A Mini Course on Martin-Löf Type Theory Algebras, Coalgebras, and Interactive Theorem Proving

Anton Setzer

Swansea University, Swansea UK

Lisbon, 9 September 2015

Type Theory and Interactive Theorem Proving
Key Philosophical Principles of Martin-Löf Type Theory
Setup of Martin-Löf Type Theory
Basic Types in Martin-Löf Type Theory
The Logical Framework
Inductive Data Types (Algebras) in Type Theory
Coinductive Data Types (Coalgebras) in Type Theory

Anton Setzer Mini Course on Martin-Löf Type Theory Type Theory and Interactive Theorem Proving	1/ 136	Anton Setzer Type Theory and In	Mini Course on Martin-Löf Type Theory teractive Theorem Proving	2/ 136
	(Computer-Assist	ed Theorem Proving	
Type Theory and Interactive Theorem Proving				
Key Philosophical Principles of Martin-Löf Type Theory		 A lot of researc Theorem Prov 	h has been invested in Computer-assis <mark>/ing</mark> .	sted
Setup of Martin-Löf Type Theory		 Motivation Guarantee t 	hat proofs are correct .	
Basic Types in Martin-Löf Type Theory		-	ally a problem in software verification (lots of bo essential in critical software.	oring cases).
The Logical Framework		Ideally the	achine in constructing proofs (proof sear mathematician can concentrate on the ke ne deals with the details.	,
Inductive Data Types (Algebras) in Type Theory		that the pro	could have a machine assisted proof in d cof is correct and then concentrate	lemonstrating
Coinductive Data Types (Coalgebras) in Type Theory		 Desire to have 	entation on the key ideas. ave systems as powerful as computer algeb ple and MATLAB.	ora systems

Interactive vs Automated Theorem Proving

- Automated Theorem Proving: User provides the problem, machine finds the proof.
 - Works only for restricted theories, which often need to be finitizable.
- ► Interactive Theorem Proving: Proof is carried out by the user.
- ► In reality hybrid approaches:
 - In Automated Theorem Proving hints in the form of intermediate lemmata are given by the user before starting the automated proof search.
 - In Interactive Theorem Proving proof tactics and automated theorem proving tools are used to prove the elementary steps.
- ► Warning: Theorem Proving still hard work.
 - It's like relationship between the idea of a program and writing the program.
 - The machine doesn't allow any gaps.

Anton Setzer	Mini Course on Marti	in-Löf Type Theory
Type Theory and Interactiv	e Theorem Proving	

Dependent Types

Type Theory and Interactive Theorem Proving

Types in Programming

- Simple Types are used in programming to
 - help obtaining correct programs,
 - help writing programs.
- For instance assume you have given a, f and want to construct a solution for p below.We solve the goal using f (functional application written f x)We have a new goal of type IntWe solve the goal using a

$$a : Int$$

$$a = \cdots$$

$$f : Int \rightarrow String$$

$$f = \cdots$$

$$p : String$$

$$p = \{! \ !\}f \{! \ !\}f \{! \ !\}f a$$

5/136	Anton Setzer	Mini Course on Martin-Löf Type Theory	6/ 136
	Type Theory and Interacti	ve Theorem Proving	

Formulas give rise to new Type Constructs

► A proof of

$$\forall x : A.B(x)$$

is a function which computes from

a : A

a proof of

B(a)

► So a proof is an element of the **dependent function type**

 $(x:A) \rightarrow B(x)$

the set of functions mapping a : A to an element of B(a).

- Formulas are considered as types, and elements of those proofs are proofs of that formula.
- Formulas with free variables are dependent types:
- The formula x == 0 depends on $x : \mathbb{N}$.

Dependent Types in Generic Programming

- Dependent types occur as well naturally in mathematics:
- The type of Mat(n, m) of $n \times m$ matrices depends on n, m.
- Matrix multiplication has type

 $\text{matmult}: (n, m, k : \mathbb{N}) \to \text{Mat}(n, m) \to \text{Mat}(m, k) \to \text{Mat}(n, k)$

In simply typed languages we can only have

$$matmult: Mat \rightarrow Mat \rightarrow Mat$$

- In general dependent types allow to define more generic or generative programs.
- Example: Marks of a lecture course: A lecture course may have different components (exams, coursework).
- On next slide Set is the collection of small types (notation for historic reasons used).

	Anton Setzer	Mini Course on Martin-Löf Type Theory	9/ 136	Anton Setzer	Mini Course on Ma	artin-Löf Type Theory	:	10/ 136
Type Theory and Interactive Theorem Proving		Type Theory and Inte	eractive Theorem Proving					
	Dependent Types i	n Generative Programmi	ng	Generative Progr	amming			

```
numberOfComponents : Lecture \rightarrow \mathbb{N}
numberOfComponents I = \cdots
```

Marks : $(I : Lecture) \rightarrow Set$ Marks $I = Mark^{numberOfComponents I}$

Weighting : $(I : \text{Lecture}) \rightarrow \text{Set}$ Weighting $I = \text{Percentage}^{\text{numberOfComponents} I}$

finalMark : (I : Lecture) \rightarrow Marks $I \rightarrow$ Weighting $I \rightarrow$ Mark finalMark $I \ m \ w = \cdots$

- ▶ You can add that the weightings add up to 100%.
- In general you can describe complex data structures using dependent types.

Interactive Theorem Provers based on Dependent Types

- Agda (based on Martin-Löf Type theory).
- Coq (based on calculus of constructions, impredicative).
 - Formalisation of four colour problem.
 - Microsoft has invested in it (but development happening at INRIA, France).
 - Project of proving Kepler conjecture in it.
 - Inspired Voevodsky to develop Homotopy Type Theory.
- Epigram (based on Martin-Löf Type theory, intended as a programming language).
- Idris (relatively new language).
- Cayenne (programming language, no longer supported).
- ► LEGO (theorem prover from Edinburgh, no longer supported).
- Many more.

Anton Setzer Mini Course on Martin-Löf Type Theory Key Philosophical Principles of Martin-Löf Type Theory

Per Martin-Löf (Stockholm)

Type Theory and Interactive Theorem Proving

Key Philosophical Principles of Martin-Löf Type Theory

Setup of Martin-Löf Type Theory

Basic Types in Martin-Löf Type Theory

The Logical Framework

Inductive Data Types (Algebras) in Type Theory

Coinductive Data Types (Coalgebras) in Type Theory

Anton Setzer Mini Course on Martin-Löf Type Theory Key Philosophical Principles of Martin-Löf Type Theory

Martin-Löf Type Theory

- Martin-Löf Type Theory developed to provide a new foundation of mathematics.
- Idea to develop a theory where we have direct insight into its consistency.
- By Gödel's 2nd Incompleteness theorem we know we cannot prove the consistency of any reasonable mathematical theory.
- However, we want mathematics to be **meaningful**.
 - We don't want to have a proof of Fermat's last theorem and a counter example.
- Mathematics is meaningful, because we have an intuition about why it is correct.

13/ 136

14/136

► For instance that if we have proofs of

A(0) $\forall n : \mathbb{N}.A(n) \rightarrow A(n+1)$

we can convince ourselves that $\forall n : \mathbb{N}.A(n)$ holds.

- Because for every n : N we can construct a proof of A(n) by using the base case and n times the induction step.
- Martin-Löf Type Theory is an attempt to formalise the reasons why we believe in the consistency of mathematical constructions.

