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Basic Types in Martin-Löf Type Theory
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Type Theory and Interactive Theorem Proving

Computer-Assisted Theorem Proving

I A lot of research has been invested in Computer-assisted
Theorem Proving.

I Motivation
I Guarantee that proofs are correct.

I Especially a problem in software verification (lots of boring cases).
I Can be essential in critical software.

I Help of machine in constructing proofs (proof search).
I Ideally the mathematician can concentrate on the key ideas and

the machine deals with the details.
I Ideally one could have a machine assisted proof in demonstrating

that the proof is correct and then concentrate
in the presentation on the key ideas.

I Desire to have systems as powerful as computer algebra systems
such as Maple and MATLAB.
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Type Theory and Interactive Theorem Proving

Interactive vs Automated Theorem Proving

I Automated Theorem Proving: User provides the problem, machine
finds the proof.

I Works only for restricted theories, which often need to be
finitizable.

I Interactive Theorem Proving: Proof is carried out by the user.
I In reality hybrid approaches:

I In Automated Theorem Proving hints in the form of intermediate
lemmata are given by the user before starting the automated proof
search.

I In Interactive Theorem Proving proof tactics and automated
theorem proving tools are used to prove the elementary steps.

I Warning: Theorem Proving still hard work.
I It’s like relationship between the idea of a program and

writing the program.
I The machine doesn’t allow any gaps.
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Type Theory and Interactive Theorem Proving

Types in Programming

I Simple Types are used in programming to
I help obtaining correct programs,
I help writing programs.

I For instance assume you have given a, f and
want to construct a solution for p below.We solve the goal
using f (functional application written f x)We have
a new goal of type IntWe solve the goal using a

a : Int
a = · · ·

f : Int→ String
f = · · ·

p : String
p = {! !}f {! !}f {! !}f a
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Type Theory and Interactive Theorem Proving

Dependent Types

I Formulas are considered as types, and elements of those proofs are
proofs of that formula.

I Formulas with free variables are dependent types:

I The formula x == 0 depends on x : N.
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Type Theory and Interactive Theorem Proving

Formulas give rise to new Type Constructs

I A proof of
∀x : A.B(x)

is a function which computes from

a : A

a proof of
B(a)

I So a proof is an element of the dependent function type

(x : A)→ B(x)

the set of functions mapping a : A to an element of B(a).
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Type Theory and Interactive Theorem Proving

Dependent Types in Other Settings

I Dependent types occur as well naturally in mathematics:

I The type of Mat(n,m) of n ×m matrices depends on n,m.

I Matrix multiplication has type

matmult : (n,m, k : N)→ Mat(n,m)→ Mat(m, k)→ Mat(n, k)

I In simply typed languages we can only have

matmult : Mat→ Mat→ Mat
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Type Theory and Interactive Theorem Proving

Dependent Types in Generic Programming

I In general dependent types allow to define more generic or
generative programs.

I Example: Marks of a lecture course:
A lecture course may have different components
(exams, coursework).

I On next slide Set is the collection of small types (notation for historic
reasons used).
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Type Theory and Interactive Theorem Proving

Dependent Types in Generative Programming

numberOfComponents : Lecture→ N
numberOfComponents l = · · ·

Marks : (l : Lecture)→ Set

Marks l = MarknumberOfComponents l

Weighting : (l : Lecture)→ Set

Weighting l = PercentagenumberOfComponents l

finalMark : (l : Lecture)→ Marks l →Weighting l → Mark
finalMark l m w = · · ·
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Type Theory and Interactive Theorem Proving

Generative Programming

I You can add that the weightings add up to 100%.

I In general you can describe complex data structures using dependent
types.
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Type Theory and Interactive Theorem Proving

Interactive Theorem Provers based on Dependent Types

I Agda (based on Martin-Löf Type theory).
I Coq (based on calculus of constructions, impredicative).

I Formalisation of four colour problem.
I Microsoft has invested in it (but development happening at INRIA,

France).
I Project of proving Kepler conjecture in it.
I Inspired Voevodsky to develop Homotopy Type Theory.

I Epigram (based on Martin-Löf Type theory, intended as a
programming language).

I Idris (relatively new language).

I Cayenne (programming language, no longer supported).

I LEGO (theorem prover from Edinburgh, no longer supported).

I Many more.
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Key Philosophical Principles of Martin-Löf Type Theory

Per Martin-Löf (Stockholm)
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Key Philosophical Principles of Martin-Löf Type Theory

Martin-Löf Type Theory

I Martin-Löf Type Theory developed to provide a new foundation of
mathematics.

I Idea to develop a theory where we have direct insight into its
consistency.

I By Gödel’s 2nd Incompleteness theorem we know we cannot
prove the consistency of any reasonable mathematical theory.

I However, we want mathematics to be meaningful.
I We don’t want to have a proof of Fermat’s last theorem and a counter

example.

I Mathematics is meaningful, because we have an intuition about
why it is correct.
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Key Philosophical Principles of Martin-Löf Type Theory

Example: Induction

I For instance that if we have proofs of

A(0)
∀n : N.A(n)→ A(n + 1)

we can convince ourselves that ∀n : N.A(n) holds.
I Because for every n : N we can construct a proof of A(n) by using

the base case and n times the induction step.

I Martin-Löf Type Theory is an attempt to formalise the reasons
why we believe in the consistency of mathematical
constructions.
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Key Philosophical Principles of Martin-Löf Type Theory

Objects of Type Theory

I We have a direct good understanding of finite objects.

I Finite objects can always be encoded into natural numbers, and
individual natural numbers are easy to understand.

