
Coinduction, Corecursion, Copatterns

Anton Setzer

Swansea University, Swansea UK
(Joint work with Andreas Abel, Brigitte Pientka, David Thibodeau)

Lisbon, 31 January 2013

Anton Setzer Coinduction, Corecursion, Copatterns 1/ 39

Initial Algebras in Functional Programming

Coalgebras and Copatterns

Codata Types

Conclusion

Anton Setzer Coinduction, Corecursion, Copatterns 2/ 39

Initial Algebras in Functional Programming

Initial Algebras in Functional Programming

Coalgebras and Copatterns

Codata Types

Conclusion

Anton Setzer Coinduction, Corecursion, Copatterns 3/ 39

Initial Algebras in Functional Programming

Algebraic Data Types

In most functional programming languages we have the notion of an
algebraic data type, e.g.

data N : Set where
0 : N
S : N→ N

data NatList : Set where
nil : NatList
cons : (N×NatList)→ NatList

Anton Setzer Coinduction, Corecursion, Copatterns 4/ 39

Initial Algebras in Functional Programming

Algebraic Data Types

data KleeneO : Set where
0 : KleeneO
S : KleeneO→ KleeneO
lim : (N→ KleeneO)→ KleeneO

Anton Setzer Coinduction, Corecursion, Copatterns 5/ 39

Initial Algebras in Functional Programming

Kleene’s O

S 0 S (S 0)

S (S ω)

S ω

ω = lim (λn.Sn 0)

0 S 0

0

0

Anton Setzer Coinduction, Corecursion, Copatterns 6/ 39

Initial Algebras in Functional Programming

Algebraic Data Types as F-Algebras

data N : Set where
0 : N
S : N→ N

can be rewritten as

data N : Set where
intro : (1 + N)→ N

or with
F (X) := 1 + X

data N : Set where
intro : F (N)→ N

Anton Setzer Coinduction, Corecursion, Copatterns 7/ 39

Initial Algebras in Functional Programming

Algebraic Data Types as F-Algebras

data NatList : Set where
nil : NatList
cons : (N×NatList)→ NatList

can be with

F (X) := 1 + (N× X)

rewritten as
data NatList : Set where

intro : F (NatList)→ NatList

Anton Setzer Coinduction, Corecursion, Copatterns 8/ 39

Initial Algebras in Functional Programming

Algebraic Data Types as F-Algebras

Finally
data KleeneO : Set where

0 : KleeneO
S : KleeneO→ KleeneO
lim : (N→ KleeneO)→ KleeneO

can be with
F (X) := 1 + X + (N→ X)

rewritten as

data KleeneO : Set where
intro : F (KleeneO)→ KleeneO

Anton Setzer Coinduction, Corecursion, Copatterns 9/ 39

Initial Algebras in Functional Programming

Initial F-Algebras

Initial F-Algebras F ∗ are minimal F-Algebras:

F(F∗)
intro

- F∗

F(A)

F(g)

? f
- A

∃! g

?

Anton Setzer Coinduction, Corecursion, Copatterns 10/ 39

Initial Algebras in Functional Programming

Iteration

Existence of g corresponds to iteration (example N):

1 + N
intro

- N

1 + A

1 + g

? f
- A

∃g

?

g(0) = g(intro(inl))
= f (inl)

g(S(n)) = g(intro(inr(n)))
= f (inr(g(n))

So with a0 := f (inl) and f0(x) := f (inr(x))

g(n) = f n0 (a0)

Anton Setzer Coinduction, Corecursion, Copatterns 11/ 39

Initial Algebras in Functional Programming

Recursion

The principle of recursion can be derived using uniqueness:
Assume

a0 : A
f0 : (N× A)→ A

We derive g : N→ A s.t.

g(0) = a0
g(S(n)) = f0(n, g(n))

This allows to define e.g.

pred : N→ N
pred(0) = 0
pred(S(n)) = n

Anton Setzer Coinduction, Corecursion, Copatterns 12/ 39

Initial Algebras in Functional Programming

Recursion

a0 : A
f0 : (N× A)→ A

Define f : (1 + (N× A))→ (N× A)

f (inl) = (0, a0)
f (inr(n, a)) = (S(n), f0(n, a))

Anton Setzer Coinduction, Corecursion, Copatterns 13/ 39

1 + N
intro

- N

1 + (N× A)

1 + g

? f
- N× A

g

?

1 + N

1 + π0

? intro
- N

π0

?