Mini Course on Martin-Löf Type Theory

Objects of Type Theory

- We have a direct good understanding of **finite objects**.
- Finite objects can always be encoded into natural numbers, and individual natural numbers are easy to understand.
- In general finite objects can be represented as terms.
 Examples of terms:

zero	
suc zero	
suc zero + suc zero	
[]	(empty list)
cons zero []	(result of adding in front of the empty list zero)

17/136	Anton Setzer	Mini Course on Martin-Löf Type Theory	18/ 136
	Key Philosophical Principles of	f Martin-Löf Type Theory	
	Beyond Finitism		
	Deyond Timusin		

- ▶ Some terms are in normal form, e.g. suc (suc (suc zero))
- ► Other terms have reductions, e.g. zero + suc zero → suc (zero + zero) → suc zero.
- Martin-Löf uses program for terms as above, which evaluate according to the reduction rules.

- We can form a mathematical theory where we have finitely many finite objects, and convince ourselves of its consistency.
- The resulting theory is **not very expressive** however.
- In order to talk about something which of infinite nature, we introduce the concept of a type.

Anton Setzer

Key Philosophical Principles of Martin-Löf Type Theory

Objects of Type Theory

- ► A **type** A is given by a collection of rules which allow us to conclude
 - that certain objects are elements of that type

a : A

- and how to form from an element a : A an element of another type B
- We don't consider a type as a set of elements (although when working with one often thinks like that).

That would mean that we have an infinite object per se.

Example: Natural Numbers

► For instance we have

zero : \mathbb{N} if $n : \mathbb{N}$ then suc $n : \mathbb{N}$

► This is written as rules

zero : \mathbb{N} $\frac{n:\mathbb{N}}{\operatorname{suc} n:\mathbb{N}}$

► We can conclude for instance

 $suc (suc zero) : \mathbb{N}$

Anton SetzerMini Course on Martin-Löf Type Theory21/136Key Philosophical Principles of Martin-Löf Type Theory	Anton Setzer Mini Course on Martin-Löf Type Theory 22/ 136 Key Philosophical Principles of Martin-Löf Type Theory 22/ 136
Example: Natural Numbers	Representation of Infinite Objects by Finite Objects
 Furthermore if we have another type B, i.e. B : Set 	 This doesn't mean that we can't speak of infinite objects. We can have for instance a collection of sets (or universe)
and if we have $b:B$ g:B ightarrow B	$U:Set$ which contains a code for the set of natural numbers $\widehat{\mathbb{N}}:U$
we can form $h: \mathbb{N} \to B$ h zero = b $h (\operatorname{suc} n) = g (h n)$ • These rules express what we informally describe as iteration	 We can consider an operation T, which decodes codes in U into sets, i.e. we have the rule <u>u:U</u> <u>Tu:Set</u> Then we can add a rule
$h n = g^n b$	$T \ \widehat{\mathbb{N}} = \mathbb{N} : Set$

23/136

 We will later introduce stronger elimination rules for natural numbers (dependent higher type primitive recursion).

infinitely many elements.

• $\widehat{\mathbb{N}}$ is still a finite object, but it represents (via T) a type which has

Key Philosophical Principles of Martin-Löf Type Theory

Constructive Mathematics

- Before we already said that propositions should be considered as types.
- Elements of such types should be proofs.
- These proofs will give constructive content of proofs.
- ► A proof

 $p:(\exists x:A.B(x))$

should allow us to compute an

$$a: A$$
 s.t. $B(a)$ is true

Constructive Mathematics

Similarly from a proof

 $p: A \vee B$

we should able to compute a Boolean value, such that if it is true, A holds, and if it false B holds.

Problem: We can't get in general a proof of

 $A \vee \neg A$

unless we can decide whether A or $\neg A$ holds

Anton Setzer	Mini Course on Martin-Löf Type Theory	25/136	Anton Setzer	Mini Course on Martin-Löf Type Theory	26/136
Key Philosophical Principles of Martin-Löf Type Theory			Key Philosophical Principles of Martin-Löf Type Theory		
Link between Logic and Computer Programming			BHK-Interpretatio	n of Logical Connectives	

The Brouwer-Heyting-Kolmogorov (BHK) Interpretation of the logical connectives is the constructive interpretation of the logical operators.

► A proof of

 $A \wedge B$

is given by a

proof of A and a proof of B

► A proof of

 $A \lor B$

is given by

a proof of A or a proof of B

plus the information which of the two holds.

Constructive Mathematics provides a direct link between
proofs/logic and programs/data.

- ► In type theory there is **no distinction** between a **data type** and a logical formula (radical propositions as types).
- ► Allows to write programs in which data and logical formulas are mixed.

Key Philosophical Principles of Martin-Löf Type Theory

BHK-Interpretation of Logical Connectives

A proof of

A
ightarrow B

is a function (program) which

computes from a proof of A a proof of B

► A proof of

 $\forall x : A.B(x)$

is a function (program) which

```
for every a: A computes a proof of B(a)
```

► A proof of

$$\exists x : A.B(x)$$

consists of

an a : A plus a proof of B(a)

Intuitionistic Logic

We don't obtain stability

 $eg \neg \neg A
ightarrow A$

- ► So we cannot carry out indirect proofs:
 - An indirect proof is as follows: itmm In order to proof A assume $\neg A$
 - Then derive a contradiction
 - So $\neg A$ is false (i.e. we have $\neg \neg A$.
 - By stability we get A.
- ► Stability is not provable in general constructively:
 - If we have ¬¬A we have a method which from a proof of ¬A computes a proof of ⊥.
 - This does not give as a method to compute a proof of *A*.

Key Philosophical Principles of Martin-Löf Type Theory

BHK-Interpretation of Logical Connectives

• There is no proof of falsity written as

 \bot

► We define

$$\neg A := A \rightarrow \bot$$

so a proof of

 $\neg A$

is a function which

converts a proof of A into a (non-existent) proof of \bot

Anton Setzer	Mini Course on Martin-Löf Type Theory	30/136
Key Philosophical Principles		
_		
Double Negation	n Interpretation	

- However one can interpret formulas from classical logic into intuitionistic logic so that a formula is classically provable iff its translation is intuitioniscally provable.
- Double negation interpretation (not part of this course).

Double Negation Interpretation

► Easy to see with ∨: Intuitionistically we have

$$\neg(\neg(A \lor B)) \leftrightarrow \neg(\neg A \land \neg B)$$

If we replace

 $A \lor B$

by

 $A \vee^{\text{int}} B := \neg (\neg A \wedge \neg B)$

then

 $A \vee^{\operatorname{int}} B$

- behaves intuitionistically (with double negated formulas) like classical $\lor.$
- Especially tertium non datur is provable

$$A \vee^{\operatorname{int}} \neg A = \neg (\neg A \wedge \neg \neg A)$$

Anton Setzer	Mini Course on Martin-Löf Type Theory	33/ 136	
Setup of Ma	tin-Löf Type Theory		

Type Theory and Interactive Theorem Proving

Key Philosophical Principles of Martin-Löf Type Theory

Setup of Martin-Löf Type Theory

Basic Types in Martin-Löf Type Theory

The Logical Framework

Inductive Data Types (Algebras) in Type Theory

Coinductive Data Types (Coalgebras) in Type Theory

Key Philosophical Principles of Martin-Löf Type Theory

Conclusion (Key Philosophical Principles of MLTT)

- This concludes the introduction into the philosophical principles of Martin-Löf Type Theory.
- We will in the next section go through the setup of Martin-Löf Type Theory with the terminology by Martin-Löf.

33/ 136	Anton Setzer Mini Course on Martin-Löf Type Theory Setup of Martin-Löf Type Theory	34/136
	Judgements of Type Theory	
/	 The statements of type theory are called "judgements". There are four judgements of type theory: A is a type written as A : Set A and B are equal types written as A = B : Set 	
	► <i>a</i> is an element of type <i>A</i> written as	
	a : A	
	► <i>a</i> , <i>b</i> are equal elements of type <i>A</i> written as	
	a = b : A	

$s \longrightarrow t \text{ vs } s = t$

► The notion of reduction

 $s \longrightarrow t$

corresponds to computation rules where term s evaluates to t.

