in Agda 39/ 78

State Dependent Objects

Example Fibonacci Stack

data FibState : Set where
fib : N → FibState
val : N → FibState

data FibStackEl : Set where
+· : N → FibStackEl
·+fib : N → FibStackEl

FibStack : N → Set
FibStack = Objects (StackInterfaces FibStackEl)

emptyFibStack : FibStack 0
emptyFibStack = stackO []

Stackmachine : Set
Stackmachine = Σ[n ∈ N] (FibState × FibStack n)
Anton Setzer GUIs, Objects, and Processes in Agda 40/ 78

State Dependent Objects

Reduce

reduce : Stackmachine → Stackmachine] N
reduce (n , fib 0 , stack) = inj1 (n , val 1 , stack)
reduce (n , fib 1 , stack) = inj1 (n , val 1 , stack)
reduce (n , fib (suc (suc m)) , stack) =

objectMethod stack (push (·+fib m)) B ń { (, stack1) →
inj1 (suc n , fib (suc m) , stack1) }

reduce (0 , val m , stack) = inj2 m
reduce (suc n , val m , stack) =

objectMethod stack pop B ń { (k +· , stack1) →
inj1 (n , val (k + m) , stack1) ;

(·+fib k , stack1) →
objectMethod stack1 (push (m +·)) B ń {(, stack2) →
inj1 (suc n , fib k , stack2) } }

Anton Setzer GUIs, Objects, and Processes in Agda 41/ 78

State Dependent Objects

Fibonacci Function

{-# NON TERMINATING #-}
iter : Stackmachine → N
iter stack with reduce stack
... | inj1 s’ = iter s’
... | inj2 m = m

fibUsingStack : N → N
fibUsingStack n = iter (0 , fib n , emptyFibStack)

Anton Setzer GUIs, Objects, and Processes in Agda 42/ 78

GUIs using Objects

Coalgebras in Agda

Interactive Programs in Agda

State-Dependent IO

Objects

State Dependent Objects

GUIs using Objects

Process Algebra CSP in Agda

Conclusion

Bibliography

Anton Setzer GUIs, Objects, and Processes in Agda 43/ 78

SpaceShip Example

GUIs using Objects

Graphics Interface Level1

data GuiLev1Command : Set where
makeFrame : GuiLev1Command
makeButton : Frame → GuiLev1Command
addButton : Frame → Button → GuiLev1Command
drawBitmap : DC → Bitmap → Point → Bool

→ GuiLev1Command
repaint : Frame → GuiLev1Command

GuiLev1Response : GuiLev1Command → Set
GuiLev1Response makeFrame = Frame
GuiLev1Response (makeButton) = Button
GuiLev1Response = Unit

GuiLev1Interface : IOInterface
Command GuiLev1Interface = GuiLev1Command
Response GuiLev1Interface = GuiLev1Response
Anton Setzer GUIs, Objects, and Processes in Agda 45/ 78

GUIs using Objects

Graphics Level2 Commands

GuiLev2State : Set1
GuiLev2State = VarList

data GuiLev2Command (s : GuiLev2State) : Set1 where
level1C : GuiLev1Command → GuiLev2Command s
createVar : {A : Set} → A → GuiLev2Command s
setButtonHandler : Button

→ List (prod s
→ IO GuiLev1Interface ∞ (prod s))

→ GuiLev2Command s
setOnPaint : Frame

→ List (prod s → DC → Rect
→ IO GuiLev1Interface ∞ (prod s))

→ GuiLev2Command s
Anton Setzer GUIs, Objects, and Processes in Agda 46/ 78

GUIs using Objects

Graphics Level2 Response + Next

GuiLev2Response : (s : GuiLev2State) → GuiLev2Command s
→ Set

GuiLev2Response (level1C c) = GuiLev1Response c
GuiLev2Response (createVar {A} a) = Var A
GuiLev2Response = Unit

GuiLev2Next : (s : GuiLev2State) → (c : GuiLev2Command s)
→ GuiLev2Response s c
→ GuiLev2State

GuiLev2Next s (createVar {A} a) var = addVar A var s
GuiLev2Next s = s

Anton Setzer GUIs, Objects, and Processes in Agda 47/ 78

GUIs using Objects

Graphics Level2 Interface

GuiLev2Interface : IOInterfaces

States GuiLev2Interface = GuiLev2State
Commands GuiLev2Interface = GuiLev2Command
Responses GuiLev2Interface = GuiLev2Response
nexts GuiLev2Interface = GuiLev2Next

