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Coalgebras in Agda

Codata Type

I Idea of Codata Types:

codata Stream : Set where
cons : N→ Stream→ Stream

I Same definition as inductive data type but we are allowed to have
infinite chains of constructors

cons n0 (cons n1 (cons n2 · · · ))

I Problem 1: Non-normalisation.
I Problem 2: Equality between streams is equality between all

elements, and therefore undecidable.
I Problem 3: Underlying assumption is

∀ s : Stream.∃ n, s ′.s = cons n s ′

which results in undecidable equality.
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Coalgebras in Agda

Solution: Coalgebras Defined by Observations

I We define coalgebras by their observations. Tentative syntax

coalg Stream : Set where
head : Stream→ N
tail : Stream→ Stream

I Stream is the largest set of terms which allow arbitrary many
applications of tail followed by head to obtain a natural numbers.

I From this one can develop a general model for coalgebras (see our
paper [Set16]).

I Therefore no infinite expansion of streams:
– for each expansion of a stream one needs one application of tail.
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Coalgebras in Agda

Syntax in Agda

I In Agda the record type has been reused for defining coalgebras:

record Stream (A : Set) : Set where
coinductive
field

head : A
tail : Stream A

const and inc can be defined with the syntax as given before
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Coalgebras in Agda

Principle of Guarded Recursion

I Define
f : A→ Stream
head (f a) = · · · : N
tail (f a) = · · · : Stream

where

tail (f a) = f a′ for some a′ : A
or
tail (f a) = s ′ for some s ′ : Stream given before

I No function can be applied to the corecursion hypothesis.
I Using sized types one can apply size preserving or size increasing

functions to co-IH (Abel).
I Above is example of copattern matching.
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Coalgebras in Agda

Example

I Constant stream of a, a, a, . . .

const : {A : Set} → A→ Stream A
head (const a) = a
tail (const a) = const a

I The increasing stream n, n + 1, n + 2, . . .

inc : N→ Stream N
head (inc n) = n
tail (inc n) = inc (n + 1)

I Cons is defined:

cons : X → Stream X → Stream X
head (cons x l) = x
tail (cons x l) = l
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Coalgebras in Agda

Nested Patter/Copattern Matching

I We can even define functions by a combination of pattern and
copattern matching and nest those:
The following defines the stream

stutterDown n n = n, n, n − 1, n − 1, . . . 0, 0, n, n, n − 1, n − 1, . . .

stutterDown : N → N → Stream N
head (stutterDown n m) = m
head (tail (stutterDown n m)) = m
tail (tail (stutterDown n (suc m))) = stutterDown n m
tail (tail (stutterDown n 0)) = stutterDown n n
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Interactive Programs in Agda

IO-Trees (Non-State Dependent)
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p : IO

(r : R c)

(r ′ : R c′)

p′′ : IO

p′ : IO

c : C

c′′ : C

c′ : C
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Interactive Programs in Agda

IOInterface

An IOInterface is a record having fields Command and Response:

record IOInterface : Set1 where
field Command : Set

Response : Command → Set
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Interactive Programs in Agda

Console Interface

data ConsoleCommand : Set where
getLine : ConsoleCommand
putStrLn : String → ConsoleCommand

ConsoleResponse : ConsoleCommand → Set
ConsoleResponse getLine = String
ConsoleResponse (putStrLn s) = Unit

ConsoleInterface : IOInterface
Command ConsoleInterface = ConsoleCommand
Response ConsoleInterface = ConsoleResponse
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Interactive Programs in Agda

IO

The set of IO programs IO∞ is the coalgebra having as observation an
element of IO.
Elements of IO are IO trees which can have leaves (introduced by return)
and nodes (introduced by do):

mutual
record IO∞ (I : IOInterface) (A : Set) : Set where

coinductive
field force : IO I A

data IO (I : IOInterface) (A : Set) : Set where
do : (c : Command I) ( f : Response I c → IO∞ I A)

→ IO I A
return : A → IO I A
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Interactive Programs in Agda

Monadic bind is used to combine programs:

mutual
>>= : ∀{A B} (m : IO I A) (k : A → IO∞ I B) → IO I B

do c f >>= k = do c ń x → f x >>=∞ k
return a >>= k = force (k a)