► In type theory one uses instead

s = t

which is the reflexive/symmetric/transitive closure of \longrightarrow or equivalence relation containing \longrightarrow .

In most rules when concluding

s = t : A

it is actually the case that we have a reduction

 $s \longrightarrow t$

Anton Setzer Mini Course on Martin-Löf Type Theory 37/136 Setup of Martin-Löf Type Theory Dependent Judgements

► We have as well **dependent judgements**, for instance for expressing

if
$$x : \mathbb{N}$$
 then suc $x : \mathbb{N}$

which we write

$$x:\mathbb{N}\Rightarrow \operatorname{suc} x:\mathbb{N}$$

► Examples:

Setup of Martin-Löf Type Theory

 $s \longrightarrow t \text{ vs } s = t$

The notion

 $s \longrightarrow t$

doesn't occur in the formal theory of Martin-Löf Type Theory, but only when implementing it.

Anton Setzer	Mini Course on Martin-Löf Type Theory	38/ 136
Setup of Martin-Löf Type Theory		
Examples of De	pendent Judgements	

► In general a dependent judgement has the form

$$x_1:A_1,x_2:A_2(x_1),\ldots,x_n:A_n(x_1,\ldots,x_{n-1})\Rightarrow\theta(x_1,\ldots,x_n)$$

where, if write \vec{x} for x_1, \ldots, x_n

 $\theta(\vec{x})$

is one of the four judgements before

 $B(\vec{x})$: Set or $B(\vec{x}) = B'(\vec{x})$: Set or $b(\vec{x}) : B(\vec{x})$ or $b(\vec{x}) = b'(\vec{x}) : B(\vec{x})$

Setup of Martin-Löf Type Theory

Judgements in Agda

 In the theorem prover Agda we can define functions and objects by writing

> $n:\mathbb{N}$ $n= ext{zero}$

$$f : \mathbb{N} \to \mathbb{N}$$

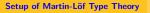
f zero = suc zero
f (suc m) = suc (suc(f m))

- \blacktriangleright = above is a reduction rule.
- ► We can type in a term e.g.

fn

and compute its normal form which is in this case

suc zero



Judgements in Agda

• We can check whether *t* : *A* by type checking

- However we can check t = s : A only indirectly via its consequences.
- The judgement s = t : A is built-in as part of the machinery of Agda.

nton Setzer	Mini Course on Martin-Löf Type Theory	41/ 136	Anton Setzer	Mini Course on Mar	tin-Löf Type Theory	42/ 136
Setup of Mar	tin-Löf Type Theory		Setup of	Martin-Löf Type Theory		
inds of Rule	s for each Type		Four Kinds of Ru	lles for each	Туре	

For each type A there are 4 kinds of rules:

Formation rules:

Anto

Four K

They form a new type e.g.

 $\mathbb{N}: \mathrm{Set}$

Introduction Rules:

They introduce elements of a type, e.g.

zero :
$$\mathbb{N}$$
 $\frac{n : \mathbb{N}}{\operatorname{suc} n : \mathbb{N}}$

► Elimination Rules:

They allow to construct from an element of one type elements of another type.

For instance iteration for $\ensuremath{\mathbb{N}}$ would correspond to the rule

$$\frac{B: \text{Set} \quad b: B \quad g: B \to B \quad n: \mathbb{N}}{h \; n: B}$$

where

 $h := \text{iter } B \ b \ g$

Setup of Martin-Löf Type Theory

Four Kinds of Rules for each Type

Equality Versions of the Rules

• Equality Rules:

They show how if we introduce an element of that type and then eliminate it how it is computed (we use h as before)

$$\frac{B: \text{Set} \quad b: B \quad g: B \to B}{h \text{ zero} = b: B}$$

$$\frac{B: \text{Set} \quad b: B \quad g: B \to B \quad n: \mathbb{N}}{h (\text{suc } n) = g (h n): B}$$

• There are as well equality versions of the above rules.

 \blacktriangleright A canonical element of \mathbb{N} can be evaluated further.

- They express that if the premises of a rule are equal the conclusions are equal as well.
- ► For instance the equality version of the rule

$$\frac{n:\mathbb{N}}{\operatorname{suc} n:\mathbb{N}}$$
$$n=m:\mathbb{N}$$

suc
$$n = \operatorname{suc} m : \mathbb{N}$$

Anton Setzer	Mini Course on Martin-Löf Type Theory	45/136	Anton Setzer	Mini Course on Martin-Löf Type Theory	46/136
Setup of Martin-Löf Type Theory			Setup	of Martin-Löf Type Theory	
Canonical vs No	ical vs Non-Canonical Elements		Canonical eleme	nts of ℕ	

is

- The elements introduced by an introduction rule start with a constructor.
- \blacktriangleright For instance the constructors of $\mathbb N$ are

${\rm zero}$ and ${\rm suc}$

- Elements introduced by an introduction rule are called canonical elements.
 - \blacktriangleright Canonical elements of $\mathbb N$ are for instance

zero suc (zero + zero)

where $+ \mbox{ is defined using elimination rules}.$

 Elements introduced by an elimination rule are non-canonical elements. For instance

$\mathrm{zero} + \mathrm{zero}$

 Using the equality rules, every non canonical element of a type is supposed to evaluate to a canonical element of that type.

Anton	

it, because it is an open term).

starts with a constructor.

► E.g. we have

Note that in

suc (zero + zero) \longrightarrow suc zero

 $\lambda x.x: \mathbb{N} \to \mathbb{N}$

x doesn't start with a constructor (doesn't even make sense to ask for

So here it is crucial that it is only required that a canonical element

• In case of a function type $\lambda x.t$ is considered to be canonical.

we first reduce s and t to canonical form.

element or head normal form.

we compare s' and t'.

► In order to check

Key Philosophical Principles of Martin-Löf Type Theory

Setup of Martin-Löf Type Theory

Basic Types in Martin-Löf Type Theory

The Logical Framework

Inductive Data Types (Algebras) in Type Theory

Coinductive Data Types (Coalgebras) in Type Theory

Anton Setzer	Mini Course on Martin-Löf Type Theory	49/136	Anton Setzer	Mini Course on Martin-Löf Type Theory	50/136
Basic Types in Martin-Löf Type Theory			Basic Types in 1	Martin-Löf Type Theory	
The Type of Boole	ans		Basic Types: Type	e of Booleans	

- One of the Simples types is the type of Booleans.
- ► Formation rule:

 $\mathbb{B}:\operatorname{Set}$

• The type checking of equality is based on this notation of canonical

• If they start with different constructors, *s* and *t* are different.

