Type Theory and Interactive Theorem Proving

A Mini Course on Martin-Lof Type Theory Key Philosophical Principles of Martin-Lof Type Theory

Algebras, Coalgebras, and Interactive Theorem Proving
Setup of Martin-Lof Type Theory

Anton Setzer Basic Types in Martin-Lof Type Theory

Swansea University, Swansea UK The Logical Framework

Inductive Data Types (Algebras) in Type Theory
Lisbon, 9 September 2015

Coinductive Data Types (Coalgebras) in Type Theory

Anton Setzer Mini Course on Martin-L6f Type Theory 1/ 136 Anton Setzer Mini Course on Martin-L6f Type Theory 2/ 136
Type Theory and Interactive Theorem Proving Type Theory and Interactive Theorem Proving

Computer-Assisted Theorem Proving
Type Theory and Interactive Theorem Proving

» A lot of research has been invested in Computer-assisted
Theorem Proving.

» Motivation
» Guarantee that proofs are correct.
» Especially a problem in software verification (lots of boring cases).
» Can be essential in critical software.
» Help of machine in constructing proofs (proof search).
» Ideally the mathematician can concentrate on the key ideas and
the machine deals with the details.
» Ideally one could have a machine assisted proof in demonstrating
that the proof is correct and then concentrate
in the presentation on the key ideas.
» Desire to have systems as powerful as computer algebra systems
such as Maple and MATLAB.

Anton Setzer Mini Course on Martin-L6f Type Theory 3/ 136 Anton Setzer Mini Course on Martin-L6f Type Theory 4/ 136

Type Theory and Interactive Theorem Proving

Interactive vs Automated Theorem Proving

» Automated Theorem Proving: User provides the problem, machine
finds the proof.
» Works only for restricted theories, which often need to be
finitizable.

» Interactive Theorem Proving: Proof is carried out by the user.

» In reality hybrid approaches:

» In Automated Theorem Proving hints in the form of intermediate
lemmata are given by the user before starting the automated proof
search.

» In Interactive Theorem Proving proof tactics and automated
theorem proving tools are used to prove the elementary steps.

» Warning: Theorem Proving still hard work.

» It's like relationship between the idea of a program and
writing the program.
» The machine doesn’t allow any gaps.

Mini Course on Martin-L6f Type Theory 5/ 136
Type Theory and Interactive Theorem Proving

Anton Setzer

Dependent Types

» Formulas are considered as types, and elements of those proofs are
proofs of that formula.

» Formulas with free variables are dependent types:

» The formula x == 0 depends on x : N.

Anton Setzer Mini Course on Martin-L6f Type Theory 7/ 136

Type Theory and Interactive Theorem Proving

Types in Programming

» Simple Types are used in programming to
> help obtaining correct programs,
» help writing programs.
» For instance assume you have given a, f and
want to construct a solution for p below.We solve the goal
using f (functional application written f x)We have
a new goal of type IntWe solve the goal using a

a : Int
a =
f : Int — String
o= ...
p : String
p = {1 DF{I DF{ 1Ifa
Anton Setzer Mini Course on Martin-L6f Type Theory 6/ 136

Type Theory and Interactive Theorem Proving

Formulas give rise to new Type Constructs

» A proof of
Vx @ A.B(x)

is a function which computes from
a:A

a proof of
B(a)

» So a proof is an element of the dependent function type
(x : A) — B(x)

the set of functions mapping a : A to an element of B(a).

Anton Setzer Mini Course on Martin-L6f Type Theory 8/ 136

Type Theory and Interactive Theorem Proving

Dependent Types in Other Settings

v

Dependent types occur as well naturally in mathematics:

v

The type of Mat(n, m) of n x m matrices depends on n, m.

v

Matrix multiplication has type

matmult : (n, m, k : N) — Mat(n, m) — Mat(m, k) — Mat(n, k)

v

In simply typed languages we can only have

matmult : Mat — Mat — Mat

Anton Setzer Mini Course on Martin-L6f Type Theory
Type Theory and Interactive Theorem Proving

Dependent Types in Generative Programming

numberOfComponents : Lecture — N
numberOfComponents [= - - -

Marks : (/ : Lecture) — Set
Marks | = MarknumberOfComponents i

Weighting : (/ : Lecture) — Set
Weighting | — PercentagenumberOfComponents /

finalMark : (/ : Lecture) — Marks /| — Weighting / — Mark
finalMark I mw = - --

Anton Setzer Mini Course on Martin-Lof Type Theory

9/ 136

11/ 136

Type Theory and Interactive Theorem Proving

Dependent Types in Generic Programming

» In general dependent types allow to define more generic or

generative programs.
» Example: Marks of a lecture course:

A lecture course may have different components

(exams, coursework).

» On next slide Set is the collection of small types (notation for historic

reasons used).

Anton Setzer

Mini Course on Martin-Lof Type Theory

Type Theory and Interactive Theorem Proving

Generative Programming

» You can add that the weightings add up to 100%.

10/ 136

» In general you can describe complex data structures using dependent

types.

Anton Setzer

Mini Course on Martin-Lof Type Theory

12/ 136

Type Theory and Interactive Theorem Proving

Interactive Theorem Provers based on Dependent Types

» Agda (based on Martin-Lof Type theory).
» Coq (based on calculus of constructions, impredicative).

» Formalisation of four colour problem.

» Microsoft has invested in it (but development happening at INRIA,
France).

» Project of proving Kepler conjecture in it.

» Inspired Voevodsky to develop Homotopy Type Theory.

» Epigram (based on Martin-Lof Type theory, intended as a
programming language).

» Idris (relatively new language).

» Cayenne (programming language, no longer supported).

» LEGO (theorem prover from Edinburgh, no longer supported).

» Many more.

