Coinduction, Corecursion, Copatterns

Anton Setzer

Swansea University, Swansea UK (Joint work with Andreas Abel, Brigitte Pientka, David Thibodeau)

Lisbon, 31 January 2013

Initial Algebras in Functional Programming

Coalgebras and Copatterns

Codata Types

Conclusion

3

Initial Algebras in Functional Programming

Coalgebras and Copatterns

Codata Types

Conclusion

3

Algebraic Data Types

In most functional programming languages we have the notion of an algebraic data type, e.g.

data \mathbb{N} : Set where $0 : \mathbb{N}$ $S : \mathbb{N} \to \mathbb{N}$

data NatList : Set where nil : NatList cons : $(\mathbb{N} \times \text{NatList}) \rightarrow \text{NatList}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Algebraic Data Types

data KleeneO : Set where

- 0 : KleeneO
- $\mathbf{S} \quad : \quad \mathbf{K} \mathbf{leeneO} \rightarrow \mathbf{K} \mathbf{leeneO}$
- $\lim : (\mathbb{N} \to \mathrm{KleeneO}) \to \mathrm{KleeneO}$

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Kleene's O

E

◆ロ > ◆母 > ◆臣 > ◆臣 >

Initial Algebras in Functional Programming

Algebraic Data Types as F-Algebras

data \mathbb{N} : Set where $0 : \mathbb{N}$ $S : \mathbb{N} \to \mathbb{N}$

can be rewritten as

data \mathbb{N} : Set where intro : $(1 + \mathbb{N}) \to \mathbb{N}$

or with

F(X):=1+X

data \mathbb{N} : Set where intro : $F(\mathbb{N}) \to \mathbb{N}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Algebraic Data Types as F-Algebras

data NatList : Set where nil : NatList cons : $(\mathbb{N} \times \text{NatList}) \rightarrow \text{NatList}$

can be with

$$F(X) := 1 + (\mathbb{N} \times X)$$

rewritten as

data NatList : Set where intro : $F(NatList) \rightarrow NatList$

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Algebraic Data Types as F-Algebras

Finally

data KleeneO : Set where 0 : KleeneO S : KleeneO \rightarrow KleeneO lim : ($\mathbb{N} \rightarrow$ KleeneO) \rightarrow KleeneO

$$F(X) := 1 + X + (\mathbb{N} \to X)$$

rewritten as

can be with

data KleeneO : Set where intro : $F(KleeneO) \rightarrow KleeneO$

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Initial F-Algebras

Initial F-Algebras F^* are minimal F-Algebras:

<ロト <部ト < 注ト < 注ト = 注

Iteration

Existence of g corresponds to iteration (example \mathbb{N}):

Recursion

The principle of recursion can be derived using uniqueness: Assume

$$egin{array}{rcl} a_0 & : & A \ f_0 & : & (\mathbb{N} imes A) o A \end{array}$$

We derive $g : \mathbb{N} \to A$ s.t.

$$g(0) = a_0$$

 $g(S(n)) = f_0(n, g(n))$

This allows to define e.g.

$$\begin{array}{rll} \mathrm{pred} & : & \mathbb{N} \to \mathbb{N} \\ \mathrm{pred}(0) & = & 0 \\ \mathrm{pred}(\mathrm{S}(n)) & = & n \end{array}$$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Recursion

$$\begin{array}{rcl} a_0 & : & A \\ f_0 & : & (\mathbb{N} \times A) \to A \end{array}$$

Define $f : (1 + (\mathbb{N} \times A)) \to (\mathbb{N} \times A)$
$$\begin{array}{rcl} f(\mathrm{inl}) & = & (0, a_0) \\ f(\mathrm{inr}(n, a)) & = & (\mathrm{S}(n), f_0(n, a)) \end{array}$$

▲日 → ▲圖 → ▲ 画 → ▲ 画 → 二 画

Both $\pi_0 \circ g$ and id make the outermost diagram commute. By uniqueness follows $\pi_0 \circ g = \mathrm{id}$, therefore $g(n) = (n, g_0(n))$ for some $g_0 : \mathbb{N} \to A$. Therefore

$$g_{0}(0) = \pi_{1}(g(\operatorname{intro}(\operatorname{inl}))) = \pi_{1}(f(\operatorname{inl})) = a_{0}$$

$$g_{0}(S(n)) = \pi_{1}(g(\operatorname{intro}(\operatorname{inr}(n)))) = \pi_{1}(f(\operatorname{inr}(n, g_{0}(n)))) = f_{0}(n, g_{0}(n))$$