E.g. if $s \longrightarrow \text{zero}$, $t \longrightarrow \text{suc } t'$ there is no need to evaluate t'. If they have the same constructor, e.g. $s \longrightarrow \text{suc } s' t \longrightarrow \text{suc } t'$ then

 $s = t : \mathbb{N}$

Introduction rules:

 $\operatorname{tt}:\mathbb{B}$ ff: \mathbb{B}

► Elimination rule:

 $\begin{array}{c|c} x:\mathbb{B} \Rightarrow C(x): \mathrm{Set} & step_{\mathrm{tt}}: C(\mathrm{tt}) & step_{\mathrm{ff}}: C(\mathrm{ff}) & b: \mathbb{B} \\ \\ & \mathrm{elim}_{\mathbb{B}}(step_{\mathrm{tt}}, step_{\mathrm{ff}}, b): C(b) \end{array}$

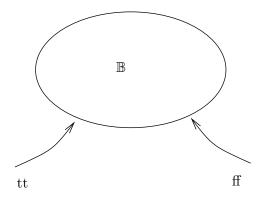
► Equality rules:

$\operatorname{elim}_{\mathbb{B}}(\mathit{step}_{\mathrm{tt}}, \mathit{step}_{\mathrm{ff}}, \mathrm{tt})$	=	$\mathit{step}_{\mathrm{tt}}:\mathit{C}(\mathrm{tt})$
$\operatorname{elim}_{\mathbb{B}}(\mathit{step}_{\mathrm{tt}}, \mathit{step}_{\mathrm{ff}}, \mathrm{ff})$	=	$\mathit{step}_{\mathrm{ff}}: \mathcal{C}(\mathrm{ff})$

Basic Types in Martin-Löf Type Theory

Visualisation (Booleans)

Booleans in Agda



data	\mathbb{B} :	Set	where	
tt	:	$\mathbb B$		
ff	:	$\mathbb B$		
$\neg:\mathbb{B}$	\rightarrow	$\mathbb B$		
\neg tt	=	$_{\mathrm{ff}}$		
\neg ff	=	tt		

2 Constructors, both no arguments.

Anton Setzer Basic Types in Ma	Mini Course on Martin-Löf Type Theory rtin-Löf Type Theory	53/ 136	Anton Setzer Basic Types in	Mini Course on Martin-Löf Type Theory n Martin-Löf Type Theory	54/136
Finite Types			Empty Type		

- ► Similar versions for types with 0, 1, 3, 4, ... elements.
- ► Special case Ø.

► Formation rule:

 $\emptyset: \mathrm{Set}$

- Introduction rules: There is no introduction rule.
- ► Elimination rule:

$$\frac{x: \emptyset \Rightarrow C(x): \text{Set} \qquad e: \emptyset}{\text{efq}(e): C(e)}$$

• Equality rules: There is no equality rule.

The Logical Framework (LF)

- ► When writing elimination rules we need to deal with notions such as
 - C(x) is a set depending on $x : \mathbb{B}$.
 - instantiate x = tt and get C(tt).
- ► Idea of the logical framework (LF) is
 - Instead of saying

$$x:\mathbb{B}\Rightarrow C(x):\mathrm{Set}$$

we write

 $C:\mathbb{B}\to\mathrm{Set}$

• Then we can apply C to tt and obtain

C tt : Set

▶ We will introduce the LF more formally later.

Anton Setzer Mini Course on Martin-Löf Type Theory 57/136 Basic Types in Martin-Löf Type Theory 57/200	Anton Setzer Mini Course on Martin-Löf Type Theory 58/ Basic Types in Martin-Löf Type Theory
F and Foundations	Rules for Booleans Using the LF
	► Formation rule:
 From a foundational point of view the LF is difficult. It treats the collection of sets as an entity, at least as if one considers it naively. 	 ► Introduction rules: tt : B ff : B ► Elimination rule:
 The foundations of Martin-Löf Type Theory work best without the When using it in the basic type theory below it could be avoided. We will use it just as a convenient way of writing the rules nicely. 	$C: \mathbb{B} \to Set step_{tt} : C tt step_{ff} : C ff b : \mathbb{B}$ elim _{\mathbb{B} C step_{tt} step_{ff} b : C b

 $\operatorname{elim}_{\mathbb{B}} \ \textit{C} \ \textit{step}_{\operatorname{tt}} \ \textit{step}_{\operatorname{ff}} \ \textit{ff} \ = \ \textit{step}_{\operatorname{ff}} : \textit{C} \ \operatorname{ff}$

 $\begin{array}{l} \mathrm{efq}: \emptyset \to A \\ \mathrm{efq} \mbox{ () } \end{array}$

- --() stands for the empty case distinction
- - and - starts a comment

Anton Setzer

The Disjoint Union

► We can even write

$$\operatorname{elim}_{\mathbb{B}} : (\mathcal{C} : \mathbb{B} \to \operatorname{Set}) \\ \to \mathcal{C} \operatorname{tt} \\ \to \mathcal{C} \operatorname{ff} \\ \to \mathbb{B} \\ \to \operatorname{Set}$$

$$\frac{A:\operatorname{Set} \quad B:\operatorname{Set}}{A+B:\operatorname{Set}}$$

Introduction rules:

a : A	b : B
inl $a: A + B$	inr $b: A + B$

Anton Setzer	Mini Course on Martin-Löf Type Theory	61/136	Anton Setzer	Mini Course on Martin-Löf Type Theory	62/136
Basic Types in Martin-Löf Type Theory			Basic Types in f	Aartin-Löf Type Theory	
The Disjoint Union			Visualisation $(A +$	- <i>B</i>)	

► Elimination rule:

$$C: A + B \rightarrow \text{Set}$$

$$step_{\text{inl}}: (x : A) \rightarrow C \text{ (inl } x)$$

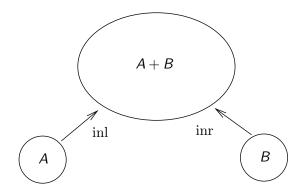
$$step_{\text{inr}}: (x : B) \rightarrow C(\text{inr } x)$$

$$\underline{c: A + B}$$

$$elim_{+} C \text{ step}_{\text{inl}} \text{ step}_{\text{inr}} c: C c$$

► Equality rules:

 $\begin{array}{rcl} \operatorname{elim}_{+} C \ step_{\operatorname{inl}} \ step_{\operatorname{inr}} \ (\operatorname{inl} \ a) &=& step_{\operatorname{inl}} \ a : C \ (\operatorname{inl} \ a) \\ \operatorname{elim}_{+} C \ step_{\operatorname{inl}} \ step_{\operatorname{inr}} \ (\operatorname{inr} \ b) &=& step_{\operatorname{inr}} \ b : C \ (\operatorname{inr} \ b) \end{array}$



▶ Both inl and inr have one non-inductive argument.

• A proof of $A \lor B$ is a proof of A or a proof of B.

data $_\lor_(A \ B : Set)$: Set where inl : $A \to A \lor B$ inr : $B \to A \lor B$

- _∨_ denotes infix operator
- We postulate (i.e. assume) some sets

postulate A: Set postulate B: Set

Anton Setzer	Mini Course on Martin-Lö	if Type Theory 65/ 1	36	Anton Setzer	Mini Course on Mar	tin-Löf Type Theory	66/136
Basic Types in Mar	tin-Löf Type Theory			Basic Types in Ma	rtin-Löf Type Theory		
The Σ -Type				The Σ-Type			

► Elimination rule:

$$C: \Sigma \land B \to \text{Set}$$

$$step: (a: A, b: B a) \to C \text{ (p a b)}$$

$$\underline{c: \Sigma \land B}_{\text{elim}_{\Sigma} C \text{ step } c: C c}$$

► Equality rule:

$$\operatorname{elim}_{\Sigma} C \operatorname{step}(p \ a \ b) = \operatorname{step} a \ b : C \ (p \ a \ b)$$

• So $A \lor B$ is just A + B.

$$\frac{A: \text{Set} \quad B: A \to \text{Set}}{\Sigma \land B: \text{Set}}$$

► Introduction rule:

Basic Types in Martin-Löf Type Theory

Visualisation $(\Sigma(A, B))$



- ▶ p has two non-inductive arguments.
- ▶ The type of the 2nd argument depends on the 1st argument.