I In general finite objects can be represented as terms.
Examples of terms:

zero
suc zero
suc zero + suc zero
[] (empty list)
cons zero [] (result of adding in front of the empty list zero)
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Key Philosophical Principles of Martin-Löf Type Theory

Objects of Type Theory

I Some terms are in normal form, e.g. suc (suc (suc zero))

I Other terms have reductions, e.g.
zero + suc zero −→ suc (zero + zero) −→ suc zero.

I Martin-Löf uses program for terms as above, which evaluate
according to the reduction rules.
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Key Philosophical Principles of Martin-Löf Type Theory

Beyond Finitism

I We can form a mathematical theory where we have
finitely many finite objects, and convince ourselves of its
consistency.

I The resulting theory is not very expressive however.

I In order to talk about something which of infinite nature, we
introduce the concept of a type.
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Key Philosophical Principles of Martin-Löf Type Theory

Types

I A type A is given by a collection of rules which allow us to conclude
I that certain objects are elements of that type

a : A

I and how to form from an element a : A an element of another
type B

I We don’t consider a type as a set of elements (although when
working with one often thinks like that).
That would mean that we have an infinite object per se.

Anton Setzer Mini Course on Martin-Löf Type Theory 21/ 136

Key Philosophical Principles of Martin-Löf Type Theory

Example: Natural Numbers

I For instance we have

zero : N
if n : N then suc n : N

I This is written as rules

zero : N n : N
suc n : N

I We can conclude for instance

suc (suc zero) : N
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Key Philosophical Principles of Martin-Löf Type Theory

Example: Natural Numbers

I Furthermore if we have another type B, i.e.

B : Set

and if we have
b : B
g : B → B

we can form
h : N→ B
h zero = b
h (suc n) = g (h n)

I These rules express what we informally describe as iteration

h n = gn b

I We will later introduce stronger elimination rules for natural numbers
(dependent higher type primitive recursion).
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Key Philosophical Principles of Martin-Löf Type Theory

Representation of Infinite Objects by Finite Objects

I This doesn’t mean that we can’t speak of infinite objects.
I We can have for instance a collection of sets (or universe)

U : Set

which contains a code for the set of natural numbers

N̂ : U

I We can consider an operation T, which decodes codes in U into sets,
i.e. we have the rule

u : U
T u : Set

I Then we can add a rule

T N̂ = N : Set

I N̂ is still a finite object, but it represents (via T) a type which has
infinitely many elements.
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Key Philosophical Principles of Martin-Löf Type Theory

Constructive Mathematics

I Before we already said that propositions should be considered as
types.

I Elements of such types should be proofs.

I These proofs will give constructive content of proofs.

I A proof
p : (∃x : A.B(x))

should allow us to compute an

a : A s.t. B(a) is true
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Key Philosophical Principles of Martin-Löf Type Theory

Constructive Mathematics

I Similarly from a proof
p : A ∨ B

we should able to compute a Boolean value, such that if it is true, A
holds, and if it false B holds.

I Problem: We can’t get in general a proof of

A ∨ ¬A

unless we can decide whether A or ¬A holds
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Key Philosophical Principles of Martin-Löf Type Theory

Link between Logic and Computer Programming

I Constructive Mathematics provides a direct link between
proofs/logic and programs/data.

I In type theory there is no distinction between a data type and a
logical formula (radical propositions as types).

I Allows to write programs in which data and logical formulas are
mixed.
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Key Philosophical Principles of Martin-Löf Type Theory

BHK-Interpretation of Logical Connectives

The Brouwer-Heyting-Kolmogorov (BHK) Interpretation of the logical
connectives is the constructive interpretation of the logical operators.

I A proof of
A ∧ B

is given by a
proof of A and a proof of B

I A proof of
A ∨ B

is given by
a proof of A or a proof of B

plus the information which of the two holds.
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Key Philosophical Principles of Martin-Löf Type Theory

BHK-Interpretation of Logical Connectives

I A proof of
A→ B

is a function (program) which

computes from a proof of A a proof of B

I A proof of
∀x : A.B(x)

is a function (program) which

for every a : A computes a proof of B(a)

I A proof of
∃x : A.B(x)

consists of
an a : A plus a proof of B(a)
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Key Philosophical Principles of Martin-Löf Type Theory

BHK-Interpretation of Logical Connectives

I There is no proof of falsity written as

⊥

I We define
¬A := A→ ⊥

so a proof of
¬A

is a function which

converts a proof of A into a (non-existent) proof of ⊥
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Key Philosophical Principles of Martin-Löf Type Theory

Intuitionistic Logic

I We don’t obtain stability
¬¬A→ A

I So we cannot carry out indirect proofs:

I An indirect proof is as follows: itmm In order to proof A assume ¬A
I Then derive a contradiction
I So ¬A is false (i.e. we have ¬¬A.
I By stability we get A.

I Stability is not provable in general constructively:
I If we have ¬¬A we have a method which from a proof of ¬A computes

a proof of ⊥.
I This does not give as a method to compute a proof of A.
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Key Philosophical Principles of Martin-Löf Type Theory

Double Negation Interpretation

I However one can interpret formulas from classical logic into
intuitionistic logic so that a formula is classically provable iff its
translation is intuitioniscally provable.

I Double negation interpretation (not part of this course).
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Key Philosophical Principles of Martin-Löf Type Theory

Double Negation Interpretation

I Easy to see with ∨:
Intuitionistically we have

¬(¬(A ∨ B))↔ ¬(¬A ∧ ¬B)

If we replace
A ∨ B

by
A ∨int B := ¬(¬A ∧ ¬B)

then
A ∨int B

behaves intuitionistically (with double negated formulas) like classical
∨.