Anton Setzer Mini Course on Martin-L6f Type Theory 13/ 136
Key Philosophical Principles of Martin-L6f Type Theory

Per Martin-Lof (Stockholm)

Anton Setzer Mini Course on Martin-L6f Type Theory 15/ 136

Key Philosophical Principles of Martin-L6f Type Theory

Key Philosophical Principles of Martin-Lof Type Theory

Anton Setzer Mini Course on Martin-L6f Type Theory 14/ 136

Key Philosophical Principles of Martin-L6f Type Theory

Martin-Lof Type Theory

Martin-Lof Type Theory developed to provide a new foundation of
mathematics.

|dea to develop a theory where we have direct insight into its
consistency.

By Gddel’s 2nd Incompleteness theorem we know we cannot
prove the consistency of any reasonable mathematical theory.

However, we want mathematics to be meaningful.

» We don't want to have a proof of Fermat's last theorem and a counter
example.

Mathematics is meaningful, because we have an intuition about
why it is correct.

Anton Setzer Mini Course on Martin-L6f Type Theory 16/ 136

Key Philosophical Principles of Martin-L6f Type Theory

Example: Induction

» For instance that if we have proofs of

A(0)
Vn:N.A(n) — A(n+1)

we can convince ourselves that Vn : N.A(n) holds.

» Because for every n: N we can construct a proof of A(n) by using
the base case and n times the induction step.

» Martin-Lof Type Theory is an attempt to formalise the reasons
why we believe in the consistency of mathematical
constructions.

Anton Setzer Mini Course on Martin-L6f Type Theory 17/ 136
Key Philosophical Principles of Martin-L6f Type Theory

Objects of Type Theory

» Some terms are in normal form, e.g. suc (suc (suc zero))

» Other terms have reductions, e.g.
zero + suc zero —» suc (zero + zero) — suc zero.

» Martin-Lof uses program for terms as above, which evaluate
according to the reduction rules.

Anton Setzer Mini Course on Martin-L6f Type Theory 19/ 136

Key Philosophical Principles of Martin-L6f Type Theory

Objects of Type Theory

» We have a direct good understanding of finite objects.

» Finite objects can always be encoded into natural numbers, and
individual natural numbers are easy to understand.

» In general finite objects can be represented as terms.
Examples of terms:

Zero
suc zero
SucC zero + suc zero

(] (empty list)
cons zero || (result of adding in front of the empty list zero)

Anton Setzer Mini Course on Martin-L6f Type Theory 18/ 136
Key Philosophical Principles of Martin-L6f Type Theory

Beyond Finitism

» We can form a mathematical theory where we have
finitely many finite objects, and convince ourselves of its
consistency.

» The resulting theory is not very expressive however.

» In order to talk about something which of infinite nature, we
introduce the concept of a type.

Anton Setzer Mini Course on Martin-L6f Type Theory 20/ 136

Key Philosophical Principles of Martin-L6f Type Theory

Types

» A type A is given by a collection of rules which allow us to conclude
» that certain objects are elements of that type
a:A
» and how to form from an element a : A an element of another
type B

» We don't consider a type as a set of elements (although when
working with one often thinks like that).
That would mean that we have an infinite object per se.

Anton Setzer Mini Course on Martin-L6f Type Theory 21/ 136
Key Philosophical Principles of Martin-L6f Type Theory

Example: Natural Numbers

» Furthermore if we have another type B, i.e.

B : Set
and if we have
b:B
g:B—B
we can form
h:N— B
h zero = b

h(sucn) = g (hn)
» These rules express what we informally describe as iteration
hn=g"b

» We will later introduce stronger elimination rules for natural numbers
(dependent higher type primitive recursion).

Anton Setzer Mini Course on Martin-L6f Type Theory 23/ 136

Key Philosophical Principles of Martin-L6f Type Theory

Example: Natural Numbers

» For instance we have

zero : N
if n: Nthensucn:N

» This is written as rules

n:N

zero : N _—
suc n: N

» We can conclude for instance

suc (suc zero) : N

Anton Setzer Mini Course on Martin-L6f Type Theory 22/ 136
Key Philosophical Principles of Martin-L6f Type Theory

Representation of Infinite Objects by Finite Objects

v

This doesn’t mean that we can't speak of infinite objects.
We can have for instance a collection of sets (or universe)

v

U : Set
which contains a code for the set of natural numbers
N:U
» We can consider an operation T, which decodes codes in U into sets,

i.e. we have the rule
u:U
T u: Set

v

Then we can add a rule

TN=N:Set

v

N is still a finite object, but it represents (via T) a type which has
infinitely many elements.

Anton Setzer Mini Course on Martin-Lof Type Theory 24/ 136

Key Philosophical Principles of Martin-L6f Type Theory

Constructive Mathematics

v

Before we already said that propositions should be considered as

types.
Elements of such types should be proofs.

These proofs will give constructive content of proofs.
A proof

v

v

v

p: (3x: A.B(x))

should allow us to compute an

a:Ast. B(a)is true

Mini Course on Martin-L6f Type Theory 25/ 136
Key Philosophical Principles of Martin-L6f Type Theory

Anton Setzer

Link between Logic and Computer Programming

» Constructive Mathematics provides a direct link between
proofs/logic and programs/data.

» In type theory there is no distinction between a data type and a
logical formula (radical propositions as types).

» Allows to write programs in which data and logical formulas are
mixed.

Anton Setzer Mini Course on Martin-L6f Type Theory 27/ 136

Key Philosophical Principles of Martin-L6f Type Theory

Constructive Mathematics

» Similarly from a proof
p:AVEB

we should able to compute a Boolean value, such that if it is true, A
holds, and if it false B holds.