>>=∞ : ∀{A B} (m : IO∞ I A) (k : A → IO∞ I B)
→ IO∞ I B

force (m >>=∞ k) = force m >>= k
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Interactive Programs in Agda

Running Interactive Programs

{-# NON TERMINATING #-}
translateIO : ∀ {A} (tr : (c : C) → NativeIO (R c)) → IO∞ I A

→ NativeIO A
translateIO tr m = case (force m) of ń

{ (do c f ) → (tr c) native>>= ń r → translateIO tr ( f r)
; (return a) → nativeReturn a
}

Non termination is unproblematic since this function is only used as part of
the compilation process.
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Interactive Programs in Agda

Console IO

IOConsole : Set → Set
IOConsole = IO∞ ConsoleInterface

translateIOConsoleLocal : (c : ConsoleCommand)
→ NativeIO (ConsoleResponse c)

translateIOConsoleLocal (putStrLn s) = nativePutStrLn s
translateIOConsoleLocal getLine = nativeGetLine

translateIOConsole : {A : Set} → IOConsole A → NativeIO A
translateIOConsole = translateIO translateIOConsoleLocal
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Interactive Programs in Agda

A First Interactive Program

cat : IOConsole Unit
force cat = do getLine ń line →

do∞ (putStrLn line) ń →
cat

I This program doesn’t termination check because in guarded recursion
we are not allowed to apply the defined function do∞o to the
corecursive call of cat.

I Can be repaired using sized Types (Abel).
I Using sized types one can apply size preserving or increasing functions

to corecursive calls.
I The code in the following usually requires decorations by sized types in

order to termination check.
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Interactive Programs in Agda

Executable Program

main : NativeIO Unit
main = translateIOConsole cat
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State-Dependent IO

State Dependent IO-Trees
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(r : R s c)

(r ′ : R s′ c′)

p : IO s

p′ : IO s′ (s′ = n s c r)

p′′ : IO s′′ (s′′ = n s′ c′ r ′)

c : C s

c′ : C s′

c′′ : C s′′
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State-Dependent IO

State Dependent IO – Interface

record IOInterfaces : Set2 where
field

States : Set1
Commands : States → Set1
Responses : (s : States) → Commands s → Set
nexts : (s : States) → (c : Commands s)

→ Responses s c
→ States

Anton Setzer GUIs, Objects, and Processes in Agda 22/ 78



State-Dependent IO

State Dependent IO

record IOs (A : S → Set) (s : S) : Set1 where
coinductive
field

forces : IOs’ A s

data IOs’ (A : S → Set) : S → Set1 where
dos’ : {s : S} → (c : C s)
→ ( f : (r : R s c) → IOs A (next s c r) )
→ IOs’ A s

returns’ : {s : S} → (a : A s) → IOs’ A s
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Objects

Object-Oriented/Based Programming

I Object-oriented (OO) programming is currently main programming
paradigm.

I Good for bundling operations into one objects, hiding implementations
and reuse of code.

I Here restriction to object-based programming.
I Only notion of an object covered.

I Ultimate goal: use objects in order to organise proofs in a better way.
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Objects

Example: cell in Java

class cell <A> {

/∗ Instance Variable ∗/
A content;

/∗ Constructor ∗/
cell (A s) { content = s; }

/∗ Method put ∗/
public void put (A s) { content = s; }

/∗ Method get ∗/
public A get () { return content; }

}
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Objects

Modelling Methods as Objects

I The Type (interface) cell modelled as a coalgebra Cell.
I A method

B m (A x)

is modelled as observation
m : Cell → A → B × Cell

I Return type void is modelled as Unit (one element type).
I A constructor with argument A modelled as a function defined by

guarded recursion
cell : A → Cell
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Objects

Cell in Agda

record Cell (X : Set) : Set where
coinductive
field

put : X → Unit × Cell X
get : Unit → X × Cell X

cell : {X : Set} → X → Cell X
put (cell x) y = (unit , cell y)
get (cell x) = (x , cell x)
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Objects

Generic Version

An interface for an object consist of methods and the result type:

record Interface : Set1 where
field Method : Set

Result : Method → Set

An Object of an interface I has a method which for every method returns
an element of the result type and the updated object:

record Object (I : Interface) : Set where
coinductive
field objectMethod : (m : Method I) → Result I m × Object I
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Objects