I Especially tertium non datur is provable

A ∨int ¬A = ¬(¬A ∧ ¬¬A)
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Key Philosophical Principles of Martin-Löf Type Theory

Conclusion (Key Philosophical Principles of MLTT)

I This concludes the introduction into the philosophical principles of
Martin-Löf Type Theory.

I We will in the next section go through the setup of Martin-Löf Type
Theory with the terminology by Martin-Löf.
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Setup of Martin-Löf Type Theory
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Setup of Martin-Löf Type Theory

Judgements of Type Theory

I The statements of type theory are called “judgements”.
I There are four judgements of type theory:

I A is a type written as
A : Set

I A and B are equal types written as

A = B : Set

I a is an element of type A written as

a : A

I a, b are equal elements of type A written as

a = b : A
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Setup of Martin-Löf Type Theory

s −→ t vs s = t

I The notion of reduction
s −→ t

corresponds to computation rules where term s evaluates to t.

I In type theory one uses instead

s = t

which is the reflexive/symmetric/transitive closure of −→ or
equivalence relation containing −→.

I In most rules when concluding

s = t : A

it is actually the case that we have a reduction

s −→ t
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Setup of Martin-Löf Type Theory

s −→ t vs s = t

I The notion
s −→ t

doesn’t occur in the formal theory of Martin-Löf Type Theory, but
only when implementing it.
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Setup of Martin-Löf Type Theory

Dependent Judgements

I We have as well dependent judgements, for instance for expressing

if x : N then suc x : N

which we write
x : N⇒ suc x : N

I Examples:

x : N, y : N ⇒ x + y : N
x : N ⇒ x + zero = x : N
x : List ⇒ Sorted x : Set

⇒ Sorted [] = True : Set
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Setup of Martin-Löf Type Theory

Examples of Dependent Judgements

I In general a dependent judgement has the form

x1 : A1, x2 : A2(x1), . . . , xn : An(x1, . . . , xn−1)⇒ θ(x1, . . . , xn)

where, if write ~x for x1, . . . , xn

θ(~x)

is one of the four judgements before

B(~x) : Set or B(~x) = B ′(~x) : Set or
b(~x) : B(~x) or b(~x) = b′(~x) : B(~x)
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Setup of Martin-Löf Type Theory

Judgements in Agda

I In the theorem prover Agda we can define functions and objects by
writing

n : N
n = zero

f : N→ N
f zero = suc zero
f (suc m) = suc (suc(f m))

I = above is a reduction rule.

I We can type in a term e.g.
f n

and compute its normal form which is in this case

suc zero

Anton Setzer Mini Course on Martin-Löf Type Theory 41/ 136

Setup of Martin-Löf Type Theory

Judgements in Agda

I We can check whether t : A by type checking

a : A
a = t

I However we can check t = s : A only indirectly via its consequences.

I The judgement s = t : A is built-in as part of the machinery of Agda.
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Setup of Martin-Löf Type Theory

Four Kinds of Rules for each Type

For each type A there are 4 kinds of rules:

I Formation rules:
They form a new type e.g.

N : Set

I Introduction Rules:
They introduce elements of a type, e.g.

zero : N n : N
suc n : N
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Setup of Martin-Löf Type Theory

Four Kinds of Rules for each Type

I Elimination Rules:
They allow to construct from an element of one type elements of
another type.
For instance iteration for N would correspond to the rule

B : Set b : B g : B → B n : N
h n : B

where
h := iter B b g
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Setup of Martin-Löf Type Theory

Four Kinds of Rules for each Type

I Equality Rules:
They show how if we introduce an element of that type and then
eliminate it how it is computed (we use h as before)

B : Set b : B g : B → B

h zero = b : B

B : Set b : B g : B → B n : N
h (suc n) = g (h n) : B
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Setup of Martin-Löf Type Theory

Equality Versions of the Rules

I There are as well equality versions of the above rules.

I They express that if the premises of a rule are equal the conclusions
are equal as well.

I For instance the equality version of the rule

n : N
suc n : N

is
n = m : N

suc n = suc m : N
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Setup of Martin-Löf Type Theory

Canonical vs Non-Canonical Elements

I The elements introduced by an introduction rule start with a
constructor.

I For instance the constructors of N are

zero and suc

I Elements introduced by an introduction rule are called
canonical elements.

I Canonical elements of N are for instance

zero suc (zero + zero)

where + is defined using elimination rules.

I Elements introduced by an elimination rule are non-canonical
elements. For instance

zero + zero

I Using the equality rules, every non canonical element of a type is
supposed to evaluate to a canonical element of that type.
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Setup of Martin-Löf Type Theory

Canonical elements of N

I A canonical element of N can be evaluated further.

I E.g. we have
suc (zero + zero) −→ suc zero

I In case of a function type λx .t is considered to be canonical.

I Note that in
λx .x : N→ N

x doesn’t start with a constructor (doesn’t even make sense to ask for
it, because it is an open term).
So here it is crucial that it is only required that a canonical element
starts with a constructor.
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Setup of Martin-Löf Type Theory

Canonical elements of N

I The type checking of equality is based on this notation of canonical
element or head normal form.

I In order to check
s = t : N

we first reduce s and t to canonical form.
I If they start with different constructors, s and t are different.

E.g. if s −→ zero, t −→ suc t ′ there is no need to evaluate t ′.
I If they have the same constructor, e.g. s −→ suc s ′ t −→ suc t ′ then

we compare s ′ and t ′.

