## Coinduction, Corecursion, Copatterns

Anton Setzer

Swansea University, Swansea UK (Joint work with Andreas Abel, Brigitte Pientka, David Thibodeau)

Lisbon, 31 January 2013

# Initial Algebras in Functional Programming 

Coalgebras and Copatterns

Codata Types

Conclusion

## Initial Algebras in Functional Programming

## Coalgebras and Copatterns

## Codata Types

## Conclusion

## Algebraic Data Types

In most functional programming languages we have the notion of an algebraic data type, e.g.

```
data \mathbb{N}: Set where
    0 : \mathbb{N}
    S : N}->\mathbb{N
data NatList : Set where
    nil : NatList
    cons : (\mathbb{N}\timesNatList) }->\mathrm{ NatList
```


## Algebraic Data Types

$$
\begin{aligned}
& \text { data } \text { KleeneO : Set where } \\
& 0
\end{aligned}: \text { KleeneO }=\text { KleeneO }
$$

## Kleene's O



## Algebraic Data Types as F-Algebras

$$
\begin{aligned}
& \text { data } \mathbb{N} \text { : Set where } \\
& 0: \mathbb{N} \\
& \mathrm{S}: \mathbb{N} \rightarrow \mathbb{N}
\end{aligned}
$$

can be rewritten as

data $\mathbb{N}$ : Set where

$$
\text { intro }:(1+\mathbb{N}) \rightarrow \mathbb{N}
$$

or with

$$
F(X):=1+X
$$

$$
\begin{aligned}
& \text { data } \mathbb{N}: \text { Set where } \\
& \text { intro }: \quad F(\mathbb{N}) \rightarrow \mathbb{N}
\end{aligned}
$$

## Algebraic Data Types as F-Algebras

> data NatList : Set where
> nil $:$ NatList
> cons $:$
can be with

$$
F(X):=1+(\mathbb{N} \times X)
$$

rewritten as

data NatList : Set where intro : $F($ NatList $) \rightarrow$ NatList

## Algebraic Data Types as F-Algebras

Finally

$$
\begin{aligned}
& \text { data KleeneO : Set where } \\
& 0 \text { : KleeneO } \\
& \mathrm{S} \text { : KleeneO } \rightarrow \text { KleeneO } \\
& \lim :(\mathbb{N} \rightarrow \text { KleeneO }) \rightarrow \text { KleeneO }
\end{aligned}
$$

can be with

$$
F(X):=1+X+(\mathbb{N} \rightarrow X)
$$

rewritten as
data KleeneO : Set where intro : $F($ KleeneO $) \rightarrow$ KleeneO

## Initial F-Algebras

Initial F-Algebras $F^{*}$ are minimal F-Algebras:


## Iteration

Existence of $g$ corresponds to iteration (example $\mathbb{N}$ ):

$$
\begin{aligned}
& 1+\mathbb{N} \xrightarrow{\text { intro }} \mathbb{N} \\
& 1+g \mid \exists g \\
& g(0) \\
& \begin{aligned}
& 1+A \xrightarrow{f} \\
&=g(\operatorname{intro}(\operatorname{inl})) \\
&=f(\operatorname{inl}) \\
& g(\mathrm{~S}(n))=g(\operatorname{intro}(\operatorname{inr}(n))) \\
&=f(\operatorname{inr}(g(n))
\end{aligned}
\end{aligned}
$$

So with $a_{0}:=f(\operatorname{inl})$ and $f_{0}(x):=f(\operatorname{inr}(x))$

$$
g(n)=f_{0}^{n}\left(a_{0}\right)
$$

## Recursion

The principle of recursion can be derived using uniqueness:
Assume

$$
\begin{array}{ll}
a_{0} & : A \\
f_{0} & : \\
(\mathbb{N} \times A) \rightarrow A
\end{array}
$$

We derive $g: \mathbb{N} \rightarrow A$ s.t.

$$
\begin{array}{ll}
g(0) & =a_{0} \\
g(\mathrm{~S}(n)) & =f_{0}(n, g(n))
\end{array}
$$

This allows to define e.g.

$$
\begin{array}{ll}
\operatorname{pred} & : \mathbb{N} \rightarrow \mathbb{N} \\
\operatorname{pred}(0) & =0 \\
\operatorname{pred}(\mathrm{~S}(n)) & = \\
n
\end{array}
$$

## Recursion

$$
\begin{array}{lll}
a_{0} & : & A \\
f_{0} & : & (\mathbb{N} \times A) \rightarrow A
\end{array}
$$