Example: A Cell

A cell contains one element.
The methods allow to get its content and put a new value into the cell:

data CellMethod A : Set where
get : CellMethod A
put : A → CellMethod A

CellResult : ∀{A} → CellMethod A → Set
CellResult {A} get = A
CellResult (put ) = Unit

cellI : (A : Set) → Interface
Method (cellI A) = CellMethod A
Result (cellI A) m = CellResult m
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Objects

Definition of Cell

The cell object is defined as follows:

Cell : Set → Set
Cell A = Object (cellI A)

cell : {A : Set} → A → Cell A
objectMethod (cell a) get = ( a , cell a )
objectMethod (cell a) (put b) = ( unit , cell b )
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Objects

IO objects

IO Objects are like Objects, but methods execute an interactive program
before returning the result:

record IOObject (Iio : IOInterface) (I : Interface) : Set where
coinductive
field method : (m : Method I)
→ IO∞ Iio (Result I m × IOObject Iio I)
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Objects

IOCell

We define an IOcell which writes on console a trace of its method calls:

IOCell : Set
IOCell = IOObject ConsoleInterface (cellI String)

ioCell : (s : String) → IOCell
force (method (ioCell s) get) =

do (putStrLn ("getting (" ++ s ++ ")")) ń →
return∞ (s , ioCell s)

force (method (ioCell ) (put t)) =
do (putStrLn ("putting (" ++ t ++ ")")) ń →
return∞ ( , ioCell t)
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Objects

Example Program using IOCell

program : IOCell → IO∞ ConsoleInterface Unit
force (program c) =

do getLine ń s →
method c (put s) >>=∞ ń{ ( , c) →
method c get >>=∞ ń{ (t , c) →
do∞ (putStrLn t ) ń →
program c }}

main : NativeIO Unit
main = translateIOConsole (program (ioCell "Start"))
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State Dependent Objects

State Dependent Interface

record Interfaces : Set1 where
field

States : Set
Methods : States → Set
Results : (s : States) → (m : Methods s) → Set
nexts : (s : States) → (m : Methods s) → Results s m

→ States
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State Dependent Objects

State Dependent Object

Assuming I : Interfaces we define the set of state dependent objects:

record Objects (I : Interfaces) (s : States I) : Set where
coinductive
field

objectMethod : (m : Methods I s)
→ Σ[ r ∈ Results I s m ] Objects I (nexts I s m r)
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State Dependent Objects

Example Safe Stack

StackStates = N

data StackMethods (A : Set) : StackStates → Set where
push : {n : StackStates} → A → StackMethods A n
pop : {n : StackStates} → StackMethods A (suc n)

StackResults : (A : Set) → (s : StackStates) → StackMethods A s
→ Set

StackResults A .n (push { n } x1) = Unit
StackResults A (suc .n) (pop {n} ) = A

ns : (A : Set) → (s : StackStates) → (m : StackMethods A s)
→ (r : StackResults A s m) → StackStates

ns A .n (push { n } x) r = suc n
ns A (suc .n) (pop { n }) r = n
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State Dependent Objects

Safe Stack

StackInterfaces : (A : Set) → Interfaces

States (StackInterfaces A) = StackStates

Methods (StackInterfaces A) = StackMethods A
Results (StackInterfaces A) = StackResults A
nexts (StackInterfaces A) = ns A

stackO : ∀{E : Set} {n : N} (v : Vec E n)
→ Objects (StackInterfaces E) n

objectMethod (stackO es) (push e) = ( , stackO (e :: es))
objectMethod (stackO (e :: es)) pop = (e , stackO es)
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State Dependent Objects

Example Fibonacci Stack

data FibState : Set where
fib : N → FibState
val : N → FibState

data FibStackEl : Set where
+· : N → FibStackEl
·+fib : N → FibStackEl

FibStack : N → Set
FibStack = Objects (StackInterfaces FibStackEl)

emptyFibStack : FibStack 0
emptyFibStack = stackO []

Stackmachine : Set
Stackmachine = Σ[ n ∈ N ] (FibState × FibStack n)
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State Dependent Objects