Anton Setzer Mini Course on Martin-Löf Type Theory 49/ 136
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Basic Types in Martin-Löf Type Theory

The Type of Booleans

I One of the Simples types is the type of Booleans.

I Formation rule:
B : Set

I Introduction rules:
tt : B ff : B

I Elimination rule:

x : B⇒ C (x) : Set steptt : C (tt) stepff : C (ff) b : B
elimB(steptt, stepff , b) : C (b)
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Basic Types in Martin-Löf Type Theory

Basic Types: Type of Booleans

I Equality rules:

elimB(steptt, stepff , tt) = steptt : C (tt)

elimB(steptt, stepff ,ff) = stepff : C (ff)
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Basic Types in Martin-Löf Type Theory

Visualisation (Booleans)

B

tt ff

2 Constructors, both no arguments.
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Basic Types in Martin-Löf Type Theory

Booleans in Agda

data B : Set where
tt : B
ff : B

¬ : B→ B
¬ tt = ff
¬ ff = tt
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Basic Types in Martin-Löf Type Theory

Finite Types

I Similar versions for types with 0, 1, 3, 4, . . . elements.

I Special case ∅.
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Basic Types in Martin-Löf Type Theory

Empty Type

I Formation rule:
∅ : Set

I Introduction rules:
There is no introduction rule.

I Elimination rule:

x : ∅ ⇒ C (x) : Set e : ∅
efq(e) : C (e)

I Equality rules:
There is no equality rule.
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Basic Types in Martin-Löf Type Theory

∅ in Agda

data ∅ : Set where

efq : ∅ → A
efq ()

- - () stands for the empty case distinction
- - and - - starts a comment
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Basic Types in Martin-Löf Type Theory

The Logical Framework (LF)

I When writing elimination rules we need to deal with notions such as
I C (x) is a set depending on x : B.
I instantiate x = tt and get C (tt).

I Idea of the logical framework (LF) is
I Instead of saying

x : B⇒ C (x) : Set

we write
C : B→ Set

I Then we can apply C to tt and obtain

C tt : Set

I We will introduce the LF more formally later.
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Basic Types in Martin-Löf Type Theory

LF and Foundations

I From a foundational point of view the LF is difficult.
I It treats the collection of sets as an entity, at least as if one considers it

naively.
I The foundations of Martin-Löf Type Theory work best without the LF.

I When using it in the basic type theory below it could be avoided.

I We will use it just as a convenient way of writing the rules nicely.

Anton Setzer Mini Course on Martin-Löf Type Theory 59/ 136

Basic Types in Martin-Löf Type Theory

Rules for Booleans Using the LF

I Formation rule:
B : Set

I Introduction rules:
tt : B ff : B

I Elimination rule:

C : B→ Set steptt : C tt stepff : C ff b : B
elimB C steptt stepff b : C b

I Equality rules:

elimB C steptt stepff tt = steptt : C tt

elimB C steptt stepff ff = stepff : C ff
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Basic Types in Martin-Löf Type Theory

Rules for Booleans Using the LF

I We can even write
elimB : (C : B→ Set)

→ C tt
→ C ff
→ B
→ Set
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Basic Types in Martin-Löf Type Theory

The Disjoint Union

I Formation rule:
A : Set B : Set

A + B : Set

I Introduction rules:

a : A
inl a : A + B

b : B
inr b : A + B
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Basic Types in Martin-Löf Type Theory

The Disjoint Union

I Elimination rule:

C : A + B → Set

stepinl : (x : A)→ C (inl x)

stepinr : (x : B)→ C (inr x)

c : A + B
elim+ C stepinl stepinr c : C c

I Equality rules:

elim+ C stepinl stepinr (inl a) = stepinl a : C (inl a)

elim+ C stepinl stepinr (inr b) = stepinr b : C (inr b)
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Basic Types in Martin-Löf Type Theory

Visualisation (A + B)

A + B

inl inr

A B

I Both inl and inr have one non-inductive argument.
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Basic Types in Martin-Löf Type Theory

+ as ∨

I A proof of A ∨ B is a proof of A or a proof of B.

I So A ∨ B is just A + B.
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Basic Types in Martin-Löf Type Theory

A ∨ B in Agda

data ∨ (A B : Set) : Set where
inl : A→ A ∨ B
inr : B → A ∨ B

- - ∨ denotes infix operator
- - We postulate (i.e. assume) some sets

postulate A : Set
postulate B : Set

lemma : A ∨ B → B ∨ A
lemma (inl a) = inr a
lemma (inr b) = inl b
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Basic Types in Martin-Löf Type Theory

The Σ-Type

I Formation rule:

A : Set B : A→ Set
Σ A B : Set

I Introduction rule:
a : A b : B a

p a b : Σ A B
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Basic Types in Martin-Löf Type Theory

The Σ-Type

I Elimination rule:

C : Σ A B → Set
step : (a : A, b : B a)→ C (p a b)

c : Σ A B
elimΣ C step c : C c

I Equality rule:

elimΣ C step (p a b) = step a b : C (p a b)
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Basic Types in Martin-Löf Type Theory

Visualisation (Σ(A,B))

A
a

b

Σ A B

p a b

B a

I p has two non-inductive arguments.