Induction

Induction can be regarded as dependent elimination: Assume

$$egin{array}{rcl} A & : & \mathbb{N}
ightarrow \operatorname{Set} \ a_0 & : & A(0) \ f_0 & : & (n:\mathbb{N})
ightarrow A(n)
ightarrow A(\mathrm{S}(n)) \end{array}$$

We derive $g:(n:\mathbb{N}) \to A(n)$ s.t.

$$g(0) = a_0$$

 $g(S(n)) = f_0(n, g(n))$

Can be derived in the same way as recursion.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Initial Algebras in Functional Programming

Coalgebras and Copatterns

Codata Types

Conclusion

Э

イロト イヨト イヨト

Coalgebras

Final coalgebras F^{∞} are obtained by reversing the arrows in the diagram for *F*-algebras:

イロト 人間ト イヨト イヨト

Coalgebras

Consider Streams = F^{∞} where $F(X) = \mathbb{N} \times X$:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Guarded Recursion

Resulting equations:

$$\begin{aligned} &\text{head}(g(a)) &= \pi_0(\text{case}(g(a))) = \pi_0(f_0(a), g(f_1(a))) = f_0(a) \\ &\text{tail}(g(a)) &= \pi_1(\text{case}(g(a))) = \pi_1(f_0(a), g(f_1(a))) = g(f_1(a)) \end{aligned}$$

(日) (同) (三) (三) (三)

Example of Guarded Recursion

describes a schema of guarded recursion (or better coiteration) As an example, with $A = \mathbb{N}$, $f_0(n) = n$, $f_1(n) = n + 1$ we obtain:

3

イロト イポト イヨト イヨト

Corecursion allows for $\ensuremath{\mathrm{tail}}$ to escape into a stream. Example:

$$cons: (\mathbb{N} \times Stream) \rightarrow Stream$$

head $(cons(n, s)) = n$
tail $(cons(n, s)) = s$

3

▲ロト ▲圖ト ▲屋ト ▲屋ト

Corecursion

More generally, if

$$egin{array}{rcl} A & : & \mathrm{Set} \ f_0 & : & A
ightarrow \mathbb{N} \ f_1 & : & A
ightarrow (\mathrm{Stream} + A) \end{array}$$

we get $g : A \rightarrow \text{Stream s.t.}$

Corecursion vs Recursion

Compare with recursion which allowed for

$$\begin{array}{rcl} A & : & \operatorname{Set} \\ a_0 & : & A \\ f_0 & : & (\mathbb{N} \times A) \to A \end{array}$$

To define

$$g : \mathbb{N} \to A$$

$$g(0) = a_0$$

$$g(S(n)) = f_0(n, g(n))$$

3

イロト イポト イヨト イヨト

Nested Corecursion

$$\begin{array}{rcl} \mathrm{stutter}: \mathbb{N} \to \mathrm{Stream} \\ \mathrm{head}(& \mathrm{stutter}(n)) &=& n \\ \mathrm{head}(\mathrm{tail}(\mathrm{stutter}(n))) &=& n \\ \mathrm{tail}(& \mathrm{tail}(\mathrm{stutter}(n))) &=& \mathrm{stutter}(n+1) \end{array}$$

Even more general schemas can be defined.

<ロ> <部> < 部> < き> < き> < き</p>

Weakly Final Coalgebra

 Equality for final coalgebras is undecidable: Two streams

$$s = (a_0 , a_1 , a_2 , ... t = (b_0 , b_1 , b_2 , ...$$

are equal iff $a_i = b_i$ for all *i*.

Even the weak assumption

$$\forall s. \exists n, s'. s = \cos(n, s')$$

results in an undecidable equality.

- Weakly final coalgebras obtained by omitting uniqueness of g in diagram for coalgebras.
- However, one can extend schema of coiteration as above, and still preserve decidability of equality.
 - ► Those schemata are usually not derivable in weakly final coalgebras.