» Problem: We can’t get in general a proof of
AV —A

unless we can decide whether A or —A holds

Anton Setzer Mini Course on Martin-L6f Type Theory 26/ 136
Key Philosophical Principles of Martin-L6f Type Theory

BHK-Interpretation of Logical Connectives

The Brouwer-Heyting-Kolmogorov (BHK) Interpretation of the logical
connectives is the constructive interpretation of the logical operators.

» A proof of
AANB
is given by a
proof of A and a proof of B
» A proof of
AV B
is given by

a proof of A or a proof of B

plus the information which of the two holds.

Anton Setzer Mini Course on Martin-L6f Type Theory 28/ 136

Key Philosophical Principles of Martin-L6f Type Theory

BHK-Interpretation of Logical Connectives

» A proof of
A— B

is a function (program) which
computes from a proof of A a proof of B

» A proof of
Vx @ A.B(x)

is a function (program) which
for every a: A computes a proof of B(a)

» A proof of
Ix : A.B(x)

consists of
an a: A plus a proof of B(a)

Anton Setzer Mini Course on Martin-L6f Type Theory

Key Philosophical Principles of Martin-L6f Type Theory

Intuitionistic Logic

» We don't obtain stability
-—A = A

» So we cannot carry out indirect proofs:
Then derive a contradiction

So —A is false (i.e. we have =—A.
By stability we get A.

vV vy VvYyy

» Stability is not provable in general constructively:

An indirect proof is as follows: itmm In order to proof A assume —A

Key Philosophical Principles of Martin-L6f Type Theory

BHK-Interpretation of Logical Connectives

» There is no proof of falsity written as

L
» We define
“A=A—> L
so a proof of
—A

is a function which

converts a proof of A into a (non-existent) proof of L

29/ 136 Anton Setzer
Key Philosophical Principles of Martin-L6f Type Theory

Mini Course on Martin-Lof Type Theory

Double Negation Interpretation

» However one can interpret formulas from classical logic into
intuitionistic logic so that a formula is classically provable iff its
translation is intuitioniscally provable.

» Double negation interpretation (not part of this course).

» If we have =——A we have a method which from a proof of =A computes

a proof of L.

» This does not give as a method to compute a proof of A.

Anton Setzer Mini Course on Martin-Lof Type Theory

31/ 136 Anton Setzer Mini Course on Martin-L6f Type Theory

30/ 136

32/ 136

Key Philosophical Principles of Martin-L6f Type Theory

Double Negation Interpretation

» Easy to see with V:
Intuitionistically we have

—(=(AV B)) <> =2(-AAN-B)

If we replace
AV B
by _
AV™ B := =(-AA -B)
then '
A \/lnt B
behaves intuitionistically (with double negated formulas) like classical
V.

» Especially tertium non datur is provable
AV S A = o (2A A =-A)

Anton Setzer Mini Course on Martin-L6f Type Theory 33/ 136
Setup of Martin-L6f Type Theory

Setup of Martin-Lof Type Theory

Anton Setzer Mini Course on Martin-L6f Type Theory 35/ 136

Key Philosophical Principles of Martin-L6f Type Theory

Conclusion (Key Philosophical Principles of MLTT)

» This concludes the introduction into the philosophical principles of
Martin-Lof Type Theory.

» We will in the next section go through the setup of Martin-Lof Type
Theory with the terminology by Martin-Lof.

Anton Setzer Mini Course on Martin-L6f Type Theory 34/ 136
Setup of Martin-Lof Type Theory

Judgements of Type Theory

» The statements of type theory are called “judgements”.
» There are four judgements of type theory:

» Ais a type written as
A : Set

» A and B are equal types written as
A= B: Set
> ais an element of type A written as
a:A
» a, b are equal elements of type A written as

a=b:A

Anton Setzer Mini Course on Martin-L6f Type Theory 36/ 136

» The notion of reduction
s—t

corresponds to computation rules where term s evaluates to t.

» In type theory one uses instead
» The notion

s=t s—>t
which is the reflexive/symmetric/transitive closure of — or doesn’t occur in the formal theory of Martin-Lof Type Theory, but
equivalence relation containing —. only when implementing it.
» In most rules when concluding
s=t:A

it is actually the case that we have a reduction

s—t

» We have as well dependent judgements, for instance for expressing

» In general a dependent judgement has the form

if x: N then suc x: N

X1 Ay xe s Ao(xa), ooy Xn D An(xa, o Xne1) = 0(xa, - Xn)
which we write where, if write X for xq,..., X,
x:N=sucx:N
» Examples: 0(x)
x:N,y:N = x+y:N is one of the four judgements before
i Eist)S(;tzzri :S):et N B(X):Set or B(X)=B'(X):Set or

4l

b(R): B(X) or b(X)=b(%):B()

Sorted [] = True : Set

Setup of Martin-Lof Type Theory

Judgements in Agda

» In the theorem prover Agda we can define functions and objects by
writing
n:N

n = 7zero

f:N—= N
f zero = suc zero
f (suc m) = suc (suc(f m))

» = above is a reduction rule.

» We can type in a term e.g.
fn

and compute its normal form which is in this case
Suc zero

Mini Course on Martin-L6f Type Theory 41/ 136
Setup of Martin-L6f Type Theory

Anton Setzer

Four Kinds of Rules for each Type

For each type A there are 4 kinds of rules:

» Formation rules:

They form a new type e.g.
N : Set

» Introduction Rules:
They introduce elements of a type, e.g.

n: N

zero : N —_—
suc n: N

Anton Setzer Mini Course on Martin-L6f Type Theory 43/ 136

Setup of Martin-Lof Type Theory

Judgements in Agda

» We can check whether t : A by type checking

a:A
a=t

» However we can check t = s : A only indirectly via its consequences.

» The judgement s =t : A is built-in as part of the machinery of Agda.