Define $f:(1+(\mathbb{N} \times A)) \rightarrow(\mathbb{N} \times A)$

$$
\begin{array}{ll}
f(\operatorname{inl}) & =\left(0, a_{0}\right) \\
f(\operatorname{inr}(n, a)) & =\left(\mathrm{S}(n), f_{0}(n, a)\right)
\end{array}
$$



Both $\pi_{0} \circ g$ and id make the outermost diagram commute.
By uniqueness follows $\pi_{0} \circ g=\mathrm{id}$, therefore $g(n)=\left(n, g_{0}(n)\right)$ for some $g_{0}: \mathbb{N} \rightarrow A$.
Therefore

$$
\begin{array}{ll}
g_{0}(0)=\pi_{1}(g(\operatorname{intro}(\operatorname{inl}))) & =\pi_{1}(f(\operatorname{inl})) \\
g_{0}(\mathrm{~S}(n))=\pi_{1}(g(\operatorname{intro}(\operatorname{inr}(n))))=a_{1}\left(f\left(\operatorname{inr}\left(n, g_{0}(n)\right)\right)\right)=f_{0}\left(n, g_{0}(n)\right)
\end{array}
$$

## Induction

Induction can be regarded as dependent elimination:
Assume

$$
\begin{aligned}
& A: \mathbb{N} \rightarrow \text { Set } \\
& a_{0}: A(0) \\
& f_{0}: \\
&(n: \mathbb{N}) \rightarrow A(n) \rightarrow A(\mathrm{~S}(n))
\end{aligned}
$$

We derive $g:(n: \mathbb{N}) \rightarrow A(n)$ s.t.

$$
\begin{array}{ll}
g(0) & =a_{0} \\
g(\mathrm{~S}(n)) & =f_{0}(n, g(n))
\end{array}
$$

Can be derived in the same way as recursion.

## Initial Algebras in Functional Programming

## Coalgebras and Copatterns

## Codata Types

## Conclusion

## Coalgebras

Final coalgebras $F^{\infty}$ are obtained by reversing the arrows in the diagram for $F$-algebras:


## Coalgebras

Consider Streams $=F^{\infty}$ where $F(X)=\mathbb{N} \times X$ :


Let

$$
\operatorname{case}(s)=(\operatorname{head}(s), \operatorname{tail}(s))
$$

and

$$
f(a)=\left(f_{0}(a), f_{1}(a)\right)
$$

## Guarded Recursion



Resulting equations:

$$
\begin{aligned}
& \operatorname{head}(g(a))=\pi_{0}(\operatorname{case}(g(a)))=\pi_{0}\left(f_{0}(a), g\left(f_{1}(a)\right)\right)=f_{0}(a) \\
& \operatorname{tail}(g(a))=\pi_{1}(\operatorname{case}(g(a)))=\pi_{1}\left(f_{0}(a), g\left(f_{1}(a)\right)\right)=g\left(f_{1}(a)\right)
\end{aligned}
$$

## Example of Guarded Recursion

$$
\begin{aligned}
\operatorname{head}(g(a)) & =f_{0}(a) \\
\operatorname{tail}(g(a)) & =g\left(f_{1}(a)\right)
\end{aligned}
$$

describes a schema of guarded recursion (or better coiteration) As an example, with $A=\mathbb{N}, f_{0}(n)=n, f_{1}(n)=n+1$ we obtain:

$$
\begin{aligned}
& \text { inc }: \mathbb{N} \rightarrow \text { Stream } \\
& \text { head(inc }(n))=n \\
& \operatorname{tail}(\operatorname{inc}(n))=\operatorname{inc}(n+1)
\end{aligned}
$$

## Corecursion

Corecursion allows for tail to escape into a stream. Example:

$$
\begin{aligned}
& \text { cons : }(\mathbb{N} \times \text { Stream }) \rightarrow \text { Stream } \\
& \operatorname{head}(\operatorname{cons}(n, s))=n \\
& \operatorname{tail}(\operatorname{cons}(n, s))=s
\end{aligned}
$$

## Corecursion

More generally, if

$$
\begin{array}{lll}
A & : & \text { Set } \\
f_{0} & : A \rightarrow \mathbb{N} \\
f_{1} & : & A \rightarrow(\text { Stream }+A)
\end{array}
$$

we get $g: A \rightarrow$ Stream s.t.