Reduce

reduce : Stackmachine → Stackmachine ] N
reduce (n , fib 0 , stack) = inj1 (n , val 1 , stack)
reduce (n , fib 1 , stack) = inj1 (n , val 1 , stack)
reduce (n , fib (suc (suc m)) , stack) =

objectMethod stack (push (·+fib m)) B ń { ( , stack1) →
inj1 ( suc n , fib (suc m) , stack1) }

reduce (0 , val m , stack) = inj2 m
reduce (suc n , val m , stack) =

objectMethod stack pop B ń { (k +· , stack1) →
inj1 (n , val (k + m) , stack1) ;

(·+fib k , stack1) →
objectMethod stack1 (push (m +·)) B ń {( , stack2) →
inj1 (suc n , fib k , stack2) } }
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State Dependent Objects

Fibonacci Function

{-# NON TERMINATING #-}
iter : Stackmachine → N
iter stack with reduce stack
... | inj1 s’ = iter s’
... | inj2 m = m

fibUsingStack : N → N
fibUsingStack n = iter (0 , fib n , emptyFibStack)
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SpaceShip Example



GUIs using Objects

Graphics Interface Level1

data GuiLev1Command : Set where
makeFrame : GuiLev1Command
makeButton : Frame → GuiLev1Command
addButton : Frame → Button → GuiLev1Command
drawBitmap : DC → Bitmap → Point → Bool

→ GuiLev1Command
repaint : Frame → GuiLev1Command

GuiLev1Response : GuiLev1Command → Set
GuiLev1Response makeFrame = Frame
GuiLev1Response (makeButton ) = Button
GuiLev1Response = Unit

GuiLev1Interface : IOInterface
Command GuiLev1Interface = GuiLev1Command
Response GuiLev1Interface = GuiLev1Response
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GUIs using Objects

Graphics Level2 Commands

GuiLev2State : Set1
GuiLev2State = VarList

data GuiLev2Command (s : GuiLev2State) : Set1 where
level1C : GuiLev1Command → GuiLev2Command s
createVar : {A : Set} → A → GuiLev2Command s
setButtonHandler : Button

→ List (prod s
→ IO GuiLev1Interface ∞ (prod s))

→ GuiLev2Command s
setOnPaint : Frame

→ List (prod s → DC → Rect
→ IO GuiLev1Interface ∞ (prod s))

→ GuiLev2Command s
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GUIs using Objects

Graphics Level2 Response + Next

GuiLev2Response : (s : GuiLev2State) → GuiLev2Command s
→ Set

GuiLev2Response (level1C c) = GuiLev1Response c
GuiLev2Response (createVar {A} a) = Var A
GuiLev2Response = Unit

GuiLev2Next : (s : GuiLev2State) → (c : GuiLev2Command s)
→ GuiLev2Response s c
→ GuiLev2State

GuiLev2Next s (createVar {A} a) var = addVar A var s
GuiLev2Next s = s
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GUIs using Objects

Graphics Level2 Interface

GuiLev2Interface : IOInterfaces

States GuiLev2Interface = GuiLev2State
Commands GuiLev2Interface = GuiLev2Command
Responses GuiLev2Interface = GuiLev2Response
nexts GuiLev2Interface = GuiLev2Next
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GUIs using Objects

Action Handling Object

data ActionHandlerMethod : Set where
onPaintM : DC → Rect → ActionHandlerMethod
moveSpaceShipM : Frame → ActionHandlerMethod
callRepaintM : Frame → ActionHandlerMethod

ActionHandlerResult : ActionHandlerMethod → Set
ActionHandlerResult = Unit

ActionHandlerInterface : Interface
Method ActionHandlerInterface = ActionHandlerMethod
Result ActionHandlerInterface = ActionHandlerResult

ActionHandler : Set
ActionHandler = IOObject GuiLev1Interface ActionHandlerInterface
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GUIs using Objects

Action Handling Object

actionHandler : Z → ActionHandler
method (actionHandler z) (onPaintM dc rect) =

do∞ (drawBitmap dc ship (z , (+ 150)) true) ń →
return∞ (unit , actionHandler z)

method (actionHandler z) (moveSpaceShipM fra) =
return∞ (unit , actionHandler (z + (+ 20)))

method (actionHandler z) (callRepaintM fra) =
do∞ (repaint fra) ń →
return∞ (unit , actionHandler z)

actionHandlerInit : ActionHandler
actionHandlerInit = actionHandler (+ 150)
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GUIs using Objects