Both π0 ◦ g and id make the outermost diagram commute.
By uniqueness follows π0 ◦ g = id,
therefore g(n) = (n, g0(n)) for some g0 : N→ A.
Therefore

g0(0) =π1(g(intro(inl))) =π1(f (inl)) =a0
g0(S(n))=π1(g(intro(inr(n))))=π1(f (inr(n, g0(n))))=f0(n, g0(n))

Initial Algebras in Functional Programming

Induction

Induction can be regarded as dependent elimination:
Assume

A : N→ Set
a0 : A(0)
f0 : (n : N)→ A(n)→ A(S(n))

We derive g : (n : N)→ A(n) s.t.

g(0) = a0
g(S(n)) = f0(n, g(n))

Can be derived in the same way as recursion.

Anton Setzer Coinduction, Corecursion, Copatterns 15/ 39

Coalgebras and Copatterns

Initial Algebras in Functional Programming

Coalgebras and Copatterns

Codata Types

Conclusion

Anton Setzer Coinduction, Corecursion, Copatterns 16/ 39

Coalgebras and Copatterns

Coalgebras

Final coalgebras F∞ are obtained by reversing the arrows in the diagram
for F -algebras:

A
f
- F (A)

F∞

∃!g

? case
- F (F∞)

F (g)

?

Anton Setzer Coinduction, Corecursion, Copatterns 17/ 39

Coalgebras and Copatterns

Coalgebras

Consider Streams = F∞ where F (X) = N× X :

A
f

- N× A

Stream

∃!g

? case
- N× Stream

id× g

?

Let
case(s) = (head(s), tail(s))

and
f (a) = (f0(a), f1(a))

Anton Setzer Coinduction, Corecursion, Copatterns 18/ 39

Coalgebras and Copatterns

Guarded Recursion

A
(f0, f1)

- N× A

Stream

∃!g

? (head, tail)
- N× Stream

id× g

?

Resulting equations:

head(g(a)) = π0(case(g(a))) = π0(f0(a), g(f1(a))) = f0(a)
tail(g(a)) = π1(case(g(a))) = π1(f0(a), g(f1(a))) = g(f1(a))

Anton Setzer Coinduction, Corecursion, Copatterns 19/ 39

Coalgebras and Copatterns

Example of Guarded Recursion

head(g(a)) = f0(a)
tail(g(a)) = g(f1(a))

describes a schema of guarded recursion (or better coiteration)
As an example, with A = N, f0(n) = n, f1(n) = n + 1 we obtain:

inc : N→ Stream
head(inc(n)) = n
tail(inc(n)) = inc(n + 1)

Anton Setzer Coinduction, Corecursion, Copatterns 20/ 39

Coalgebras and Copatterns

Corecursion

Corecursion allows for tail to escape into a stream.
Example:

cons : (N× Stream)→ Stream
head(cons(n, s)) = n
tail(cons(n, s)) = s

Anton Setzer Coinduction, Corecursion, Copatterns 21/ 39

Coalgebras and Copatterns

Corecursion

More generally, if
A : Set
f0 : A→ N
f1 : A→ (Stream + A)

we get g : A→ Stream s.t.

head(g(a)) = f0(a)
tail(g(a)) = s if f1(a) = inl(s)
tail(g(a)) = g(a′) if f1(a) = inr(a′)

Anton Setzer Coinduction, Corecursion, Copatterns 22/ 39

Coalgebras and Copatterns

Corecursion vs Recursion

Compare with recursion which allowed for

A : Set
a0 : A
f0 : (N× A)→ A

To define
g : N→ A
g(0) = a0
g(S(n)) = f0(n, g(n))

Anton Setzer Coinduction, Corecursion, Copatterns 23/ 39

Coalgebras and Copatterns

Nested Corecursion

stutter : N→ Stream
head(stutter(n)) = n
head(tail(stutter(n))) = n
tail(tail(stutter(n))) = stutter(n + 1)

Even more general schemas can be defined.

Anton Setzer Coinduction, Corecursion, Copatterns 24/ 39

Coalgebras and Copatterns

Weakly Final Coalgebra

I Equality for final coalgebras is undecidable:
Two streams

s = (a0 , a1 , a2 , . . .
t = (b0 , b1 , b2 , . . .

are equal iff ai = bi for all i .

I Even the weak assumption

∀s.∃n, s ′.s = cons(n, s ′)

results in an undecidable equality.

I Weakly final coalgebras obtained by omitting uniqueness of g in
diagram for coalgebras.

I However, one can extend schema of coiteration as above, and still
preserve decidability of equality.

I Those schemata are usually not derivable in weakly final coalgebras.

Anton Setzer Coinduction, Corecursion, Copatterns 25/ 39

Coalgebras and Copatterns

Patterns and Copatterns

I We can define now functions by patterns and copatterns.

I Example define stream:

f (n) = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

I Step 1:
f : N→ Stream
f = ?

I Step 2: Apply f to variable:

f (n) = ?

I Step 3: Make copattern matching on f (n) : Stream:

head(f (n)) = ?
tail(f (n)) = ?