Mini Course on Martin-L6f Type Theory 42/ 136
Setup of Martin-Lof Type Theory

Anton Setzer

Four Kinds of Rules for each Type

» Elimination Rules:
They allow to construct from an element of one type elements of
another type.
For instance iteration for N would correspond to the rule

B : Set b:B g:B—B n:N
hn:B
where
h:=iterBbg
Anton Setzer Mini Course on Martin-Lof Type Theory 44/ 136

Setup of Martin-Lof Type Theory

Four Kinds of Rules for each Type

» Equality Rules:
They show how if we introduce an element of that type and then
eliminate it how it is computed (we use h as before)

B : Set b:B g:B—B
hzero=b:B
B : Set b:B g:B—+B n:N

h(sucn)=g(hn):B

Anton Setzer Mini Course on Martin-L6f Type Theory

Setup of Martin-L6f Type Theory

Canonical vs Non-Canonical Elements

» The elements introduced by an introduction rule start with a
constructor.
» For instance the constructors of N are

zero and suc

» Elements introduced by an introduction rule are called
canonical elements.
» Canonical elements of N are for instance

Z€ero suc (zero + zero)

where + is defined using elimination rules.
» Elements introduced by an elimination rule are hon-canonical
elements. For instance
Z€ero + Zero

» Using the equality rules, every non canonical element of a type is
supposed to evaluate to a canonical element of that type.

Anton Setzer Mini Course on Martin-Lof Type Theory

45/ 136

47/ 136

Setup of Martin-Lof Type Theory

Equality Versions of the Rules

| 2

>

>

There are as well equality versions of the above rules.

They express that if the premises of a rule are equal the conclusions
are equal as well.

For instance the equality version of the rule
n:N

suc n: N

n=m:N
suc n =suc m: N

Anton Setzer Mini Course on Martin-L6f Type Theory 46/ 136

Setup of Martin-Lof Type Theory

Canonical elements of N

v

v

v

v

A canonical element of N can be evaluated further.

E.g. we have
suc (zero + zero) — suc zero

In case of a function type Ax.t is considered to be canonical.

Note that in
Ax.x:N—=N

x doesn't start with a constructor (doesn't even make sense to ask for
it, because it is an open term).

So here it is crucial that it is only required that a canonical element
starts with a constructor.

Anton Setzer Mini Course on Martin-L6f Type Theory 48/ 136

_
Type Theory and Interactive Theorem Proving

Key Philosophical Principles of Martin-Lof Type Theory

» The type checking of equality is based on this notation of canonical
element or head normal form. Setup of Martin-Lof Type Theory

» In order to check

s=t:N Basic Types in Martin-Lof Type Theory
we first reduce s and t to canonical form.
» If they start with different constructors, s and t are different. The Logical Framework

E.g. if s — zero, t —> suc t’ there is no need to evaluate t’.
» If they have the same constructor, e.g. s — suc s’ t — suc t’ then
we compare s’ and t’.

Inductive Data Types (Algebras) in Type Theory

Coinductive Data Types (Coalgebras) in Type Theory

» One of the Simples types is the type of Booleans.
» Formation rule:
B : Set » Equality rules:
> Introduction rules: _ _ elimg(stepyt, stepg, tt) = stepy : C(tt)
t:B ff:B elimp(stepys, stepg, f) = stepg : C(ff)
» Elimination rule:

x:B = C(x): Set stepy, @ C(tt) stepg : C(ff) b:B

elimg(stepy, stepg, b) : C(b)

_

tt

2 Constructors, both no arguments.

data B : Set where

tt B
Tf : B
-—:B—DB
-ttt =
-f = tt

» Similar versions for types with 0,1,3,4,... elements.

» Special case 0.

v

v

v

v

Formation rule:

Introduction rules:
There is no introduction rule.

Elimination rule:

() : Set

x: 0= C(x):Set e:

Equality rules:
There is no equality rule.

efq(e) : C(e)

Basic Types in Martin-L6f Type Theory

(0 in Agda
data) : Set where
efq: 0 — A
efq ()
- - () stands for the empty case distinction
- - and - - starts a comment
Anton Setzer Mini Course on Martin-L6f Type Theory

Basic Types in Martin-L6f Type Theory

LF and Foundations

» From a foundational point of view the LF is difficult.
» It treats the collection of sets as an entity, at least as if one considers it

naively.

Basic Types in Martin-L6f Type Theory

The Logical Framework (LF)

» When writing elimination rules we need to deal with notions such as
» C(x) is a set depending on x : B.
» instantiate x = tt and get C(tt).

» |dea of the logical framework (LF) is

» Instead of saying
x:B = C(x): Set

we write
C:B — Set

» Then we can apply C to tt and obtain

C tt : Set

» We will introduce the LF more formally later.

57/ 136 Anton Setzer Mini Course on Martin-L6f Type Theory 58/ 136
Basic Types in Martin-L6f Type Theory

Rules for Booleans Using the LF

Formation rule:

v

B : Set

Introduction rules:

v

tt: B T:B

v

Elimination rule:

» The foundations of Martin-Lof Type Theory work best without the LF.
C:B — Set stepyt @ C tt stepg = C ff b:B

» When using it in the basic type theory below it could be avoided. .
elimp C stepy stepg b: C b

» We will use it just as a convenient way of writing the rules nicely.