Action Handlers

onPaint : ActionHandler → DC → Rect
→ IO GuiLev1Interface ActionHandler

onPaint obj dc rect = mapIO proj2 (method obj (onPaintM dc rect))

moveSpaceShip : Frame → ActionHandler
→ IO GuiLev1Interface ActionHandler

moveSpaceShip fra obj = mapIO proj2
(method obj (moveSpaceShipM fra))

Anton Setzer GUIs, Objects, and Processes in Agda 51/ 78



GUIs using Objects

Action Handlers

callRepaint : Frame → ActionHandler
→ IO GuiLev1Interface ActionHandler

callRepaint fra obj = mapIO proj2 (method obj (callRepaintM fra))

buttonHandler : Frame → List (ActionHandler
→ IO GuiLev1Interface ActionHandler)

buttonHandler fra = moveSpaceShip fra :: [ callRepaint fra ]
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GUIs using Objects

Spaceship Program

program : IOs GuiLev2Interface (ń → Unit) []
program = dos (level1C makeFrame) ń fra →

dos (level1C (makeButton fra)) ń bt →
dos (level1C (addButton fra bt)) ń →
dos (createVar actionHandlerInit) ń →
dos (setButtonHandler bt (moveSpaceShip fra

:: [ callRepaint fra ])) ń →
dos (setOnPaint fra [ onPaint ])
returns

main : NativeIO Unit
main = start (translateLev2 program)
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Process Algebra CSP in Agda

Process Algebras

I Goal of process algebras is to model concurrent systems.
I They define labelled transition systems with

I nodes being processes
I transitions correspond to non-deterministic ways in which a process can

proceed,
I labels control interaction and information flow between different

processes.

I Operators have been defined to form new processes from existing ones.
I Various semantics are defined for process algebras.
I Equations are given for relating processes formed from different

operators which are semantically equal.
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Process Algebra CSP in Agda

Monadic Composition of Processes

I In order to obtain monadic composition of processes
I we add a special terminated process
I terminated process have in addition a return value,
I we can combine processes monadically where next process

depends on return value of terminated process.
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Process Algebra CSP in Agda

Example Monadic Composition
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Process Algebra CSP in Agda

Example Monadic Composition
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Process Algebra CSP in Agda

Example Monadic Composition
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Process Algebra CSP in Agda

Definition of Processes Based on Atomic Operation

I In process algebra processes are formed using high level operations
(external/internal choice, parallel, composition etc.)

I Instead we from processes from atomic one step operations.
I Since processes can loop forever defined coinductively.
I In CSP processes can have 3 kinds of transitions:

I Labelled external choice transitions.
I Internal τ -transitions.
I Termination events (X-transitions).

I In CSP instead of having terminated processes there are
termination events.

I A natural way would be to represent them as τ -transitions to
terminated processes
– however, CSP behave slightly differently.

I In order to be consistent with CSP we keep termination events.
I We add return values to termination events in order to allow monadic

composition.

Anton Setzer GUIs, Objects, and Processes in Agda 64/ 78



Process Algebra CSP in Agda

Example

P1
a

b

P2 P3 P4P1

2
3 τ

5
Xτ

"STOP"

4
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Process Algebra CSP in Agda

3 Levels of Processes

I Process+ will be processes which are not the terminated process.
I They can have external choice, internal choice and termination events.
I Defined coinductively as a record.

I Process is the type of processes which can be either the terminated
process or continue as an element of Process+

I Defined as a data.

I Coinductive definitions of elements of Process+ require to define 8
components.
Sometimes we want to define a process coinductively by using other
combinators
Therefore we have a third kind of process Process∞ (coinductive)
Essentially bundles the 8 components into one for corecursive
definitions.
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Process Algebra CSP in Agda

CSP-Agda

record Process+ (i : Size) (c : Choice) : Set where
coinductive
field

E : Choice
Lab : ChoiceSet E → Label
PE : ChoiceSet E → Process∞ i c
I : Choice
PI : ChoiceSet I → Process∞ i c
T : Choice
PT : ChoiceSet T → ChoiceSet c
Str+ : String
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Process Algebra CSP in Agda

