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Motivation

Proof Theoretic Programme

I Hilbert’s program.
I Proof consistency of mathematical theories by finitary methods.

I Doesn’t work because of Gödel’s Incompleteness theorem.

I Gentzen: Reduction of consistency to well-foundedness of ordinal
notation systems.

I For weaker theories gives some insight.

I Direct insight from impredicative ordinal notation systems limited.
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Motivation

Proof Theoretic Programme

I Instead: replace in Hilbert’s program “finitary method” by
I “reduction to a theory with some insight into its consistency”.
I Or by

“reduction to a theory which formulates the reason why we believe in
its consistency”.

I Different approaches possible.
I Most successful approach: constructive theories.
I Candidates could be

I Frege structures,
I Feferman’s systems of explicit mathematics
I Martin-Löf Type Theory.

I Most effort has been taken to develop Martin-Löf Type Theory for that
purpose.
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Motivation

Development of Advanced Data Structures

I Needed: development of predicatively justified strong extensions of
Martin-Löf Type Theory.

I Benefits outside this programme:
I Discovery of advanced data structures for use in programming.

I Some examples are proof theoretically weak, and will be only of
interest for programming.
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Motivation

Data structures in Interactive Theorem Proving

I In normal mathematics we usually encode everything in set theory.

I One looses however the programming aspect.
I In interactive theorem proving it is useful to avoid equality rules by

using reduction rules.
I Requires again that elements of sets are programs which can be

evaluated.

I Development of advanced data structures can benefit
I interactive theorem proving,
I programming (especially with dependent types).
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Motivation

Basics of Type Theory Needed

I We have judgements:

a : A A : Set

I The latter expresses that A is a small type (= Set)

I We have the dependent function type:

(x : A)→ B

I Elements are functions f mapping a : A to f a : B[x := a].
I Example Matrix multiplication:

matmult : (n,m, k : N)→ Rn,m → Rm,k → Rn,k
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Inductive Definitions

Strictly Positive Inductive Definitions

I Natural Numbers:
data N : Set where

0 : N
S : N→ N

I Least set closed under constructors.

I Lists:
data List : Set where

nil : List
cons : N→ List→ List

I Use of inductive and non-inductive arguments.
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Inductive Definitions

More advanced Examples

I Simultaneous inductive definitions, dependencies on non-inductive
arguments:

data Vector : N→ Set where
nil : Vector 0
cons : (n : N)→ N→ Vector n→ Vector (n + 1)

I Inductive arguments indexed over sets:

data KleeneO : Set where
0 : KleeneO
S : KleeneO→ KleeneO
lim : (N→ KleeneO)→ KleeneO
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Inductive Definitions

Kleene’s O

S 0 S (S 0)

S (S ω)

S ω

ω = lim (λn.Sn 0)

0 S 0

0

0
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Inductive Definitions

Relationship to First-order Inductive Definitions

I First order Inductive Definitions:

KleeneO =
⋂
{X ⊆ N | Γ(X ) ⊆ X}

Γ(X ) := {x ∈ N | x = 〈0, 0〉 ∨ (∃y ∈ X . x = 〈1, y〉)
∨ ∃e. x = 〈2, e〉 ∧ ∀n. ∃m ∈ X . {e}(n) ' m}

I Could be formulated directly in type theory.

I Above version easier for carrying out proofs.
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Universes, Inductive-Recursive Definitions

Universes

I Universes = collection of sets.

I Formulated as
U : Set T : U→ Set

I U = set of codes for sets.

I T = decoding function.

I Example microscopic Universe:

U = B
T tt = >
T ff = ⊥
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Universes, Inductive-Recursive Definitions

Proof-Theoretically Strong Example

mutual
data U : Set where

N̂ : U

Π̂ : (x : U)→ (T x → U)→ U

Ŵ : (x : U)→ (T x → U)→ U
· · ·

T : U→ Set

T N̂ = N
T (Π̂ a b) = (x : T a)→ T (b x)

T (Ŵ a b) = Wx : T a.T (b x)
· · ·

Strength: One recursively inaccessible + ω admissibles above.
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Universes, Inductive-Recursive Definitions

Generalisation to Inductive-Recursive Definitions

I Inductive-Recursive Definitions originally defined by Dybjer, closed
formalisation by Dybjer + AS.

I Definition of a type theory containing all standard inductive
definitions, universes, and many generalisations.