Patterns and Copatterns

- ► We can define now functions by patterns and copatterns.
- Example define stream:

 $f(n) = n, n, n-1, n-1, \dots, 0, 0, N, N, N-1, N-1, \dots, 0, 0, N, N, N-1, N-1$

► Step 1:

$$\begin{array}{rcl} f & : & \mathbb{N} \to \text{Stream} \\ f & = & ? \end{array}$$

• Step 2: Apply *f* to variable:

$$f(n) = ?$$

▶ Step 3: Make **copattern matching** on *f*(*n*) : Stream:

$$head(f(n)) = ?$$
$$tail(f(n)) = ?$$

◆□ > ◆母 > ◆臣 > ◆臣 > 三臣 - のへで

Patterns and Copatterns

• We make **pattern matching** on n = 0, n = S(m):

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Patterns and Copatterns

 $f(n) = n, n, n-1, n-1, \dots, 0, 0, N, N, N-1, N-1, \dots, 0, 0, N, N, N-1, N-1, \dots$

► We make **copattern matching** on Stream:

◆□ > ◆母 > ◆臣 > ◆臣 > 善臣 - のへで

Results of paper in POPL

- Development of a recursive simply typed calculus (no termination check).
- ► Allows to derive schemas for pattern/copattern matching.
- Proof that subject reduction holds.

$$t: A, t \longrightarrow t' \text{ implies } t': A$$

イロト イポト イヨト イヨト

Initial Algebras in Functional Programming

Coalgebras and Copatterns

Codata Types

Conclusion

Э

Codata Type

Idea of Codata Types:

codata Stream : Setwhere cons : $\mathbb{N} \times \text{Stream} \rightarrow \text{Stream}$

 Theoretical problem: Underlying assumption is

$$\forall s : \text{Stream}. \exists n, s'. s = \text{cons}(n, s')$$

which results in undecidable equality.

- ► Results in Coq in a long known problem of subject reduction.
- In Agda severe restriction of elimination for coalgebras, which makes proving formulas involving coalgebras very difficult.

イロト 不得 トイヨト イヨト 二日

Problem of Subject reduction

data
$$_==_ \{A : Set\} (a : A) : A \rightarrow Set$$
 where refl : $a == a$

codata Stream : Set where $cons : (\mathbb{N} \times Stream) \rightarrow Stream$

zeros : Streamzeros = cons(0, zeros)

force : Stream \rightarrow Stream force(s) = case s of cons(x, y) \rightarrow cons(x, y)

$$lem1: (s: Stream) \rightarrow s == force(s))$$
$$lem1(s) = case s of cons(x, y) \rightarrow refl$$

lem2 : zeros == cons(0, zeros) $lem2 = lem1(zeros) \longrightarrow refl \quad \neg(refl : zeros == cons(0, zeros))$

Multiple Constructors in Algebras and Coalgebras

Several constructors in algebras correspond to disjoint union:

data \mathbb{N} : Set where $0 : \mathbb{N}$ $S : \mathbb{N} \to \mathbb{N}$

corresponds to

data \mathbb{N} : Set where intro : $(1 + \mathbb{N}) \to \mathbb{N}$

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Multiple Constructors in Algebras and Coalgebras

Dual of disjoint union is products, and therefore multiple destructors correspond to product:

> coalg Stream : Set where head : Stream $\rightarrow \mathbb{N}$ tail : Stream \rightarrow Stream

corresponds to

coalg Stream : Set where case : Stream \rightarrow ($\mathbb{N} \times$ Stream)

イロト 不得 トイヨト イヨト 二日

Codata Types

Codata Types Correspond to Disjoint Union

Consider

 $\begin{array}{rcl} {\rm codata\ coList\ :\ Set\ where} \\ {\rm nil} & : & {\rm coList} \\ {\rm cons} & : & (\mathbb{N} \times {\rm coList}) \to {\rm coList} \end{array}$

Cannot be simulated by a coalgebra with several destructors.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Codata Types

Simulating Codata Types by Simultaneous Algebras/Coalgebras

Represent Codata as follows

mutual coalg coList : Set where unfold : coList \rightarrow coListShape

data coListShape : Set where

- nil : coListShape
- $\operatorname{cons} : (\mathbb{N} \times \operatorname{coList}) \to \operatorname{coListShape}$

イロト 人間ト イヨト イヨト

append :
$$(coList \times coList) \rightarrow coList$$

append $(I, I') = appendaux(unfold(I), I')$

Initial Algebras in Functional Programming

Coalgebras and Copatterns

Codata Types

Conclusion

Э

Conclusion

Symmetry between

- algebras and coalgebras,
- iteration and coiteration,
- recursion and corecursion,
- patterns and copatterns.
- Unknown: dual of induction (requires codependent types?)
- Codata construct assumes every element is introduced by a constructor, which results in undecidable equality.
- Weakly final coalgebras solves this problem, but adds small overhead when programming.

イロト イポト イヨト イヨト