CSP-Agda

data Process (i : Size) (c : Choice) : Set where
terminate : ChoiceSet c → Process i c
node : Process+ i c → Process i c

record Process∞ (i : Size) (c : Choice) : Set where
coinductive
field

forcep : {j : Size< i} → Process j c
Str∞ : String
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Process Algebra CSP in Agda

Example

P = node (process+ E Lab PE I PI T PT "P")
: Process String where

E = code for {1, 2} I = code for {3, 4}
T = code for {5}
Lab 1 = a Lab 2 = b PE 1 = P1
PE 2 = P2 PI 3 = P3 PI 4 = P4
PT 5 = "STOP"

P1
a

b

P2 P3 P4P1

2
3 τ

5
Xτ

"STOP"

4
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Process Algebra CSP in Agda

Choices Set

I In order to develop a simulator we need
I to enumerate all possible choices

(therefore need to make sure choice sets are finite)
I print them out as a string.

I Elements of the result sets need to be printed out as well.
I Therefore we model both as elements of a universe rather than as

sets.
I Universes go back to Martin-Löf in order to formulate the notion of a

type consisting of types.
I Universes are defined in Agda by an inductive-recursive definition.
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Choice Sets

We give here the code expressing that Choice is closed under fin, ] and
subset’.

mutual
data Choice : Set where

fin : N → Choice
]’ : Choice → Choice → Choice

subset’ : (E : Choice) → (ChoiceSet E → Bool)
→ Choice

ChoiceSet : Choice → Set
ChoiceSet (fin n) = Fin n
ChoiceSet (s ]’ t) = ChoiceSet s ] ChoiceSet t
ChoiceSet (subset’ E f ) = subset (ChoiceSet E) f

Anton Setzer GUIs, Objects, and Processes in Agda 71/ 78



Process Algebra CSP in Agda

Interleaving operator

I In this process, the components P and Q execute completely
independently of each other.

I Each event is performed by exactly one process.
I The rules in CSP expressing the operational semantics are as follows:

P
µ−→ P ′

µ 6= X
P|||Q µ−→ P ′|||Q

Q
µ−→ Q ′

µ 6= X
P|||Q µ−→ P|||Q ′

P X−→ P ′ Q X−→ Q ′

P|||Q X−→ P ′|||Q ′
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Interleaving operator

We represent interleaving operator in CSP-Agda as follows:
|||++ : {i : Size} → {c0 c1 : Choice}
→ Process+ i c0 → Process+ i c1
→ Process+ i (c0 ×’ c1)

E (P |||++ Q) = E P ]’ E Q
Lab (P |||++ Q) (inj1 c) = Lab P c
Lab (P |||++ Q) (inj2 c) = Lab Q c
PE (P |||++ Q) (inj1 c) = PE P c |||∞+ Q
PE (P |||++ Q) (inj2 c) = P |||+∞ PE Q c
I (P |||++ Q) = I P ]’ I Q
PI (P |||++ Q) (inj1 c) = PI P c |||∞+ Q
PI (P |||++ Q) (inj2 c) = P |||+∞ PI Q c
T (P |||++ Q) = T P ×’ T Q
PT (P |||++ Q) (c „ c1) = PT P c „ PT Q c1
Str+ (P |||++ Q) = Str+ P |||Str Str+ Q
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Process Algebra CSP in Agda

Interleaving operator

||| : {i : Size} → {c0 c1 : Choice} → Process i c0
→ Process i c1 → Process i (c0 ×’ c1)

node P ||| node Q = node (P |||++ Q)
terminate a ||| Q = fmap (ń b → (a „ b)) Q
P ||| terminate b = fmap (ń a → (a „ b)) P
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Conclusion

Conclusion

I Definition of coinductive data types (coalgebras) by their
observations.

I Use of copattern matching

I Interactive programs and objects as examples of coalgebras.
I State dependent objects.
I State dependent interactive programs can be defined similarly.
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Conclusion

Conclusion

I Definition of processes coinductively based on an
atomic one step operation.

I Processes defined in a monadic way.
I Copattern matching allows to define operations for forming new

processes without the need for auxiliary function.
I Similarly to what’s going on in object oriented programming.

I Operations from process algebras are defined operations.
I External choice, internal choice, parallel operations, hiding, renaming,

etc. have been defined, see TyDe 2016 paper.
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