Anton Setzer Mini Course on Martin-Löf Type Theory 69/136 Basic Types in Martin-Löf Type Theory

 $\Sigma A B$ in Agda

data Σ (A : Set) (B : $A \rightarrow$ Set) : Set where $p: (a:A) \rightarrow B a \rightarrow \Sigma A B$

postulate A: Set postulate $B : A \rightarrow Set$

 $\pi_0: \Sigma A B \to A$ $\pi_0 (p \ a \ b) = a$

$$\pi_1 : (x : \Sigma \land B) \to B (\pi_0 x)$$

$$\pi_1 (p a b) = b$$

\exists as Σ

▶ With the LF, a formula depending on *x* : *A* is a

 $B: A \to Set$

- A proof of $\exists x : A.B x$ is
 - ▶ an *a* : *A*
 - ► together with a *b* : *B* a
- ► That's just an element of

ΣΑΒ

► Formation rule:

 \mathbb{N} : Set

► Introduction rules:

zero :
$$\mathbb{N}$$
 $\frac{n : \mathbb{N}}{S n : \mathbb{N}}$

► Elimination rule:

$$\begin{array}{c} \mathcal{C}:\mathbb{N}\rightarrow \mathrm{Set}\\ \hline \textit{step}_{\mathrm{zero}}:\mathcal{C}\;\mathrm{zero} & \textit{step}_{\mathrm{S}}:(n:\mathbb{N},\mathcal{C}\;n)\rightarrow\mathcal{C}\;(\mathrm{S}\;n) & n:\mathbb{N}\\ \hline & \mathrm{elim}_{\mathbb{N}}\;\mathcal{C}\;\textit{step}_{\mathrm{zero}}\;\textit{step}_{\mathrm{S}}\;n:\mathcal{C}\;n \end{array}$$

Basic Types in Martin-Löf Type Theory

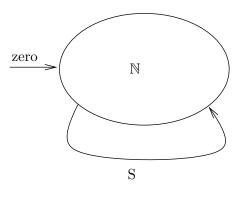
 $\operatorname{elim}_{\mathbb{N}} C \operatorname{step}_{\operatorname{zero}} \operatorname{step}_{\operatorname{S}} (\operatorname{S} n)$

Natural numbers

► Equality rules:

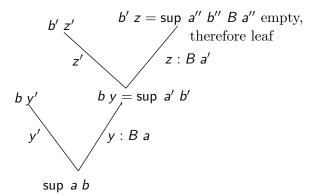
Basic Types in Martin-Löf Type Theory

Visualisation (\mathbb{N})



- ► zero has no arguments.
- ► S has one inductive argument.

Anton Setzer	Mini Course on Martin-Löf Type Theory	73/136	Anton Setzer	Mini Course on Martin-Löf Type Theory	74/136
Basic Types in Ma	artin-Löf Type Theory		Basic Types in N	lartin-Löf Type Theory	
W-Type			The W-Type		



 $\operatorname{elim}_{\mathbb{N}} C \operatorname{step}_{\operatorname{zero}} \operatorname{step}_{\operatorname{S}} \operatorname{zero} = \operatorname{step}_{\operatorname{zero}} : C \operatorname{zero}$

= step_S n (elim_N C step_{zero} step_S n) : C (S n)

Assume $A : Set, B : A \rightarrow Set$.

W A B is the type of well-founded recursive trees with branching degrees $(B a)_{a:A}$.

► Formation rule:

$$\frac{A: \text{Set} \quad B: A \to \text{Set}}{\text{W } A B: \text{Set}}$$

► Introduction rule:

$$\frac{a:A \quad b:B \ a \to W \ A \ B}{\sup \ a \ b:W \ A \ B}$$

The W-Type

Elimination rule:

$$C : W \land B \to Set$$

$$step : (a : \land)$$

$$\to (b : B \land a \to W \land B)$$

$$\to (ih : (x : B \land a) \to C (b \land x))$$

$$\to C (sup \land b)$$

$$c : W \land B$$

$$elim_W C \ step \ c : C \ c$$

► Equality rule:

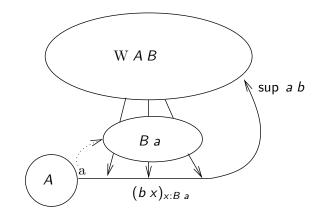
 $\begin{array}{l} \operatorname{elim}_{W} C \ step \ (\sup \ a \ b) \\ = \ step \ a \ b \ (\lambda x. \operatorname{elim}_{W} \ C \ step \ (b \ x)) : C \ (\sup \ a \ b) \end{array}$

Here λx.t is the function mapping x to t.
 (More details follow below when dealing with the function set).

Anton Setzer	Mini Course on Martin-Löf Type Theory	77/136			
Basic Types in Martin-Löf Type Theory					
Universes					

- A universe is a family of sets
- ► Given by
 - an set U : Set of **codes** for sets,
 - \blacktriangleright a decoding function $T:U\rightarrow Set.$

Visualisation (W A B)



sup has two arguments

- ► First argument is non-inductive.
- Second argument is inductive, indexed over *B* a.
- (B a) depends on the first argument a.

Anton Setzer	Mini Course on Martin-Löf Type Theory	78/ 136
Basic Types in Ma	artin-Löf Type Theory	

Universes

► Formation rules:

 $U:Set \qquad T:U\to Set$

Introduction and Equality rules:

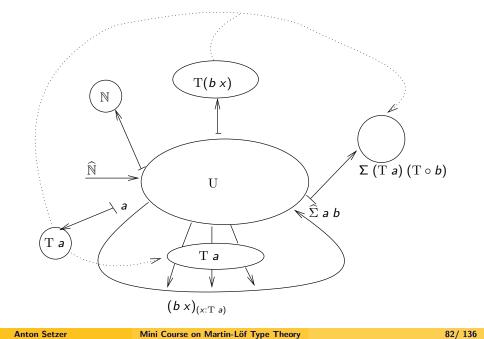
$$\widehat{\mathbb{N}} : \mathbf{U} \qquad \mathbf{T} \ \widehat{\mathbb{N}} = \mathbb{N}$$
$$\underline{\mathbf{a} : \mathbf{U} \qquad \mathbf{b} : \mathbf{T} \ \mathbf{a} \to \mathbf{U}}$$
$$\widehat{\Sigma} \ \mathbf{a} \ \mathbf{b} : \mathbf{U}$$
$$\mathbf{T}(\widehat{\Sigma} \ \mathbf{a} \ \mathbf{b}) = \mathbf{\Sigma} \ (\mathbf{T} \ \mathbf{a}) \ (\mathbf{T} \circ \mathbf{b})$$

Similarly for other type formers (except for $\mathrm{U}).$

Visualisation (U)

Elimination Rules for U

- Elimination rule for U can be defined.
- Not very useful (e.g. one cannot define an embedding of U into itself using elimination rules).



Anton Setzer	Mini Course on Martin-Löf Type Theory	81/136			
Basic Types in Martin-Löf Type Theory					
Analysis					

Analysis

- ► Elements of U are defined **inductively**, while defining (T a) for a : U **recursively**.
- $\widehat{\Sigma}$ has two inductive arguments
 - Second argument is indexed over (T a).
 - Index set (T a) for second argument depends on the T applied to first argument a.
 - $T(\widehat{\Sigma} a b)$ is defined from
 - ► (T a),
 - ► (T (b x))_(x:T a).
- Principles for defining a universe can be generalised to higher type universes, where (T a) can be an element of any type, e.g. Set → Set.