Anton Setzer GUIs, Objects, and Processes in Agda 48/ 78

GUIs using Objects

Action Handling Object

data ActionHandlerMethod : Set where
onPaintM : DC → Rect → ActionHandlerMethod
moveSpaceShipM : Frame → ActionHandlerMethod
callRepaintM : Frame → ActionHandlerMethod

ActionHandlerResult : ActionHandlerMethod → Set
ActionHandlerResult = Unit

ActionHandlerInterface : Interface
Method ActionHandlerInterface = ActionHandlerMethod
Result ActionHandlerInterface = ActionHandlerResult

ActionHandler : Set
ActionHandler = IOObject GuiLev1Interface ActionHandlerInterface

{-# TERMINATING #-}Anton Setzer GUIs, Objects, and Processes in Agda 49/ 78

GUIs using Objects

Action Handling Object

actionHandler : Z → ActionHandler
method (actionHandler z) (onPaintM dc rect) =

do∞ (drawBitmap dc ship (z , (+ 150)) true) ń →
return∞ (unit , actionHandler z)

method (actionHandler z) (moveSpaceShipM fra) =
return∞ (unit , actionHandler (z + (+ 20)))

method (actionHandler z) (callRepaintM fra) =
do∞ (repaint fra) ń →
return∞ (unit , actionHandler z)

actionHandlerInit : ActionHandler
actionHandlerInit = actionHandler (+ 150)

Anton Setzer GUIs, Objects, and Processes in Agda 50/ 78

GUIs using Objects

Action Handlers

onPaint : ActionHandler → DC → Rect
→ IO GuiLev1Interface ActionHandler

onPaint obj dc rect = mapIO proj2 (method obj (onPaintM dc rect))

moveSpaceShip : Frame → ActionHandler
→ IO GuiLev1Interface ActionHandler

moveSpaceShip fra obj = mapIO proj2
(method obj (moveSpaceShipM fra))

Anton Setzer GUIs, Objects, and Processes in Agda 51/ 78

GUIs using Objects

Action Handlers

callRepaint : Frame → ActionHandler
→ IO GuiLev1Interface ActionHandler

callRepaint fra obj = mapIO proj2 (method obj (callRepaintM fra))

buttonHandler : Frame → List (ActionHandler
→ IO GuiLev1Interface ActionHandler)

buttonHandler fra = moveSpaceShip fra :: [callRepaint fra]

Anton Setzer GUIs, Objects, and Processes in Agda 52/ 78

GUIs using Objects

Spaceship Program

program : IOs GuiLev2Interface (ń → Unit) []
program = dos (level1C makeFrame) ń fra →

dos (level1C (makeButton fra)) ń bt →
dos (level1C (addButton fra bt)) ń →
dos (createVar actionHandlerInit) ń →
dos (setButtonHandler bt (moveSpaceShip fra

:: [callRepaint fra])) ń →
dos (setOnPaint fra [onPaint])
returns

main : NativeIO Unit
main = start (translateLev2 program)

Anton Setzer GUIs, Objects, and Processes in Agda 53/ 78

Process Algebra CSP in Agda

Coalgebras in Agda

Interactive Programs in Agda

State-Dependent IO

Objects

State Dependent Objects

GUIs using Objects

Process Algebra CSP in Agda

Conclusion

Bibliography

Anton Setzer GUIs, Objects, and Processes in Agda 54/ 78

Process Algebra CSP in Agda

Process Algebras

I Goal of process algebras is to model concurrent systems.
I They define labelled transition systems with

I nodes being processes
I transitions correspond to non-deterministic ways in which a process can

proceed,
I labels control interaction and information flow between different

processes.

I Operators have been defined to form new processes from existing ones.
I Various semantics are defined for process algebras.
I Equations are given for relating processes formed from different

operators which are semantically equal.

Anton Setzer GUIs, Objects, and Processes in Agda 55/ 78

Example (Bus)

Process B111

External Choice

Internal Choice

Process Algebra CSP in Agda

Monadic Composition of Processes

I In order to obtain monadic composition of processes
I we add a special terminated process
I terminated process have in addition a return value,
I we can combine processes monadically where next process

depends on return value of terminated process.