I The type of the 2nd argument depends on the 1st argument.
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Basic Types in Martin-Löf Type Theory

∃ as Σ

I With the LF, a formula depending on x : A is a

B : A→ Set

I A proof of ∃x : A.B x is
I an a : A
I together with a b : B a

I That’s just an element of
Σ A B
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Basic Types in Martin-Löf Type Theory

Σ A B in Agda

data Σ (A : Set) (B : A→ Set) : Set where
p : (a : A)→ B a→ Σ A B

postulate A : Set
postulate B : A→ Set

π0 : Σ A B → A
π0 (p a b) = a

π1 : (x : Σ A B)→ B (π0 x)
π1 (p a b) = b
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Basic Types in Martin-Löf Type Theory

Natural numbers

I Formation rule:
N : Set

I Introduction rules:

zero : N n : N
S n : N

I Elimination rule:

stepzero : C zero
C : N→ Set

stepS : (n : N,C n)→ C (S n) n : N
elimN C stepzero stepS n : C n
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Basic Types in Martin-Löf Type Theory

Natural numbers

I Equality rules:

elimN C stepzero stepS zero = stepzero : C zero

elimN C stepzero stepS (S n)
= stepS n (elimN C stepzero stepS n) : C (S n)
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Basic Types in Martin-Löf Type Theory

Visualisation (N)

N

S

zero

I zero has no arguments.

I S has one inductive argument.
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Basic Types in Martin-Löf Type Theory

W-Type

therefore leaf

z ′

y ′

sup a b

y : B a

b y ′ b y = sup a′ b′

z : B a′

b′ z ′
b′ z = sup a′′ b′′ B a′′ empty,

Assume A : Set, B : A→ Set.
W A B is the type of well-founded recursive trees with branching degrees
(B a)a:A.
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Basic Types in Martin-Löf Type Theory

The W-Type

I Formation rule:

A : Set B : A→ Set
W A B : Set

I Introduction rule:

a : A b : B a→W A B
sup a b : W A B
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Basic Types in Martin-Löf Type Theory

The W-Type

I Elimination rule:

C : W A B → Set
step : (a : A)

→ (b : B a→W A B)
→ (ih : (x : B a)→ C (b x))
→ C (sup a b)

c : W A B

elimW C step c : C c

I Equality rule:

elimW C step (sup a b)
= step a b (λx .elimW C step (b x)) : C (sup a b)

I Here λx .t is the function mapping x to t.
(More details follow below when dealing with the function set).

Anton Setzer Mini Course on Martin-Löf Type Theory 77/ 136

Basic Types in Martin-Löf Type Theory

Visualisation (W A B)

a
A

W A B

(b x)x :B a

B a

sup a b

sup has two arguments

I First argument is non-inductive.

I Second argument is inductive, indexed over B a.

I (B a) depends on the first argument a.
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Basic Types in Martin-Löf Type Theory

Universes

I A universe is a family of sets
I Given by

I an set U : Set of codes for sets,
I a decoding function T : U→ Set.
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Basic Types in Martin-Löf Type Theory

Universes

I Formation rules:

U : Set T : U→ Set

I Introduction and Equality rules:

N̂ : U T N̂ = N

a : U b : T a→ U

Σ̂ a b : U

T(Σ̂ a b) = Σ (T a) (T ◦ b)

Similarly for other type formers (except for U).
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Basic Types in Martin-Löf Type Theory

Elimination Rules for U

I Elimination rule for U can be defined.

I Not very useful (e.g. one cannot define an embedding of U into itself
using elimination rules).
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Basic Types in Martin-Löf Type Theory

Visualisation (U)

N̂

a

N

U

T(b x)

T a
T a

Σ̂ a b

Σ (T a) (T ◦ b)

(b x)(x :T a)

Anton Setzer Mini Course on Martin-Löf Type Theory 82/ 136

Basic Types in Martin-Löf Type Theory

Analysis

I Elements of U are defined inductively, while defining (T a) for a : U
recursively.

I Σ̂ has two inductive arguments
I Second argument is indexed over (T a).

I Index set (T a) for second argument depends on the T applied to first
argument a.

I T(Σ̂ a b) is defined from
I (T a),
I (T (b x))(x :T a).

I Principles for defining a universe can be generalised to higher type
universes, where (T a) can be an element of any type, e.g.
Set→ Set.
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The Logical Framework

Type Theory and Interactive Theorem Proving

Key Philosophical Principles of Martin-Löf Type Theory

Setup of Martin-Löf Type Theory

Basic Types in Martin-Löf Type Theory

The Logical Framework

Inductive Data Types (Algebras) in Type Theory

Coinductive Data Types (Coalgebras) in Type Theory
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The Logical Framework

The Dependent Function Set

I The dependent function set is the unproblematic part of the LF.

I The dependent function set is similar to the non-dependent function
set (e.g. A→ B), except that we allow that the second set to depend
on an element of the first set.

I Notation: (x : A)→ B, for the set of functions f which map an
element a : A to an element of B[x := a].

I In set-theoretic notation this is:

{f | f function
∧dom(f ) = A
∧∀a ∈ A.f (a) ∈ B[x := a]}
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The Logical Framework

Rules of the Dependent Funct. Set

Formation Rule

A : Set x : A⇒ B : Set (→ -F)
(x : A)→ B : Set

Introduction Rule

x : A⇒ b : B (→ -I)
(λx : A.b) : (x : A)→ B
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The Logical Framework

Rules of the Dependent Function Set

Elimination Rule

f : (x : A)→ B a : A
(→ -El)

f a : B[x := a]

Equality Rule

x : A⇒ b : B a : A (→ -Eq)
(λx : A.b) a = b[x := a] : B[x := a]
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The Logical Framework

The η-Rule

The η-rule has a special status:

η-Rule
f : (x : A)→ B

(→ -η)
f = (λx : A.f x) : (x : A)→ B

I The η-rule expresses that every element of (x : A)→ B is of the form
λx : A.something.