Anton Setzer Coinduction, Corecursion, Copatterns 26/ 39

Coalgebras and Copatterns

Patterns and Copatterns

I We make pattern matching on n = 0, n = S(m):

head(f (0)) = 0
tail(f (0)) = ?
head(f (S(n))) = S(n)
tail(f (S(n))) = ?

Anton Setzer Coinduction, Corecursion, Copatterns 27/ 39

Coalgebras and Copatterns

Patterns and Copatterns

f (n) = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1, . . .

I We make copattern matching on Stream:

head(f (0)) = 0
head(tail(f (0))) = 0
tail(tail(f (0))) = f (N)
head(f (S(n))) = S(n)
head(tail(f (S(n))))= S(n)
tail(tail(f (S(n))))= f (n)

Anton Setzer Coinduction, Corecursion, Copatterns 28/ 39

Coalgebras and Copatterns

Results of paper in POPL

I Development of a recursive simply typed calculus (no termination
check).

I Allows to derive schemas for pattern/copattern matching.

I Proof that subject reduction holds.

t : A, t −→ t ′ implies t ′ : A

Anton Setzer Coinduction, Corecursion, Copatterns 29/ 39

Codata Types

Initial Algebras in Functional Programming

Coalgebras and Copatterns

Codata Types

Conclusion

Anton Setzer Coinduction, Corecursion, Copatterns 30/ 39

Codata Types

Codata Type

I Idea of Codata Types:

codata Stream : Setwhere
cons : N× Stream→ Stream

I Theoretical problem:
Underlying assumption is

∀s : Stream.∃n, s ′.s = cons(n, s ′)

which results in undecidable equality.

I Results in Coq in a long known problem of subject reduction.

I In Agda severe restriction of elimination for coalgebras, which makes
proving formulas involving coalgebras very difficult.

Anton Setzer Coinduction, Corecursion, Copatterns 31/ 39

Problem of Subject reduction

data == {A : Set} (a : A) : A→ Set where
refl : a == a

codata Stream : Set where
cons : (N× Stream)→ Stream

zeros : Stream
zeros = cons(0, zeros)

force : Stream→ Stream
force(s) = case s of cons(x , y)→ cons(x , y)

lem1 : (s : Stream)→ s == force(s))
lem1(s) = case s of cons(x , y)→ refl

lem2 : zeros == cons(0, zeros)
lem2 = lem1(zeros) −→ refl ¬(refl : zeros == cons(0, zeros))

Codata Types

Multiple Constructors in Algebras and Coalgebras

I Several constructors in algebras correspond to disjoint union:

data N : Set where
0 : N
S : N→ N

corresponds to
data N : Set where

intro : (1 + N)→ N

Anton Setzer Coinduction, Corecursion, Copatterns 33/ 39

Codata Types

Multiple Constructors in Algebras and Coalgebras

I Dual of disjoint union is products, and therefore multiple destructors
correspond to product:

coalg Stream : Set where
head : Stream→ N
tail : Stream→ Stream

corresponds to

coalg Stream : Set where
case : Stream→ (N× Stream)

Anton Setzer Coinduction, Corecursion, Copatterns 34/ 39

Codata Types

Codata Types Correspond to Disjoint Union

I Consider
codata coList : Set where

nil : coList
cons : (N× coList)→ coList

I Cannot be simulated by a coalgebra with several destructors.

Anton Setzer Coinduction, Corecursion, Copatterns 35/ 39

Codata Types

Simulating Codata Types by Simultaneous
Algebras/Coalgebras

I Represent Codata as follows

mutual
coalg coList : Set where

unfold : coList→ coListShape

data coListShape : Set where
nil : coListShape
cons : (N× coList)→ coListShape

Anton Setzer Coinduction, Corecursion, Copatterns 36/ 39

Codata Types

Example Append

append : (coList× coList)→ coList
append(l , l ′) = appendaux(unfold(l), l ′)

appendaux : (coListShape× coList)→ coList
appendaux(nil, l ′) = l ′

unfold(appendaux(cons(n, l), l ′)) = cons(n, append(l , l ′))

Anton Setzer Coinduction, Corecursion, Copatterns 37/ 39

Conclusion

Initial Algebras in Functional Programming

Coalgebras and Copatterns

Codata Types

Conclusion

Anton Setzer Coinduction, Corecursion, Copatterns 38/ 39

Conclusion

Conclusion

I Symmetry between
I algebras and coalgebras,
I iteration and coiteration,
I recursion and corecursion,
I patterns and copatterns.

I Unknown: dual of induction (requires codependent types?)

I Codata construct assumes every element is introduced by a
constructor, which results in undecidable equality.

I Weakly final coalgebras solves this problem, but adds small overhead
when programming.

Anton Setzer Coinduction, Corecursion, Copatterns 39/ 39

	Initial Algebras in Functional Programming
	Coalgebras and Copatterns
	Codata Types
	Conclusion