Type Theory and Interactive Theorem Proving

Key Philosophical Principles of Martin-Löf Type Theory

The Logical Framework

- Setup of Martin-Löf Type Theory
- Basic Types in Martin-Löf Type Theory

The Logical Framework

Inductive Data Types (Algebras) in Type Theory

Coinductive Data Types (Coalgebras) in Type Theory

The Dependent Function Set

- ▶ The dependent function set is the unproblematic part of the LF.
- ► The dependent function set is similar to the non-dependent function set (e.g. A → B), except that we allow that the second set to depend on an element of the first set.
- Notation: (x : A) → B, for the set of functions f which map an element a : A to an element of B[x := a].
- ► In set-theoretic notation this is:

{

Rules of the Dependent Function Set

$$f \mid f \text{ function} \ \wedge \operatorname{dom}(f) = A \ \wedge \forall a \in A.f(a) \in B[x := a]$$

Mini Course on Martin-Löf Type Theory

The Logical Framework

Rules of the Dependent Funct. Set

Formation Rule

$$\frac{A:\operatorname{Set} \quad x:A \Rightarrow B:\operatorname{Set}}{(x:A) \to B:\operatorname{Set}} (\to -F)$$

Introduction Rule

$$rac{x:A\Rightarrow b:B}{(\lambda x:A.b):(x:A)
ightarrow B} \left(
ightarrow -\Gamma
ight)$$

86/136

The η -rule has a special status:

 η -Rule

$$\frac{f:(x:A)\to B}{f=(\lambda x:A.f\ x):(x:A)\to B} (\to -\eta)$$

- The η-rule expresses that every element of (x : A) → B is of the form λx : A.something.
- The η -rule cannot be derived, if the element in question is a variable.

Elimination Rule

Anton Setzer

$$\frac{f:(x:A) \to B \quad a:A}{f \; a:B[x:=a]} (\to -\text{El})$$

Equality Rule

$$\frac{x: A \Rightarrow b: B \quad a: A}{(\lambda x: A.b) \ a = b[x:=a]: B[x:=a]} (\rightarrow -\text{Eq})$$

The Dependent Function Set in Agda

▶ The dependent function set is built into Agda with notation

$$(x:A) \rightarrow B$$

- Elements of $(x : A) \rightarrow B$ are introduced by using
 - either λ -abstraction, i.e. we can define

$$\begin{array}{rcl} f & : & (x:A) \to B \\ f & = & \lambda x \to b \end{array}$$

- ► Requires that *b* : *B* depending on *x* : *A*.
- Note that the type *B* of *b* depends on *x* : *A*.
- or by writing

Ant

Implica

$$\begin{array}{rcl} f & : & (x : A) \to B \\ f & x & = & b \end{array}$$

The Dependent Function Set in Agda

- Elimination is application using the same notation as before.
 - E.g., if $f:(x:A) \rightarrow B$ and a:A, then f a:B[x:=a].

nton Setzer Th	Mini Course on Martin-Löf Type Theory e Logical Framework	89/136	Anton Setzer Th	Mini Course on Martin-Löf Type Theory e Logical Framework	90/136
ation			Example		

- A proof of A → B is a function which takes a proof of A and returns a proof of B.
- So implication is nothing but the function type.

lemma : $A \rightarrow A$ lemma a = a

lemma2 : $(A \rightarrow B) \rightarrow (B \rightarrow C) \rightarrow A \rightarrow C$ lemma2 f g a = g (f a)

Universal Quantification

The Logical Framework

\forall in Agda

- ∀x : A.B is true iff, for all x : A there exists a proof of B (with that x).
- ► Therefore a proof of ∀x : A.B is a function, which takes an x:A and computes an element of B.
- ► Therefore the set of proofs of ∀x : A.B is the set of functions, mapping an element x : A to an element of B.
- This set is just the **dependent function set** $(x : A) \rightarrow B$.
- Therefore we can **identify** $\forall x : A.B$ with $(x : A) \rightarrow B$.

- $\forall x : A.B$ is represented by $(x : A) \rightarrow B$ in Agda.
 - Remember that $\forall x : A.B$ is another notation for $\forall x : A.B$.

Anton Setzer Mini Co The Logical F	urse on Martin-Löf Type Theory Framework	93/136	Anton Setzer	Mini Course on Martin-Löf Type Theory The Logical Framework	94/ 136
Example: Equality on \mathbb{N}			Example Proof	f of Reflexivity of $==$	
 ▶ We define equality on N. ▶ First we introduce the true 	ie and false formulas:				
$ \perp$ is defined data \perp : Set with	,				
⊤ has one p data ⊤ : Set wi triv : ⊤	roof, namely the trivial proof triv here			refl: $(n : \mathbb{N}) \rightarrow n == n$ refl zero = triv refl (S n) = refl n	
$\begin{array}{rcl} - = = & : & \mathbb{N} \to & \mathbb{N} \\ \text{zero} & = & & \text{zer} \\ \text{zero} & = & & \mathbb{S} & n \\ & & \mathbb{S} & n & = & & \text{zer} \\ & & & \mathbb{S} & n & = & & \mathbb{S} & n \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$				

The Full Logical Framework

 $\mathcal{C}:\mathbb{B}\to\mathrm{Set}$

This doesn't type check yet, since we would need

The Logical Framework

 $\mathbb{B} \to \mathrm{Set} : \mathrm{Set}$

and our rules allow this only if we had

 $\mathbf{Set}:\mathbf{Set}$

Mini Course on Martin-Löf Type Theory

Adding

 $\mathbf{Set}:\mathbf{Set}$

as a rule results however in an **inconsistent theory**:

The Logical Framework

 using this rule we can prove everything, especially false formulas. The corresponding paradox is called Girard's paradox.

/ 136	Anton Setzer	Mini Course on Martin-Löf Type Theory	98/136
		The Logical Framework	
	Set (Cont.)		

- Instead we introduce a new level on top of Set called Type.
 - \blacktriangleright So besides judgements A : Set we have as well judgements of the form

 $A:\mathrm{Type}$

► One rule will especially express

Set : Type

• Elements of Type are **types**, elements of Set are **small types**.

Anton Setzer

Jean-Yves Girard

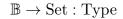
97/

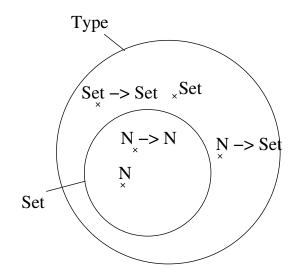
Set and Type

• We add rules asserting that if A: Set then A: Type.

The Logical Framework

- Further we add rules asserting that Type is closed under the elements of Set and the function type
- ► Since Set : Type we get therefore (by closure under the function type)





Anton Setzer	Mini Course on Martin-Löf Type Theory	101/136	Anton Setzer	Mini Course on Mar	tin-Löf Type Theory	102/136
	The Logical Framework			The Logical Framework		
Rules for Set (as an Element of Type)		Closure of Type			

Formation Rule for Set

Every Set is a Type

$$\frac{A:\operatorname{Set}}{A:\operatorname{Type}}$$
 (Set2Type)

Further we add rules stating that Type is closed under the dependent function type:

Closure of Type under the dependent function type

$$\frac{A: \text{Type} \quad x: A \Rightarrow B: \text{Type}}{(x: A) \rightarrow B: \text{Type}} (\rightarrow -\text{F}^{\text{Type}})$$

Type Theory and Interactive Theorem Proving

Key Philosophical Principles of Martin-Löf Type Theory

Setup of Martin-Löf Type Theory

Basic Types in Martin-Löf Type Theory

The Logical Framework

Inductive Data Types (Algebras) in Type Theory

Coinductive Data Types (Coalgebras) in Type Theory

Algebraic Types

- The construct data in Agda is much more powerful than what is covered by type theoretic rules.
- In general we can define now sets having arbitrarily many constructors with arbitrarily many arguments of arbitrary types.

data A : Set where $C_{1} : (a_{1} : A_{1}^{1}) \rightarrow (a_{2} : A_{2}^{1}) \rightarrow \cdots (a_{n_{1}} : A_{n_{1}}^{1}) \rightarrow A$ $C_{2} : (a_{1} : A_{1}^{2}) \rightarrow (a_{2} : A_{2}^{2}) \rightarrow \cdots (a_{n_{2}} : A_{n_{2}}^{2}) \rightarrow A$ \cdots $C_{m} : (a_{1} : A_{1}^{m}) \rightarrow (a_{2} : A_{2}^{m}) \rightarrow \cdots (a_{n_{m}} : A_{n_{m}}^{m}) \rightarrow A$

Anton Setzer	Mini Course on Martin-Löf Type Theory	105/136	Anton Setzer	Mini Course on Martin-Löf Type Theory	106/136
Inductive Data Types (Algebras) in Type Theory			Inductive Data Types (Algebras) in Type Theory		
Meaning of "data"			Strictly Positive Alg	gebraic Types	

The idea is that A as before is the least set A s.t. we have constructors:

where a constructor always constructs new elements.