I The η-rule cannot be derived, if the element in question is a variable.
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The Logical Framework

The Dependent Function Set in Agda

I The dependent function set is built into Agda with notation

(x : A)→ B

I Elements of (x : A)→ B are introduced by using
I either λ-abstraction, i.e. we can define

f : (x : A)→ B
f = λx → b

I Requires that b : B depending on x : A.
I Note that the type B of b depends on x : A.

I or by writing
f : (x : A)→ B
f x = b
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The Logical Framework

The Dependent Function Set in Agda

I Elimination is application using the same notation as before.
I E.g., if f : (x : A)→ B and a : A, then f a : B[x := a].
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The Logical Framework

Implication

I A proof of A→ B is a function which takes a proof of A and returns
a proof of B.

I So implication is nothing but the function type.
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The Logical Framework

Example

lemma : A→ A
lemma a = a

lemma2 : (A→ B)→ (B → C )→ A→ C
lemma2 f g a = g (f a)
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The Logical Framework

Universal Quantification

I ∀x : A.B is true iff, for all x : A there exists a proof of B (with that
x).

I Therefore a proof of ∀x : A.B is a function, which takes an x:A
and computes an element of B.

I Therefore the set of proofs of ∀x : A.B is the set of functions,
mapping an element x : A to an element of B.

I This set is just the dependent function set (x : A)→ B.

I Therefore we can identify ∀x : A.B with (x : A)→ B.
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The Logical Framework

∀ in Agda

I ∀x : A.B is represented by (x : A)→ B in Agda.
I Remember that ∀x : A.B is another notation for ∀x : A.B.
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The Logical Framework

Example: Equality on N

I We define equality on N.

I First we introduce the true and false formulas:

- - ⊥ is defined as ∅
data ⊥ : Set where

- - > has one proof, namely the trivial proof triv
data > : Set where

triv : >

== : N→ N→ Set
zero == zero = >
zero == S m = ⊥
S n == zero = ⊥
S n == S m = n == m
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The Logical Framework

Example Proof of Reflexivity of ==

refl : (n : N)→ n == n
refl zero = triv
refl (S n) = refl n
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The Logical Framework

The Full Logical Framework

I Above we were already using types such as

C : B→ Set

I This doesn’t type check yet, since we would need

B→ Set : Set

and our rules allow this only if we had

Set : Set
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The Logical Framework

Set

I Adding
Set : Set

as a rule results however in an inconsistent theory:
I using this rule we can prove everything, especially false formulas.

The corresponding paradox is called
::::::::
Girard’s

:::::::::
paradox.
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The Logical Framework

Jean-Yves Girard
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The Logical Framework

Set (Cont.)

I Instead we introduce a new level on top of Set called Type.
I So besides judgements A : Set we have as well judgements of the form

A : Type

I One rule will especially express

Set : Type

I Elements of Type are types, elements of Set are small types.
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The Logical Framework

Set (Cont.)

I We add rules asserting that if A: Set then A: Type.

I Further we add rules asserting that Type is closed under the elements
of Set and the function type

I Since Set : Type we get therefore (by closure under the function type)

B→ Set : Type
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The Logical Framework

Set and Type

SetSet −> Set

N −> SetN −> N

Type

Set

N
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The Logical Framework

Rules for Set (as an Element of Type)

Formation Rule for Set

Set : Type (SetIsType)

Every Set is a Type

A : Set (Set2Type)
A : Type
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The Logical Framework

Closure of Type

I Further we add rules stating that Type is closed under the dependent
function type:

Closure of Type under the dependent function type

A : Type x : A⇒ B : Type
(→ -FType)

(x : A)→ B : Type
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Inductive Data Types (Algebras) in Type Theory

Type Theory and Interactive Theorem Proving

Key Philosophical Principles of Martin-Löf Type Theory

Setup of Martin-Löf Type Theory

Basic Types in Martin-Löf Type Theory

The Logical Framework

Inductive Data Types (Algebras) in Type Theory

Coinductive Data Types (Coalgebras) in Type Theory
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Inductive Data Types (Algebras) in Type Theory

Algebraic Types

I The construct data in Agda is much more powerful than what is
covered by type theoretic rules.

I In general we can define now sets having arbitrarily many constructors
with arbitrarily many arguments of arbitrary types.

data A : Set where
C1 : (a1 : A1

1)→ (a2 : A1
2)→ · · · (an1 : A1

n1
)→ A

C2 : (a1 : A2
1)→ (a2 : A2

2)→ · · · (an2 : A2
n2

) → A
· · ·
Cm : (a1 : Am

1 )→ (a2 : Am
2 )→ · · · (anm : Am

nm
)→ A
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Inductive Data Types (Algebras) in Type Theory

Meaning of “data”

I The idea is that A as before is the least set A s.t. we have
constructors:

Ci : (ai1 : Ai1)
→ · · ·
→ (aini : Aini)
→ A

where a constructor always constructs new elements.

I In other words the elements of A are exactly those constructed by
those constructors.
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Inductive Data Types (Algebras) in Type Theory

Strictly Positive Algebraic Types

I In the types Aij we can make use of A.
I However, it is difficult to understand A, if we have negative

occurrences of A.
I Example:

data A : Set where
C : (A→ A)→ A

I What is the least set A having a constructor

C : (A→ A)→ A ?
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Inductive Data Types (Algebras) in Type Theory

Strictly Positive Algebraic Types

I If we
I have constructed some elements of A already,
I find a function f : A→ A, and
I add C f to A,

then f might no longer be a function A→ A.
(f applied to the new element C f might not be defined).

I In fact, the termination checker issues a warning, if we define A as
above.