Anton Setzer GUIs, Objects, and Processes in Agda 60/ 78

Process Algebra CSP in Agda

Example Monadic Composition

Anton Setzer GUIs, Objects, and Processes in Agda 61/ 78

Process Algebra CSP in Agda

Example Monadic Composition

Anton Setzer GUIs, Objects, and Processes in Agda 62/ 78

Process Algebra CSP in Agda

Example Monadic Composition

Anton Setzer GUIs, Objects, and Processes in Agda 63/ 78

Process Algebra CSP in Agda

Definition of Processes Based on Atomic Operation

I In process algebra processes are formed using high level operations
(external/internal choice, parallel, composition etc.)

I Instead we from processes from atomic one step operations.
I Since processes can loop forever defined coinductively.
I In CSP processes can have 3 kinds of transitions:

I Labelled external choice transitions.
I Internal τ -transitions.
I Termination events (X-transitions).

I In CSP instead of having terminated processes there are
termination events.

I A natural way would be to represent them as τ -transitions to
terminated processes
– however, CSP behave slightly differently.

I In order to be consistent with CSP we keep termination events.
I We add return values to termination events in order to allow monadic

composition.

Anton Setzer GUIs, Objects, and Processes in Agda 64/ 78

Process Algebra CSP in Agda

Example

P1
a

b

P2 P3 P4P1

2
3 τ

5
Xτ

"STOP"

4

Anton Setzer GUIs, Objects, and Processes in Agda 65/ 78

Process Algebra CSP in Agda

3 Levels of Processes

I Process+ will be processes which are not the terminated process.
I They can have external choice, internal choice and termination events.
I Defined coinductively as a record.

I Process is the type of processes which can be either the terminated
process or continue as an element of Process+

I Defined as a data.

I Coinductive definitions of elements of Process+ require to define 8
components.
Sometimes we want to define a process coinductively by using other
combinators
Therefore we have a third kind of process Process∞ (coinductive)
Essentially bundles the 8 components into one for corecursive
definitions.

Anton Setzer GUIs, Objects, and Processes in Agda 66/ 78

Process Algebra CSP in Agda

CSP-Agda

record Process+ (i : Size) (c : Choice) : Set where
coinductive
field

E : Choice
Lab : ChoiceSet E → Label
PE : ChoiceSet E → Process∞ i c
I : Choice
PI : ChoiceSet I → Process∞ i c
T : Choice
PT : ChoiceSet T → ChoiceSet c
Str+ : String

Anton Setzer GUIs, Objects, and Processes in Agda 67/ 78

Process Algebra CSP in Agda

CSP-Agda

data Process (i : Size) (c : Choice) : Set where
terminate : ChoiceSet c → Process i c
node : Process+ i c → Process i c

record Process∞ (i : Size) (c : Choice) : Set where
coinductive
field

forcep : {j : Size< i} → Process j c
Str∞ : String

Anton Setzer GUIs, Objects, and Processes in Agda 68/ 78

Process Algebra CSP in Agda

Example

P = node (process+ E Lab PE I PI T PT "P")
: Process String where

E = code for {1, 2} I = code for {3, 4}
T = code for {5}
Lab 1 = a Lab 2 = b PE 1 = P1
PE 2 = P2 PI 3 = P3 PI 4 = P4
PT 5 = "STOP"

P1
a

b

P2 P3 P4P1

2
3 τ

5
Xτ

"STOP"

4

Anton Setzer GUIs, Objects, and Processes in Agda 69/ 78

Process Algebra CSP in Agda

Choices Set

I In order to develop a simulator we need
I to enumerate all possible choices

(therefore need to make sure choice sets are finite)
I print them out as a string.

I Elements of the result sets need to be printed out as well.
I Therefore we model both as elements of a universe rather than as

sets.
I Universes go back to Martin-Löf in order to formulate the notion of a

type consisting of types.
I Universes are defined in Agda by an inductive-recursive definition.

Anton Setzer GUIs, Objects, and Processes in Agda 70/ 78

Process Algebra CSP in Agda

Choice Sets

We give here the code expressing that Choice is closed under fin,] and
subset’.

mutual
data Choice : Set where

fin : N → Choice
]’ : Choice → Choice → Choice

subset’ : (E : Choice) → (ChoiceSet E → Bool)
→ Choice

ChoiceSet : Choice → Set
ChoiceSet (fin n) = Fin n
ChoiceSet (s]’ t) = ChoiceSet s] ChoiceSet t
ChoiceSet (subset’ E f) = subset (ChoiceSet E) f

Anton Setzer GUIs, Objects, and Processes in Agda 71/ 78

Process Algebra CSP in Agda

Interleaving operator

I In this process, the components P and Q execute completely
independently of each other.