» Equality rules:
elimp C stepy stepg tt = stepy : C tt
elimp C stepy; stepg ff = stepg : C ff
Anton Setzer Mini Course on Martin-L6f Type Theory 59/ 136 Anton Setzer Mini Course on Martin-L6f Type Theory 60/ 136

» We can even write » Formation rule:

A : Set B : Set

elimp : (C : B — Set) A+ B Sot
— C tt .
S CH » Introduction rules:
— B a:A b:B
— Set infla: A+ B intrb: A+ B

» Elimination rule:

C:A+ B — Set
stepm : (x 1 A) = C (inl x)
stepinr : (x : B) — C(inr x)

c:A+B \
elim; C stepiy stepiny ¢ : C ¢ /nl inr

» Equality rules: @

elim; C stepi, stepin, (inl @) = stepyy a: C (inl a)

elim; C stepy, stepi, (inr b) = stepiy: b: C (inr b) » Both inl and inr have one non-inductive argument.

data _V_ (A B : Set) : Set where
inl : A—-AVB
inr : B—-AVB

» A proof of AV B is a proof of A or a proof of B. - - _V_denotes infix operator
» So AV Bis just A+ B. - - We postulate (i.e. assume) some sets

postulate A : Set
postulate B : Set

lemma: AVB —+ BVA
lemma (inl a) = inra
lemma (inr b) = inl b

» Elimination rule:

» Formation rule: C:X AB — Set
A:Set B:A—sSet step:(a:A,b:Ba)— C(pab)
Y A B : Set c:XAB

» Introduction rule: elimy Cstepc: Cc
a:A b:Ba . E litv rule:
pab:XAB quality rule:

elimy C step (pab)=stepab: C(pab)

» With the LF, a formula depending on x : Ais a

B: A— Set

pab » A proof of 3x : A.B x is
»ana:A
@ a | » together witha b: B a
b » That's just an element of
7 >AB

» p has two non-inductive arguments.

» The type of the 2nd argument depends on the 1st argument.

data X (A: Set) (B : A— Set) : Set where » Formation rule:
p:(a:A)—-Ba—-XAB N : Set

» Introduction rules:

postulate A : Set
postulate B : A — Set Sn:N

» Elimination rule:

m:XxAB— A
mo(pab)=a C:N — Set

stepgero : C zero steps : (n:N,C n) — C (S n) n:N
m:(x: X AB)— B (m x) elimy C step,ero Steps n: C n
7r1(pab):b

zero

. —_—
» Equality rules:
elimy C step,ero Steps zero = step,ero : C zero
elimy C step,ero Steps (S n)
= steps n (elimy C step,ero Steps n) @ C (S n) g

» zero has no arguments.
» S has one inductive argument.

b z=sup a” b’ B a" empty,
therefore leaf

7/ z:Ba » Formation rule:

A : Set B: A — Set
W A B : Set

» Introduction rule:

a:A b:Ba—WAB
sup a b supab: WAB

Assume A : Set, B : A — Set.
W A B is the type of well-founded recursive trees with branching degrees

(B a)a;A.

» Elimination rule:

C:WAB — Set
step: (a: A)
—(b:Ba— W AB)
— (ih: (x: B a) = C (bx))
— C (sup a b)
c:WAB
elimy C stepc: Cc

» Equality rule:

elimy C step (sup a b)

sup has two arguments
= step a b (Ax.elimy C step (b x)) : C (sup a b)

» First argument is non-inductive.

» Here Ax.t is the function mapping x to t. » Second argument is inductive, indexed over B a.
(More details follow below when dealing with the function set). » (B a) depends on the first argument a.

Formation rules:

v

U : Set T:U — Set

» A universe is a family of sets
» Given by

» an set U: Set of codes for sets, N:U TN=N
» a decoding function T : U — Set.

v

Introduction and Equality rules:

a:u b:Ta—U
Sab:U
T(S ab) =X (T a) (Tob)

Similarly for other type formers (except for U).

» Elimination rule for U can be defined.

» Not very useful (e.g. one cannot define an embedding of U into itself
using elimination rules).

T (T a) (T o b)

Type Theory and Interactive Theorem Proving

» Elements of U are defined inductively, while defining (T a) for a: U Key Philosophical Principles of Martin-Lof Type Theory
recursively.
» 3 has two inductive arguments Setup of Martin-Lof Type Theory
» Second argument is indexed over (T a).
> Index set (T a) for second argument depends on the T applied to first Basic Types in Martin-Lof Type Theory
argument a.
> T(% a b) is defined from The Logical Framework
> (Ta),

T (b x:T a)- 1 |
> (T (bx))eer o) Inductive Data Types (Algebras) in Type Theory

» Principles for defining a universe can be generalised to higher type
universes, where (T a) can be an element of any type, e.g.
Set — Set.

Coinductive Data Types (Coalgebras) in Type Theory

The Logical Framework

The Dependent Function Set

» The dependent function set is the unproblematic part of the LF.

» The dependent function set is similar to the non-dependent function
set (e.g. A — B), except that we allow that the second set to depend
on an element of the first set.

» Notation: (x : A) — B, for the set of functions f which map an
element a: A to an element of B[x := a|.

» In set-theoretic notation this is:

{f | f function
Adom(f) = A
AVa € A.f(a) € B[x := a]}

Anton Setzer Mini Course on Martin-L6f Type Theory 85/ 136
The Logical Framework

Rules of the Dependent Function Set

Elimination Rule
f:(x:A)—B a:A
fa:B[x:=a

(— -El)

Equality Rule

x:A=b:B a:A
(Ax : A.b) a = b[x := a] : B[x := 4]

(= -Eq)

Anton Setzer Mini Course on Martin-L6f Type Theory 87/ 136

The Logical Framework

Rules of the Dependent Funct. Set

Formation Rule

A : Set x: A= B:Set (= -F)
(x : A) = B : Set

Introduction Rule
x:A=b:B

(—=-D)
(Ax:Ab): (x:A)— B
Anton Setzer Mini Course on Martin-L6f Type Theory 86/ 136
The Logical Framework
The n-Rule
The n-rule has a special status:
n-Rule
f:(x:A)—=B
(= -n)

f=(M:Afx):(x:A)—B

» The n-rule expresses that every element of (x : A) — B is of the form
Ax : A.something.

» The n-rule cannot be derived, if the element in question is a variable.