I We shouldn’t make use of such definitions.
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Inductive Data Types (Algebras) in Type Theory

Strictly Positive Algebraic Types

I A “good” definition is the set of lists of natural numbers, defined as
follows:

data NList : Set where
[ ] : NList
:: : N→ NList→ NList

I The constructor :: of NList refers to NList, but in a positive way:
We have: if a : N and l : NList, then

(a :: l) : NList .
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Inductive Data Types (Algebras) in Type Theory

Strictly Positive Algebraic Types

I If we add a :: l to NList, the reason for adding it (namely l : NList) is
not destroyed by this addition.

I So we can “construct” the set NList by
I starting with the empty set,
I adding [ ] and
I closing it under :: whenever possible.

I Because we can “construct” NList, the above is an acceptable
definition.
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Inductive Data Types (Algebras) in Type Theory

Strictly Positive Algebraic Types

I In general:

data A : Set where
C1 : (a1 : A1

1)→ (a2 : A1
2)→ · · · (an1 : A1

n1
)→ A

C2 : (a1 : A2
1)→ (a2 : A2

2)→ · · · (an2 : A2
n2

) → A
· · ·
Cm : (a1 : Am

1 )→ (a2 : Am
2 )→ · · · (anm : Am

nm
)→ A

is a strictly positive algebraic type, if all Aij are
I either types which don’t make use of A
I or are A itself.

I And if A is a strictly positive algebraic type, then A is acceptable.
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Inductive Data Types (Algebras) in Type Theory

Strictly Positive Algebraic Types

I The definitions of finite sets, Σ A B, A + B and N were strictly
positive algebraic types.
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Inductive Data Types (Algebras) in Type Theory

One further Example

I The set of binary trees can be defined as follows:

data BinTree : Set where
leaf : BinTree
branch : Bintree→ Bintree→ Bintree

I This is a strictly positive algebraic type.
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Inductive Data Types (Algebras) in Type Theory

Extensions of Strictly Positive Algebraic Types

I An often used extension is to define several sets simultaneously
inductively.

I Example: the even and odd numbers:

mutual
data Even : Set where

Z : Even
S : Odd→ Even

data Odd : Set where
S′ : Even→ Odd

I In such examples the constructors refer strictly positive to all sets
which are to be defined simultaneously.
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Inductive Data Types (Algebras) in Type Theory

Extensions of Strictly Positive Algebraic Types

I We can even allow Aij = B1 → A or even Aij = B1 → · · · → Bl → A,
where A is one of the types introduced simultaneously.

I Example (called “Kleene’s O”):

data O : Set where
leaf : O
succ : O→ O
lim : (N→ O)→ O

I The last definition is unproblematic, since, if we have f : N→ O and
construct lim f out of it, adding this new element to O doesn’t
destroy the reason for adding it to O.

I So again O can be “constructed”.
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Inductive Data Types (Algebras) in Type Theory

Elimination Rules for data

I Functions f from strictly positive algebraic types can now be defined
by case distinction as before.

I For termination we need only that in the definition of f, when have to
define f (C a1 · · · an), we can refer only to f applied to elements
used in C a1 · · · an.
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Inductive Data Types (Algebras) in Type Theory

Examples

I For instance
I in the Bintree example, when defining

f : Bintree→ A

by case-distinction, then the definition of

f (branch l r)

can make use of f l and f r .
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Inductive Data Types (Algebras) in Type Theory

Examples

I In the example of O, when defining

g : O→ A

by case-distinction, then the definition of

g (lim f )

can make use of g (f n) for all n : N.
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Coinductive Data Types (Coalgebras) in Type Theory

Type Theory and Interactive Theorem Proving

Key Philosophical Principles of Martin-Löf Type Theory

Setup of Martin-Löf Type Theory

Basic Types in Martin-Löf Type Theory

The Logical Framework

Inductive Data Types (Algebras) in Type Theory

Coinductive Data Types (Coalgebras) in Type Theory
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Coinductive Data Types (Coalgebras) in Type Theory

Codata Type

I Idea of Codata Types non-well-founded versions of inductive data
types:

codata Stream : Set where
cons : N→ Stream→ Stream

I Same definition as inductive data type but we are allowed to have
infinite chains of constructors

cons n0 (cons n1 (cons n2 · · · ))

I Problem 1: Non-normalisation.
I Problem 2: Equality between streams is equality between all ni , and

therefore undecidable.
I Problem 3: Underlying assumption is

∀s : Stream.∃n, s ′.s = cons n s ′

which results in undecidable equality.
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Coinductive Data Types (Coalgebras) in Type Theory

Subject Reduction Problem

I In order to repair problem of normalisation restrictions on reductions
were introduced.

I Resulted in Coq in a long known problem of subject reduction.
I In order to avoid this, in Agda dependent elimination for coalgebras

disallowed.
I Makes it difficult to use.
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Coinductive Data Types (Coalgebras) in Type Theory

Coalgebraic Formulation of Coalgebras

I Solution is to follow the long established categorical formulation of
coalgebras.

I Final coalgebras will be replaced by weakly final coalgebras.

I Two streams will be equal if the programs producing them reduce to
the same normal form.
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Coinductive Data Types (Coalgebras) in Type Theory

Algebras and Coalgebras

I Algebraic data types correspond to initial algebras.
I N as an algebra can be represented as introduction rules for N:

zero : N
S : N→ N

I Coalgebra obtained by “reversing the arrows”.
I Stream as a coalgebra can be expressed as as elimination rules for it:

head : Stream→ N
tail : Stream→ Stream
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Coinductive Data Types (Coalgebras) in Type Theory

Weakly Initial Algebras and Final Coalgebras

I N as a weakly initial algebra corresponds to iteration
(elimination rule): For A : Set, a : A, f : A→ A there exists

g : N→ A
g zero = a
g (S n) = f (g n)

(or g n = f n a).