 In other words the elements of A are exactly those constructed by those constructors. ► In the types A_{ij} we can make use of A.

- ► However, it is difficult to understand A, if we have **negative** occurrences of A.
- Example:

data A : Set where
C :
$$(A \rightarrow A) \rightarrow A$$

What is the least set A having a constructor

 $C: (A \rightarrow A) \rightarrow A$?

Strictly Positive Algebraic Types

Strictly Positive Algebraic Types

- If we
 - ► have constructed some elements of A already,
 - find a function $f : A \rightarrow A$, and
 - \blacktriangleright add $C\;f$ to A,
 - then f might no longer be a function $A \rightarrow A$.
 - (f applied to the new element C f might not be defined).
- In fact, the termination checker issues a warning, if we define A as above.
- We shouldn't make use of such definitions.

A "good" definition is the set of lists of natural numbers, defined as follows:

> data NList : Set where [] : NList _::_ : $\mathbb{N} \to \mathbb{N}$ List $\to \mathbb{N}$ List

► The constructor _::_ of NList refers to NList, but in a positive way: We have: if a : N and / : NList, then

 $(a::I):\mathbb{N}List$.

Anton Setzer	Mini Course on Martin-Löf Type Theory	109/136	Anton Setzer	Mini Course on Martin-Löf Type Theory	110/ 136
Inductive Data Types (Algebras) in Type Theory			Inductive Data Types (Algebras) in Type Theory		
Strictly Positive Alg	gebraic Types		Strictly Positive A	lgebraic Types	

- If we add a :: I to NList, the reason for adding it (namely I : NList) is not destroyed by this addition.
- \blacktriangleright So we can "construct" the set $\mathbb{N}\mathrm{List}$ by
 - starting with the empty set,
 - adding [] and
 - ► closing it under _::_ whenever possible.
- ▶ Because we can "construct" NList, the above is an acceptable definition.

In general:

ata A : Set where
$\mathrm{C}_1:(a_1:\mathrm{A}^1_1) \to (a_2:\mathrm{A}^1_2) \to \cdots (a_{n_1}:\mathrm{A}^1_{n_1}) \to A$
$C_2 : (a_1 : A_1^{\overline{2}}) \to (a_2 : A_2^{\overline{2}}) \to \cdots (a_{n_2} : A_{n_2}^{2}) \to A$
•••
$\mathbf{C}_m: (\mathbf{a}_1:\mathbf{A}_1^m) \rightarrow (\mathbf{a}_2:\mathbf{A}_2^m) \rightarrow \cdots (\mathbf{a}_{n_m}:\mathbf{A}_{n_m}^m) \rightarrow A$

- is a strictly positive algebraic type, if all A_{ij} are
 - either types which don't make use of A
 - ► or are A itself.
- \blacktriangleright And if A is a strictly positive algebraic type, then A is acceptable.

Strictly Positive Algebraic Types

positive algebraic types.

Inductive Data Types (Algebras) in Type Theory

One further Example

• The set of binary trees can be defined as follows:

data BinTree : Set where leaf : BinTree branch : Bintree \rightarrow Bintree

• This is a strictly positive algebraic type.

Anton Setzer	Mini Course on Mart	in-Löf Type Theory	113/ 136
Inductive Data Types	(Algebras) in Type Theory		

Extensions of Strictly Positive Algebraic Types

 An often used extension is to define several sets simultaneously inductively.

• The definitions of finite sets, $\Sigma A B$, A + B and \mathbb{N} were strictly

• Example: the even and odd numbers:

mutual
data Even : Set where
$$Z$$
 : Even
 S : Odd \rightarrow Even

 In such examples the constructors refer strictly positive to all sets which are to be defined simultaneously.

Anton Setzer	Mini Course on Martin-Löf Type Theory	114/ 136
Inductive Data Types (Algel	bras) in Type Theory	
tensions of Stric	tly Positive Algebraic	Types

- We can even allow $A_{ij} = B_1 \rightarrow A$ or even $A_{ij} = B_1 \rightarrow \cdots \rightarrow B_l \rightarrow A$, where A is one of the types introduced simultaneously.
- ► Example (called "Kleene's O"):

data O : Set where
leaf : O
succ :
$$O \rightarrow O$$

lim : $(\mathbb{N} \rightarrow O) \rightarrow O$

- ► The last definition is unproblematic, since, if we have f : N → O and construct lim f out of it, adding this new element to O doesn't destroy the reason for adding it to O.
- ► So again O can be "constructed".

Ex

Elimination Rules for data

by case distinction as before.

used in C $a_1 \cdots a_n$.

Examples

- For instance
 - ▶ in the Bintree example, when defining

 $\mathrm{f}:\mathrm{Bintree}\to A$

by case-distinction, then the definition of

f (branch l r)

can make use of f I and f r.

Anton Setzer Mini Course on Martin-Löf Type Theory Inductive Data Types (Algebras) in Type Theory	117/136 Anton Setzer Mini Course on Martin-Löf Type Theory 118/136 Coinductive Data Types (Coalgebras) in Type Theory
Examples	
	Type Theory and Interactive Theorem Proving
	Key Philosophical Principles of Martin-Löf Type Theory
In the example of O, when defining	Setup of Martin-Löf Type Theory
$\mathrm{g}:\mathrm{O} ightarrow A$ by case-distinction, then the definition of	Basic Types in Martin-Löf Type Theory
g (lim f)	The Logical Framework
can make use of $g(f n)$ for all $n : \mathbb{N}$.	Inductive Data Types (Algebras) in Type Theory
	Coinductive Data Types (Coalgebras) in Type Theory

• Functions f from strictly positive algebraic types can now be defined

▶ For termination we need only that in the definition of f, when have to

define f (C $a_1 \cdots a_n$), we can refer only to f applied to elements

Codata Type

Idea of Codata Types non-well-founded versions of inductive data types:

 Same definition as inductive data type but we are allowed to have infinite chains of constructors

$$\cos n_0 (\cos n_1 (\cos n_2 \cdots))$$

- ▶ **Problem 1:** Non-normalisation.
- Problem 2: Equality between streams is equality between all n_i, and therefore undecidable.
- Problem 3: Underlying assumption is

$$\forall s : \text{Stream.} \exists n, s'. s = \text{cons } n s'$$

which results in undecidable equality.

Anton Setzer Mini Course on Martin-Löf Type Theory		eory 121/ 136
Coinductive Data Type	es (Coalgebras) in Type Theory	

Coalgebraic Formulation of Coalgebras

- Solution is to follow the long established categorical formulation of coalgebras.
- ► Final coalgebras will be replaced by weakly final coalgebras.
- Two streams will be equal if the programs producing them reduce to the same normal form.