Anton Setzer Mini Course on Martin-L6f Type Theory 88/ 136

» The dependent function set is built into Agda with notation
(x:A)—B

» Elements of (x : A) — B are introduced by using
» either \-abstraction, i.e. we can define » Elimination is application using the same notation as before.

p (x:A) > B » Eg.,iff:(x:A)— Banda:A, thenfa:B[x:=al.

f = Mx—b

> Requires that b : B depending on x : A.
> Note that the type B of b depends on x : A.

» or by writing

f: (x:A—B
fx = b

lemma: A — A
lemma a = a

» A proof of A — B is a function which takes a proof of A and returns
a proof of B.

» So implication is nothing but the function type. lemma2: (A— B) > (B— C) = A— C
lemma2 f g a= g (f a)

» Vx : A.Bis true iff, for all x : A there exists a proof of B (with that
x).

» Therefore a proof of Vx : A.B is a function, which takes an x:A
and computes an element of B.

» Therefore the set of proofs of Vx : A.B is the set of functions,
mapping an element x : A to an element of B.

» This set is just the dependent function set (x : A) — B.
» Therefore we can identify Vx : A.B with (x : A) — B.

» We define equality on N.

» First we introduce the true and false formulas:

- - 1 is defined as 0
data L : Set where

- - T has one proof, namely the trivial proof triv
data T : Set where

triv: T
==:N—=> N — Set
zero == gzero = |
zero == Sm = 1
Sn == zero = L
Sn == Sm = n==m

> Vx: A.B is represented by (x : A) — B in Agda.
» Remember that Vx : A.B is another notation for Vx : A.B.

refl: (n:N) - n==n
refl zero = triv
refl (Sn) = refln

The Logical Framework

The Full Logical Framework

» Above we were already using types such as
C:B — Set
» This doesn’t type check yet, since we would need
B — Set : Set
and our rules allow this only if we had

Set : Set

Anton Setzer Mini Course on Martin-L6f Type Theory

The Logical Framework

Jean-Yves Girard

Anton Setzer Mini Course on Martin-Lof Type Theory

The Logical Framework

Set

» Adding
Set : Set

as a rule results however in an inconsistent theory:

» using this rule we can prove everything, especially false formulas.
The corresponding paradox is called Girard’s paradox.

97/ 136 Anton Setzer Mini Course on Martin-L6f Type Theory 98/ 136

The Logical Framework

Set (Cont.)

» Instead we introduce a hew level on top of Set called Type.
» So besides judgements A : Set we have as well judgements of the form

A Type
» One rule will especially express
Set : Type

» Elements of Type are types, elements of Set are small types.

99/ 136 Anton Setzer Mini Course on Martin-L6f Type Theory 100/ 136

Type

» We add rules asserting that if A: Set then A: Type.

» Further we add rules asserting that Type is closed under the elements
of Set and the function type

» Since Set : Type we get therefore (by closure under the function type)

B — Set : Type
Set

Formation Rule for Set

» Further we add rules stating that Type is closed under the dependent

Set : Type (SetIsType) function type:
. Closure of Type under the dependent function type
Every Set is a Type yp p yp
_ A: Type x: A= B:Type Tvpe
A : Set (Set2Type) (= -F7Pe)

A: Type (x: A) — B: Type

Inductive Data Types (Algebras) in Type Theory

Inductive Data Types (Algebras) in Type Theory

Anton Setzer Mini Course on Martin-L6f Type Theory 105/ 136
Inductive Data Types (Algebras) in Type Theory

Meaning of “data”

» The idea is that A as before is the least set A s.t. we have

constructors:

Ci: (a1 : Air)
_> PR
— (a,-,,l. : Aini)
— A

where a constructor always constructs new elements.

» In other words the elements of A are exactly those constructed by
those constructors.

Anton Setzer Mini Course on Martin-L6f Type Theory 107/ 136

Inductive Data Types (Algebras) in Type Theory

Algebraic Types

» The construct data in Agda is much more powerful than what is
covered by type theoretic rules.

» In general we can define now sets having arbitrarily many constructors
with arbitrarily many arguments of arbitrary types.

data A : Set where
Ci:(a1: A7) = (a2 AY) = -+ (an 1 AL) = A
Cr :(a1:A}) = (a2:A3) = -+ (an, t AZ) = A

Cmi(ar:A")—= (a2 : AR)— - (an, AR)= A

Anton Setzer Mini Course on Martin-L6f Type Theory 106/ 136

Inductive Data Types (Algebras) in Type Theory

Strictly Positive Algebraic Types

> In the types Aj; we can make use of A.
» However, it is difficult to understand A, if we have negative
occurrences of A.
» Example:
data A : Set where
C:(A—-A)—A

» What is the least set A having a constructor

C:(A—A)— A ?

Anton Setzer Mini Course on Martin-L6f Type Theory 108/ 136

Inductive Data Types (Algebras) in Type Theory

Strictly Positive Algebraic Types

> If we
» have constructed some elements of A already,
» find a function f : A — A, and
» add Cf to A,
then f might no longer be a function A — A.
(f applied to the new element C f might not be defined).
» In fact, the termination checker issues a warning, if we define A as
above.
» We shouldn’'t make use of such definitions.

Anton Setzer Mini Course on Martin-L6f Type Theory 109/ 136

Inductive Data Types (Algebras) in Type Theory

Strictly Positive Algebraic Types

» If we add a:: / to NList, the reason for adding it (namely / : NList) is

not destroyed by this addition.
» So we can “construct” the set NList by

> starting with the empty set,
» adding [] and
> closing it under _::_ whenever possible.

» Because we can “construct” NList, the above is an acceptable
definition.