$$
\begin{array}{rlrl}
\operatorname{head}(g(a)) & =f_{0}(a) \\
\operatorname{tail}(g(a)) & =s & \text { if } & f_{1}(a)=\operatorname{inl}(s) \\
\operatorname{tail}(g(a))) & =g\left(a^{\prime}\right) & \text { if } & f_{1}(a)=\operatorname{inr}\left(a^{\prime}\right)
\end{array}
$$

## Corecursion vs Recursion

Compare with recursion which allowed for

$$
\begin{aligned}
& A: \\
& \text { Set } \\
& a_{0}: \\
& f_{0}: \\
&(\mathbb{N} \times A) \rightarrow A
\end{aligned}
$$

To define

$$
\begin{array}{ll}
g & : \quad \mathbb{N} \rightarrow A \\
g(0) & =a_{0} \\
g(\mathrm{~S}(n)) & =f_{0}(n, g(n))
\end{array}
$$

## Nested Corecursion

$$
\begin{aligned}
& \text { stutter }: \mathbb{N} \rightarrow \text { Stream } \\
& \text { head }(\operatorname{stutter}(n)) \\
& \text { head }(\operatorname{tail}(\operatorname{stutter}(n))) \\
& \operatorname{tail}(\operatorname{tail}(\operatorname{stutter}(n))) \\
& =n \\
& \text { tatter }(n+1)
\end{aligned}
$$

Even more general schemas can be defined.

## Weakly Final Coalgebra

- Equality for final coalgebras is undecidable:

Two streams

$$
\begin{array}{rlllllll}
s & =\left(\begin{array}{lllllll}
a_{0} & , & a_{1} & , & a_{2} & \ldots & \ldots \\
t & =\left(b_{0}\right. & , & b_{1} & , & b_{2} & , \\
\ldots
\end{array}\right.
\end{array}
$$

are equal iff $a_{i}=b_{i}$ for all $i$.

- Even the weak assumption

$$
\forall s . \exists n, s^{\prime} . s=\operatorname{cons}\left(n, s^{\prime}\right)
$$

results in an undecidable equality.

- Weakly final coalgebras obtained by omitting uniqueness of $g$ in diagram for coalgebras.
- However, one can extend schema of coiteration as above, and still preserve decidability of equality.
- Those schemata are usually not derivable in weakly final coalgebras.


## Patterns and Copatterns

- We can define now functions by patterns and copatterns.
- Example define stream:

$$
f(n)=n, n, n-1, n-1, \ldots 0,0, N, N, N-1, N-1, \ldots 0,0, N, N, N-1, N-
$$

- Step 1:

$$
\begin{aligned}
& f: \mathbb{N} \rightarrow \text { Stream } \\
& f=?
\end{aligned}
$$

- Step 2: Apply $f$ to variable:

$$
f(n)=?
$$

- Step 3: Make copattern matching on $f(n)$ : Stream:

$$
\begin{aligned}
\operatorname{head}(f(n)) & =? \\
\text { tail }(f(n)) & =?
\end{aligned}
$$

## Patterns and Copatterns

- We make pattern matching on $n=0, n=\mathrm{S}(m)$ :

$$
\begin{array}{ll}
\operatorname{head}(f(0)) & =0 \\
\operatorname{tail}(f(0)) & =? \\
\operatorname{head}(f(S(n))) & =\mathrm{S}(n) \\
\operatorname{tail}(f(S(n))) & =?
\end{array}
$$

## Patterns and Copatterns

$$
f(n)=n, n, n-1, n-1, \ldots 0,0, N, N, N-1, N-1, \ldots 0,0, N, N, N-1, N-1, \ldots
$$

- We make copattern matching on Stream:

$$
\begin{aligned}
\operatorname{head}(f(0 \quad)) & =0 \\
\operatorname{head}(\operatorname{tail}(f(0 \quad))) & =0 \\
\operatorname{tail}(\operatorname{tail}(f(0 \quad))) & =f(N) \\
\operatorname{head}(\quad f(\mathrm{~S}(n))) & =\mathrm{S}(n) \\
\operatorname{head}(\operatorname{tail}(f(\mathrm{~S}(n)))) & =\mathrm{S}(n) \\
\operatorname{tail}(\operatorname{tail}(f(\mathrm{~S}(n)))) & =f(n)
\end{aligned}
$$

## Results of paper in POPL

- Development of a recursive simply typed calculus (no termination check).
- Allows to derive schemas for pattern/copattern matching.
- Proof that subject reduction holds.

$$
t: A, \quad t \longrightarrow t^{\prime} \text { implies } t^{\prime}: A
$$

## Initial Algebras in Functional Programming

## Coalgebras and Copatterns

## Codata Types

## Conclusion

## Codata Type

- Idea of Codata Types:

$$
\begin{aligned}
& \text { codata Stream : Setwhere } \\
& \text { cons }: \mathbb{N} \times \text { Stream } \rightarrow \text { Stream }
\end{aligned}
$$

- Theoretical problem:

Underlying assumption is

$$
\forall s: \operatorname{Stream} . \exists n, s^{\prime} . s=\operatorname{cons}\left(n, s^{\prime}\right)
$$

which results in undecidable equality.