Subject Reduction Problem

- In order to repair problem of normalisation restrictions on reductions were introduced.
- Resulted in Coq in a long known problem of **subject reduction**.
- In order to avoid this, in Agda dependent elimination for coalgebras disallowed.
 - Makes it difficult to use.

L36	Anton Setzer	Mini Course on Martin-Löf Type Theory	122/ 136
	Coinductive Data Types (Coalgeb	oras) in Type Theory	
	Algebras and Coalg	jebras	

- Algebraic data types correspond to initial algebras.
 - $\blacktriangleright~\mathbb{N}$ as an algebra can be represented as introduction rules for $\mathbb{N}:$

$$\begin{array}{rcl} \operatorname{zero} & : & \mathbb{N} \\ \mathrm{S} & : & \mathbb{N} \to \mathbb{N} \end{array}$$

- ► Coalgebra obtained by "reversing the arrows".
 - \blacktriangleright Stream as a coalgebra can be expressed as as elimination rules for it:

Weakly Initial Algebras and Final Coalgebras

 N as a weakly initial algebra corresponds to iteration (elimination rule): For A : Set, a : A, f : A → A there exists

$$g: \mathbb{N} \to A$$

$$g \text{ zero } = a$$

$$g (S n) = f (g n)$$

(or $g \ n = f^n \ a$).

 Stream as a weakly final coalgebra corresponds to coiteration or guarded iteration (introduction rule):

For A : Set, $f_0 : A \to \mathbb{N}$, $f_1 : A \to A$ there exists g s.t.

$$g : A \rightarrow \text{Stream}$$

head $(g a) = f_0 a$
tail $(g a) = g (f_1 a)$

Anton Setzer Mini Course on Martin-Löf Type Theory Coinductive Data Types (Coalgebras) in Type Theory

Recursion and Corecursion

- \mathbb{N} as an initial algebra corresponds to uniqueness of g above.
 - Allows to derive primitive recursion:
 For A : Set, a : A, f : (N × A) → A there exists

$$g: \mathbb{N} \to A$$

$$g \text{ zero } = a$$

$$g (S n) = f \langle n, (g n) \rangle$$

- Stream as a final coalgebra corresponds to uniqueness of *h*.
 - ► Allows to derive primitive corecursion: For A : Set, $f_0 : A \to \mathbb{N}$, $f_1 : A \to (Stream + A)$ there exists

Coinductive	Data Types ((Coalgebras)) in Type Theory	
Comaterie	Dutu ijpes	Courgebius	, in type theory	

Example

Using coiteration we can define

inc : $\mathbb{N} \to \text{Stream}$ head (inc n) = ntail (inc n) = inc (n+1)

Anton Setzer Mini Course on Martin-Löf Type Theory 126/136 Coinductive Data Types (Coalgebras) in Type Theory

Recursion vs Iteration

► Using recursion we can define inverse case of the constructors of N as follows:

case :
$$\mathbb{N} \to (1 + \mathbb{N})$$

case zero = inl
case (S n) = inr n

Using iteration, we cannot make use of n and therefore case is defined inefficiently:

case :
$$\mathbb{N} \to (1 + \mathbb{N})$$

case zero = inl
case (S n) = caseaux (case n)
caseaux : $(1 + \mathbb{N}) \to (1 + \mathbb{N})$
caseaux inl = inr zero

125/136

caseaux (inr n) = inr (S n)

Definition of pred

 One way of defining pred by iteration is by defining first case and then to define

> predaux : $(1 + \mathbb{N}) \to \mathbb{N}$ predaux inl = zero predaux (inr n) = n

pred : $\mathbb{N} \to \mathbb{N}$ pred n = predaux (case n)

Corecursion vs Coiteration

Definition of cons (inverse of the destructors) using coiteration inefficient:

Using primitive corecursion we can define more easily

 $cons : \mathbb{N} \to Stream \to Stream$ head (cons n s) = ntail (cons n s) = s

Anton Setzer Mini Course on Martin-Löf Type Theory 129/136 Coinductive Data Types (Coalgebras) in Type Theory 129/136		Anton Setzer Coinductive Data Types (Coalgel	Mini Course on Martin-Löf Type Theory oras) in Type Theory	130/136	
Induction - Coindu	ction?		Weakly Final Coalg	gebra	

Induction is dependent primitive recursion:

For $A : \mathbb{N} \to \text{Set}$, a : A zero, $f : (n : \mathbb{N}) \to A n \to A (S n)$ there exists

 $g: (n: \mathbb{N}) \to A n$ g zero = ag (S n) = f n (g n)

- Equivalent to uniqueness of arrows with respect to propositional equality and interpreting equality on arrows extensionally.
- Uniqueness of arrows in final coalgebras expresses that equality is bisimulation equality.
 - How to dualise **dependent** primitive recursion?

 Equality for final coalgebras is undecidable: Two streams

$$s = (a_0 , a_1 , a_2 , ... t = (b_0 , b_1 , b_2 , ...$$

are equal iff $a_i = b_i$ for all *i*.

Even the weak assumption

$$\forall s. \exists n, s'. s = \cos n s'$$

results in an undecidable equality.

- Weakly final coalgebras obtained by omitting uniqueness of g in diagram for coalgebras.
- However, one can extend schema of coiteration as above, and still preserve decidability of equality.
 - ▶ Those schemata are usually not derivable in weakly final coalgebras.

Definition of Coalgebras by Observations

▶ We see now that elements of coalgebras are defined by their observations:

An element *s* of Stream is anything for which we can define

head s : \mathbb{N} tail s : Stream

This generalises the function type. Functions are as well determined by observations.

Anton Setzer

Patterns and Co

• An $f : A \rightarrow B$ is any program which if applied to a : A returns some b : B.

A REAL AND A REAL PROPERTY.

Inductive data types are defined by construction coalgebraic data types and functions by observations.

Relationship to Objects in Object-Oriented Programming

 Objects in Object-Oriented Programming are types which are defined by their observations.

124/ 126

• Therefore objects are coalgebraic types by nature.

Anton Setzer Coinductive Data Types (C	Mini Course on Martin-Lôf Type Theory coalgebras) in Type Theory	133/ 136	Anton Setzer Coinductive Data Types (Co	Mini Course on Martin-Löf Type Theory algebras) in Type Theory	134/ 136
Patterns and Copatterns			Patterns and Copatterns		
			f n = n, n, n-1, n-1	$\dots, \dots, 0, 0, N, N, N, N-1, N-1, \dots, 0, 0, N,$	N, N-1, N-1,
				$f: \mathbb{N} \to \text{Stream}$ f = ?	
 We can define now functions by patterns and copatterns. Example define stream: 			Copattern matching	$f: \mathbb{N} \to \text{Stream}$ $f = ?$ on $f: \mathbb{N} \to \text{Stream}$:	
$f n = n, n, n-1, n-1, \dots, 0, 0, N, N, N-1, N-1, \dots, 0, 0, N, N, N-1, N-1,$, N-1, N-1,		$\begin{array}{l} f:\mathbb{N}\to \text{Stream}\\ f\ n\ =\ ? \end{array}$	
				$\begin{array}{l} f: \mathbb{N} \to \text{Stream} \\ f n = ? \end{array}$	
			Copattern matchin	g on <i>f n</i> : Stream:	
				$f: \mathbb{N} \to \text{Stream}$ head $(f n) = ?$	
Anton Setzer	Mini Course on Martin-Löf Type Theory	135/ 136	Anton Setzer	Mini Course on Martin-Löf Type Theory	136/136

122/126