Anton Setzer Mini Course on Martin-Lof Type Theory 111/ 136

Inductive Data Types (Algebras) in Type Theory

Strictly Positive Algebraic Types

» A “good” definition is the set of lists of natural numbers, defined as

follows:
data NList : Set where
[] : NList
N — NList — NList

» The constructor _::_ of NList refers to NList, but in a positive way:
We have: if a: N and /: NList, then

(a::/): NList .

Anton Setzer Mini Course on Martin-L6f Type Theory 110/ 136
Inductive Data Types (Algebras) in Type Theory

Strictly Positive Algebraic Types

» In general:

data A : Set where
Ci:(a:A]) > (a2:A)) = - (an AL) = A
Cy :(al:A%)%(QQZA%)—)...(a’u:AIQIQ) A

Cmi(ar:AT")—= (a2 : AY)— - (an, AR)= A

is a strictly positive algebraic type, if all Aj; are
» either types which don't make use of A
> or are A itself.

» And if A is a strictly positive algebraic type, then A is acceptable.

Anton Setzer Mini Course on Martin-Lof Type Theory 112/ 136

Inductive Data Types (Algebras) in Type Theory

Strictly Positive Algebraic Types

» The definitions of finite sets, ¥ A B, A+ B and N were strictly
positive algebraic types.

Anton Setzer Mini Course on Martin-L6f Type Theory
Inductive Data Types (Algebras) in Type Theory

Extensions of Strictly Positive Algebraic Types

» An often used extension is to define several sets simultaneously
inductively.

» Example: the even and odd numbers:

mutual
data Even : Set where
Z : Even
S : Odd — Even

data Odd : Set where
S’ : Even — Odd

» In such examples the constructors refer strictly positive to all sets
which are to be defined simultaneously.

Anton Setzer Mini Course on Martin-Lof Type Theory

Inductive Data Types (Algebras) in Type Theory

One further Example

» The set of binary trees can be defined as follows:

data BinTree : Set where
leaf : BinTree
branch : Bintree — Bintree — Bintree

» This is a strictly positive algebraic type.

Anton Setzer Mini Course on Martin-L6f Type Theory 114/ 136
Inductive Data Types (Algebras) in Type Theory

Extensions of Strictly Positive Algebraic Types

We can even allow Ajj =By =+ Aoreven Ajj =B; = --- = B = A,
where A is one of the types introduced simultaneously.

Example (called "Kleene's O"):

data O : Set where
leaf : O
succ : O—=0
lim : (N—-0)—O0

The last definition is unproblematic, since, if we have f : N — O and
construct lim f out of it, adding this new element to O doesn’t
destroy the reason for adding it to O.

So again O can be “constructed”.

Anton Setzer Mini Course on Martin-Lof Type Theory 116/ 136

» For instance

» Functions f from strictly positive algebraic types can now be defined > in the Bintree example, when defining

by case distinction as before. f : Bintree — A

» For termination we need only that in the definition of f, when have to S o
define f (C a1 -+ ap), we can refer only to f applied to elements by case-distinction, then the definition of
used in C a1 --- a,.

f (branch / r)

can make use of f [and f r.

Type Theory and Interactive Theorem Proving
Key Philosophical Principles of Martin-Lof Type Theory

> In the example of O, when defining Setup of Martin-L6f Type Theory
g:0—A _ . o
Basic Types in Martin-Lof Type Theory
by case-distinction, then the definition of

¢ (lim) The Logical Framework

can make use of g (f n) for all n : IV Inductive Data Types (Algebras) in Type Theory

Coinductive Data Types (Coalgebras) in Type Theory

Coinductive Data Types (Coalgebras) in Type Theory

Codata Type

» |dea of Codata Types non-well-founded versions of inductive data

types:
codata Stream : Set where

cons : N — Stream — Stream

» Same definition as inductive data type but we are allowed to have
infinite chains of constructors

cons ng (cons ny (cons ny ---))

» Problem 1: Non-normalisation.

» Problem 2: Equality between streams is equality between all n;, and
therefore undecidable.

» Problem 3: Underlying assumption is

Vs : Stream.3n,s’.s = cons n s’

which results in undecidable equality.

Anton Setzer Mini Course on Martin-L6f Type Theory 121/ 136
Coinductive Data Types (Coalgebras) in Type Theory

Coalgebraic Formulation of Coalgebras

» Solution is to follow the long established categorical formulation of
coalgebras.

» Final coalgebras will be replaced by weakly final coalgebras.

» Two streams will be equal if the programs producing them reduce to
the same normal form.

Anton Setzer Mini Course on Martin-Lof Type Theory 123/ 136

Coinductive Data Types (Coalgebras) in Type Theory

Subject Reduction Problem

» In order to repair problem of normalisation restrictions on reductions
were introduced.
» Resulted in Coq in a long known problem of subject reduction.

» In order to avoid this, in Agda dependent elimination for coalgebras
disallowed.
» Makes it difficult to use.

Anton Setzer Mini Course on Martin-L6f Type Theory 122/ 136
Coinductive Data Types (Coalgebras) in Type Theory

Algebras and Coalgebras

» Algebraic data types correspond to initial algebras.
» N as an algebra can be represented as introduction rules for N:

zero : N
S : N— N

» Coalgebra obtained by “reversing the arrows”.
» Stream as a coalgebra can be expressed as as elimination rules for it:

head : Stream — N
tail : Stream — Stream
Anton Setzer Mini Course on Martin-Lof Type Theory 124/ 136

Coinductive Data Types (Coalgebras) in Type Theory Coinductive Data Types (Coalgebras) in Type Theory

Weakly Initial Algebras and Final Coalgebras Example

» N as a weakly initial algebra corresponds to iteration
(elimination rule): For A: Set, a: A, f : A — A there exists

g:N—-A

gzero = a » Using coiteration we can define

g(Sn) = f(gn)

inc : N — Stream
(or g n=1"a). head (incn) = n
» Stream as a weakly final coalgebra corresponds to coiteration or tail (incn) = inc(n+1)

guarded iteration (introduction rule):
For A:Set, fo: A— N, f; : A— A there exists g s.t.