- Results in Coq in a long known problem of subject reduction.
- In Agda severe restriction of elimination for coalgebras, which makes proving formulas involving coalgebras very difficult.


## Problem of Subject reduction

$$
\begin{aligned}
& \text { data__ }_{\text {dat }}==\{A: \operatorname{Set}\}(a: A): A \rightarrow \text { Set where } \\
& \text { refl }: a==a
\end{aligned}
$$

codata Stream : Set where cons : $(\mathbb{N} \times$ Stream $) \rightarrow$ Stream
zeros: Stream
zeros $=\operatorname{cons}(0$, zeros $)$
force : Stream $\rightarrow$ Stream
force $(s)=$ case $s$ of $\operatorname{cons}(x, y) \rightarrow \operatorname{cons}(x, y)$
lem1: $(s:$ Stream $) \rightarrow s==$ force $(s))$
lem1 $(s)=$ case $s$ of $\operatorname{cons}(x, y) \rightarrow$ refl
lem2 : zeros $==\operatorname{cons}(0$, zeros $)$
lem2 $=$ lem1(zeros $) \longrightarrow$ refl $\quad \neg$ (refl : zeros $==\operatorname{cons}(0$, zeros $))$

## Multiple Constructors in Algebras and Coalgebras

- Several constructors in algebras correspond to disjoint union:

$$
\begin{aligned}
& \text { data } \mathbb{N}: \text { Set where } \\
& 0:
\end{aligned}
$$

corresponds to

$$
\begin{aligned}
& \text { data } \mathbb{N}: \text { Set where } \\
& \text { intro }:(1+\mathbb{N}) \rightarrow \mathbb{N}
\end{aligned}
$$

## Multiple Constructors in Algebras and Coalgebras

- Dual of disjoint union is products, and therefore multiple destructors correspond to product:

coalg Stream : Set where head : Stream $\rightarrow \mathbb{N}$ tail : Stream $\rightarrow$ Stream

corresponds to

$$
\begin{aligned}
& \text { coalg Stream : Set where } \\
& \text { case : Stream } \rightarrow(\mathbb{N} \times \text { Stream })
\end{aligned}
$$

## Codata Types Correspond to Disjoint Union

- Consider

$$
\begin{aligned}
& \text { codata coList : Set where } \\
& \text { nil } \quad: \text { coList } \\
& \text { cons }:(\mathbb{N} \times \text { coList }) \rightarrow \text { coList }
\end{aligned}
$$

- Cannot be simulated by a coalgebra with several destructors.


## Simulating Codata Types by Simultaneous Algebras/Coalgebras

- Represent Codata as follows

> mutual
> coalg coList : Set where unfold : coList $\rightarrow$ coListShape
> data coListShape : Set where
> nil $:$ coListShape
> cons $:(\mathbb{N} \times$ coList $) \rightarrow$ coListShape

## Example Append

append : (coList $\times$ coList) $\rightarrow$ coList
$\operatorname{append}\left(I, I^{\prime}\right)=\operatorname{appendaux}\left(\operatorname{unfold}(I), I^{\prime}\right)$
appendaux : (coListShape $\times$ coList) $\rightarrow$ coList
$\operatorname{appendaux}\left(\right.$ nil, $\left.I^{\prime}\right)=I^{\prime}$
$\operatorname{unfold}\left(\operatorname{appendaux}\left(\operatorname{cons}(n, I), I^{\prime}\right)\right)=\operatorname{cons}\left(n, \operatorname{append}\left(I, I^{\prime}\right)\right)$

## Initial Algebras in Functional Programming

## Coalgebras and Copatterns

Codata Types

Conclusion

## Conclusion

- Symmetry between
- algebras and coalgebras,
- iteration and coiteration,
- recursion and corecursion,
- patterns and copatterns.
- Unknown: dual of induction (requires codependent types?)
- Codata construct assumes every element is introduced by a constructor, which results in undecidable equality.
- Weakly final coalgebras solves this problem, but adds small overhead when programming.