I Stream as a weakly final coalgebra corresponds to coiteration or
guarded iteration (introduction rule):
For A : Set, f0 : A→ N, f1 : A→ A there exists g s.t.

g : A→ Stream
head (g a) = f0 a
tail (g a) = g (f1 a)
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Coinductive Data Types (Coalgebras) in Type Theory

Example

I Using coiteration we can define

inc : N→ Stream
head (inc n) = n
tail (inc n) = inc (n + 1)
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Coinductive Data Types (Coalgebras) in Type Theory

Recursion and Corecursion

I N as an initial algebra corresponds to uniqueness of g above.
I Allows to derive primitive recursion:

For A : Set, a : A, f : (N× A)→ A there exists

g : N→ A
g zero = a
g (S n) = f 〈n, (g n)〉

I Stream as a final coalgebra corresponds to uniqueness of h.
I Allows to derive primitive corecursion:

For A : Set, f0 : A→ N, f1 : A→ (Stream + A) there exists

g : A→ Stream
head (g a) = f0 a
tail (g a) = s if f1 a = inl s
tail (g a) = g a′ if f1 a = inr a′
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Coinductive Data Types (Coalgebras) in Type Theory

Recursion vs Iteration

I Using recursion we can define inverse case of the constructors of N as
follows:

case : N→ (1 + N)
case zero = inl
case (S n) = inr n

I Using iteration, we cannot make use of n and therefore case is defined
inefficiently:

case : N→ (1 + N)
case zero = inl
case (S n) = caseaux (case n)

caseaux : (1 + N)→ (1 + N)
caseaux inl = inr zero
caseaux (inr n) = inr (S n)
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Coinductive Data Types (Coalgebras) in Type Theory

Definition of pred

I One way of defining pred by iteration is by defining first case and
then to define

predaux : (1 + N)→ N
predaux inl = zero
predaux (inr n) = n

pred : N→ N
pred n = predaux (case n)
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Coinductive Data Types (Coalgebras) in Type Theory

Corecursion vs Coiteration

I Definition of cons (inverse of the destructors) using coiteration
inefficient:

cons : N→ Stream→ Stream
head (cons n s) = n
tail (cons n s) = cons (head s) (tail s)

I Using primitive corecursion we can define more easily

cons : N→ Stream→ Stream
head (cons n s) = n
tail (cons n s) = s
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Coinductive Data Types (Coalgebras) in Type Theory

Induction - Coinduction?

I Induction is dependent primitive recursion:
For A : N→ Set, a : A zero, f : (n : N)→ A n→ A (S n) there exists

g : (n : N)→ A n
g zero = a
g (S n) = f n (g n)

I Equivalent to uniqueness of arrows with respect to propositional
equality and interpreting equality on arrows extensionally.

I Uniqueness of arrows in final coalgebras expresses that equality is
bisimulation equality.

I How to dualise dependent primitive recursion?

Anton Setzer Mini Course on Martin-Löf Type Theory 131/ 136

Coinductive Data Types (Coalgebras) in Type Theory

Weakly Final Coalgebra

I Equality for final coalgebras is undecidable:
Two streams

s = (a0 , a1 , a2 , . . .
t = (b0 , b1 , b2 , . . .

are equal iff ai = bi for all i .

I Even the weak assumption

∀s.∃n, s ′.s = cons n s ′

results in an undecidable equality.

I Weakly final coalgebras obtained by omitting uniqueness of g in
diagram for coalgebras.

I However, one can extend schema of coiteration as above, and still
preserve decidability of equality.

I Those schemata are usually not derivable in weakly final coalgebras.
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Coinductive Data Types (Coalgebras) in Type Theory

Definition of Coalgebras by Observations

I We see now that elements of coalgebras are defined by their
observations:
An element s of Stream is anything for which we can define

head s : N
tail s : Stream

I This generalises the function type.
Functions are as well determined by observations.

I An f : A→ B is any program which if applied to a : A returns some
b : B.

I Inductive data types are defined by construction
coalgebraic data types and functions by observations.
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Coinductive Data Types (Coalgebras) in Type Theory

Relationship to Objects in Object-Oriented Programming

I Objects in Object-Oriented Programming are types which are defined
by their observations.

I Therefore objects are coalgebraic types by nature.
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Patterns and Copatterns

I We can define now functions by patterns and copatterns.

I Example define stream:
f n =
n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,
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Coinductive Data Types (Coalgebras) in Type Theory

Patterns and Copatterns

f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
f = ?

f : N→ Stream
f = ?

Copattern matching on f : N→ Stream:

f : N→ Stream
f n = ?

f : N→ Stream
f n = ?

Copattern matching on f n : Stream:

f : N→ Stream
head (f n) = ?
tail (f n) = ?

f : N→ Stream
f n = ?

Solve first case, copattern match on second case:

f : N→ Stream
head (f n) = n
head (tail (f n)) = ?
tail (tail (f n)) = ?

f : N→ Stream
f n = ?

Solve second line, pattern match on n

f : N→ Stream
head (f n) = n
head (tail (f n)) = n
tail (tail (f zero)) = ?
tail (tail (f (S n))) = ?

f : N→ Stream
f n = ?

Solve remaining cases

f : N→ Stream
head (f n) = n
head (tail (f n)) = n
tail (tail (f zero)) = f N
tail (tail (f (S n))) = f n
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