g : A — Stream

head (ga) = fya
tail (g a) = g(fha)
Anton Setzer Mini Course on Martin-L6f Type Theory 125/ 136 Anton Setzer Mini Course on Martin-L6f Type Theory 126/ 136

Coinductive Data Types (Coalgebras) in Type Theory Coinductive Data Types (Coalgebras) in Type Theory

Recursion and Corecursion Recursion vs lteration
> N as an initial algebra corresponds to uniqueness of g above. » Using recursion we can define inverse case of the constructors of N as
» Allows to derive primitive recursion: follows:
For A:Set, a: A, f: (N x A) — A there exists case : N = (14 N)
case zero = inl
g:N—=A case (Sn) = inrn
gzero = a
g(Sn) = f{n(gn) » Using iteration, we cannot make use of n and therefore case is defined
inefficiently:
» Stream as a final coalgebra corresponds to uniqueness of h.
» Allows to derive primitive corecursion: case : N — (1+N) ‘
For A: Set, fo : A— N, fi : A— (Stream + A) there exists case zero = inl
case (S n) = caseaux (case n)
g : A — Stream
head (ga) = fra (1+N 1+N
tail (ga) = s if fa=inls caseaux:(*)—>(+N)
tail (g2) = ga iffa=inrd caseaux inl = inr zero
caseaux (inr n) = inr (S n)

Anton Setzer Mini Course on Martin-L6f Type Theory 127/ 136 Anton Setzer Mini Course on Martin-L6f Type Theory 128/ 136

Coinductive Data Types (Coalgebras) in Type Theory

Definition of pred

» One way of defining pred by iteration is by defining first case and
then to define
predaux : (1+N) - N

predaux inl = zero
predaux (inr n) = n
pred : N — N

pred n = predaux (case n)

Anton Setzer Mini Course on Martin-L6f Type Theory 129/ 136
Coinductive Data Types (Coalgebras) in Type Theory

Induction - Coinduction?

» Induction is dependent primitive recursion:
For A: N — Set, a: Azero, f: (n:N) — An— A (S n) there exists

g:(n:N)—=An
gzero = a
g(Sn) = fnlgn)

» Equivalent to uniqueness of arrows with respect to propositional
equality and interpreting equality on arrows extensionally.

» Uniqueness of arrows in final coalgebras expresses that equality is
bisimulation equality.
» How to dualise dependent primitive recursion?

Anton Setzer Mini Course on Martin-Lof Type Theory 131/ 136

Coinductive Data Types (Coalgebras) in Type Theory

Corecursion vs Coiteration

» Definition of cons (inverse of the destructors) using coiteration
inefficient:

cons : N — Stream — Stream
head (consns) = n
tail (cons ns) = cons (head s) (tail s)

» Using primitive corecursion we can define more easily

cons : N — Stream — Stream
head (cons ns) =
tail (consns) = s

Mini Course on Martin-L6f Type Theory 130/ 136
Coinductive Data Types (Coalgebras) in Type Theory

Anton Setzer

Weakly Final Coalgebra

» Equality for final coalgebras is undecidable:
Two streams
s = (a0 , a1, a2 ,
t = (bO) bl) b2 ’
are equal iff a; = b; for all /.

» Even the weak assumption
Vs.3n,s’.s =cons ns’

results in an undecidable equality.
» Weakly final coalgebras obtained by omitting uniqueness of g in
diagram for coalgebras.

» However, one can extend schema of coiteration as above, and still
preserve decidability of equality.
» Those schemata are usually not derivable in weakly final coalgebras.

Anton Setzer Mini Course on Martin-Lof Type Theory 132/ 136

Coinductive Data Types (Coalgebras) in Type Theory

Definition of Coalgebras by Observations

» We see now that elements of coalgebras are defined by their
observations:

An element s of Stream is anything for which we can define

head s : N
tail s : Stream

» This generalises the function type.
Functions are as well determined by observations.

» An f : A— B is any program which if applied to a : A returns some
b:B.

» Inductive data types are defined by construction
coalgebraic data types and functions by observations.

Anton Setzer Mini Course on Martin-L6f Type Theory 133/ 136
Coinductive Data Types (Coalgebras) in Type Theory

Patterns and Copatterns

» We can define now functions by patterns and copatterns.

» Example define stream:
fn=
nnn—1,n—1,...0,0, NN N-1,N—1,...0,0,N,N,N—1, N—1,

Anton Setzer Mini Course on Martin-L6f Type Theory 135/ 136

Coinductive Data Types (Coalgebras) in Type Theory

Relationship to Objects in Object-Oriented Programming

» Objects in Object-Oriented Programming are types which are defined
by their observations.

» Therefore objects are coalgebraic types by nature.

Anton Setzer Mini Course on Martin-L6f Type Theory 134/ 136
Coinductive Data Types (Coalgebras) in Type Theory

Patterns and Copatterns

fn=nnn-1,n-1,...00N, N N-1,N-1,...0,0,N,.N,N—1,N—1,

f : N — Stream
f =7
f : N — Stream
f = 7

Copattern matching on f : N — Stream:

f : N — Stream
fn =7

f : N — Stream
fn = 7

Copattern matching on f n: Stream:

f : N — Stream
head (f n) = 7

1 .1 [r \)
Anton Setzer Mini Course on Martin-L6f Type Theory 136/ 136

	Type Theory and Interactive Theorem Proving
	Key Philosophical Principles of Martin-Löf Type Theory
	Setup of Martin-Löf Type Theory
	Basic Types in Martin-Löf Type Theory
	The Logical Framework
	Inductive Data Types (Algebras) in Type Theory
	Coinductive Data Types (Coalgebras) in Type Theory