I Each event is performed by exactly one process.
I The rules in CSP expressing the operational semantics are as follows:

P
µ−→ P ′

µ 6= X
P|||Q µ−→ P ′|||Q

Q
µ−→ Q ′

µ 6= X
P|||Q µ−→ P|||Q ′

P X−→ P ′ Q X−→ Q ′

P|||Q X−→ P ′|||Q ′

Anton Setzer GUIs, Objects, and Processes in Agda 72/ 78

Process Algebra CSP in Agda

Interleaving operator

We represent interleaving operator in CSP-Agda as follows:
|||++ : {i : Size} → {c0 c1 : Choice}
→ Process+ i c0 → Process+ i c1
→ Process+ i (c0 ×’ c1)

E (P |||++ Q) = E P]’ E Q
Lab (P |||++ Q) (inj1 c) = Lab P c
Lab (P |||++ Q) (inj2 c) = Lab Q c
PE (P |||++ Q) (inj1 c) = PE P c |||∞+ Q
PE (P |||++ Q) (inj2 c) = P |||+∞ PE Q c
I (P |||++ Q) = I P]’ I Q
PI (P |||++ Q) (inj1 c) = PI P c |||∞+ Q
PI (P |||++ Q) (inj2 c) = P |||+∞ PI Q c
T (P |||++ Q) = T P ×’ T Q
PT (P |||++ Q) (c „ c1) = PT P c „ PT Q c1
Str+ (P |||++ Q) = Str+ P |||Str Str+ Q

Anton Setzer GUIs, Objects, and Processes in Agda 73/ 78

Process Algebra CSP in Agda

Interleaving operator

||| : {i : Size} → {c0 c1 : Choice} → Process i c0
→ Process i c1 → Process i (c0 ×’ c1)

node P ||| node Q = node (P |||++ Q)
terminate a ||| Q = fmap (ń b → (a „ b)) Q
P ||| terminate b = fmap (ń a → (a „ b)) P

Anton Setzer GUIs, Objects, and Processes in Agda 74/ 78

Conclusion

Conclusion

I Definition of coinductive data types (coalgebras) by their
observations.

I Use of copattern matching

I Interactive programs and objects as examples of coalgebras.
I State dependent objects.
I State dependent interactive programs can be defined similarly.

Anton Setzer GUIs, Objects, and Processes in Agda 75/ 78

Conclusion

Conclusion

I Definition of processes coinductively based on an
atomic one step operation.

I Processes defined in a monadic way.
I Copattern matching allows to define operations for forming new

processes without the need for auxiliary function.
I Similarly to what’s going on in object oriented programming.

I Operations from process algebras are defined operations.
I External choice, internal choice, parallel operations, hiding, renaming,

etc. have been defined, see TyDe 2016 paper.

Anton Setzer GUIs, Objects, and Processes in Agda 76/ 78

Bibliography

Bibliography I

Andreas Abel, Stephan Adelsberger, and Anton Setzer.
Interactive programming in Agda – objects and graphical user
interfaces.
To appear in Journal of Functional Programming. Preprint available at
http://www.cs.swan.ac.uk/∼csetzer/articles/ooAgda.pdf, 2016.

Bashar Igried and Anton Setzer.
Programming with monadic CSP-style processes in dependent type
theory.
To appear in proceedings of TyDe 2016, Type-driven Development,
preprint available from
http://www.cs.swan.ac.uk/∼csetzer/articles/TyDe2016.pdf, 2016.

Anton Setzer GUIs, Objects, and Processes in Agda 77/ 78

Bibliography

Bibliography II

Anton Setzer.
Object-oriented programming in dependent type theory.
In Conference Proceedings of TFP 2006, 2006.
Available from
http://www.cs.nott.ac.uk/∼nhn/TFP2006/TFP2006-Programme.html
and http://www.cs.swan.ac.uk/∼csetzer/index.html.

Anto Setzer.
How to reason coinductively informally.
In Reinhard Kahle, Thomas Strahm, and Thomas Studer, editors,
Advances in Proof Theory, pages 377–408. Springer, 2016.

Anton Setzer GUIs, Objects, and Processes in Agda 78/ 78

	Coalgebras in Agda
	Interactive Programs in Agda
	State-Dependent IO
	Objects
	State Dependent Objects
	GUIs using Objects
	Process Algebra CSP in Agda
	Conclusion
	Bibliography