I Generalise the principles.
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Universes, Inductive-Recursive Definitions

Induction-Recursion

I We have one set U : Set with constructors:

C : (a : A)︸ ︷︷ ︸
non-inductive argument

→ (b : B a→ U)︸ ︷︷ ︸
inductive argument depending on a

→ (c : (x : D a)× T (b (f x)))︸ ︷︷ ︸
non-inductive arguments depending on a and T ◦ b

→ · · ·

→ U
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Universes, Inductive-Recursive Definitions

Induction-Recursion

I We have T : U→ Set with recursive equations for each constructor:

T (C a b c · · · ) = t[a,T ◦ b, c , . . .] : Set

I Generalisation to T u : D for some type D.

I Generalisation to indexed induction-recursion.
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Universes, Inductive-Recursive Definitions

Universe

N̂

a
Σ̂(a, b)

T(a)
T(a)

Σ(T(a),T ◦ b)

T(b(x))
N

b(x) (x : T(a))

U
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Inductive-Inductive Definitions

Inductive-Inductive Definitions

I Joint work with Fredrik Forsberg.

I Sometimes mixed up with Induction-Recursion.

I Instead of defining T recursively, define T inductively.

I Therefore when introducing a : U, we don’t need an recursive equation

T a = · · ·

I Instead we have inductive clauses for introducing elements of T a.

I However, no negative occurrences of T in the type of U are allowed.

I Naming convention:
Instead of U, T, we use

A : Set B : A→ Set
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Inductive-Inductive Definitions

Fredrik Nordvall Forsberg
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Inductive-Inductive Definitions

Original Example

I Formulate Syntax of Type Theory inside Type Theory
(Nils Danielsson)

I Define inductively simultaneously:
I Ĉontext : Set.

I Γ : ̂Context represents the judgement

Γ⇒ Context

I Ŝet : Ĉontext→ Set.
I A : Ŝet Γ represents the judgement

Γ⇒ A : Set

I T̂erm : (Γ : Ĉontext)→ (A : Ŝet Γ)→ Set.

I r : T̂erm Γ A represents the judgement

Γ⇒ r : A

I And more components for dealing with equalities.
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Inductive-Inductive Definitions

Representation of Rules

I Rule
∅ : Context

represented as
∅̂ : Ĉontext

I Rule
Γ⇒ A : Set

Γ, x : A⇒ Context

represented (variable-free)

:̂: : (Γ : Ĉontext)→ (A : Ŝet Γ)→ Ĉontext

where we write Γ :̂: A for :̂: Γ A.
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Inductive-Inductive Definitions

Representation of Rules

I Rule
Γ, x : A⇒ B : Set

Γ⇒ Σx : A.B : Set

which in full reads

Γ : Context Γ⇒ A : Set Γ, x : A⇒ B : Set

Γ⇒ Σx : A.B : Set

is represented as
Σ̂ : (Γ : Ĉontext)

→ (A : Ŝet Γ)

→ (B : Ŝet (Γ :̂: A))

→ Ŝet Γ
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Inductive-Inductive Definitions

Observation

I We define simultaneously

I Ĉontext : Set inductively,
I Ŝet : Ĉontext→ Set inductively,
I T̂erm : (Γ : Ĉontext)→ Ŝet Γ→ Set inductively.
I · · ·

I Here restriction to only 2 levels, we define
I A : Set
I B : A→ Set

inductive-inductively.
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Inductive-Inductive Definitions

Observation

I In
I A : Set
I B : A→ Set

the constructor of B x might refer to the constructor of A.

I For instance in
Σ̂ : (Γ : Ĉontext)

→ (A : Ŝet Γ)

→ (B : Ŝet (Γ :̂: A))

→ Ŝet Γ

the second argument refers to the constructor :̂: for Ŝet.
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Inductive-Inductive Definitions

Example: Ordinal Notation System

I Typical definition:
I The set of pre ordinals T is defined inductively by:

I If a1, . . . , ak ∈ T and n1, . . . , nk ∈ N \ {0} then

ωa1n1 + · · ·+ ωaknk ∈ T

I We define ≺ on T recursively by

ωa1n1 + · · ·+ ωaknk ≺ ωb1m1 + · · ·+ ωblml

iff
(a1, n1, . . . , ak , nk) ≺lex (b1,m1, . . . , bl ,ml)

I We define OT ⊆ T inductively:
I If a1, . . . , ak ∈ OT and ak ≺ · · · ≺ a1 and n1, . . . , nk ∈ N \ {0} then

ωa1n1 + · · ·+ ωaknk ∈ OT
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Inductive-Inductive Definitions

Definition of OT Inductive-Inductively

I Define OT : Set and ≺: OT→ OT→ Set inductive-inductively:
I If a1, . . . , ak ∈ OT and ak ≺ · · · ≺ a1 and n1, . . . , nk ∈ N \ {0} then

ωa1n1 + · · ·+ ωaknk ∈ OT

I If
ωa1n1 + · · ·+ ωaknk
ωb1m1 + · · ·+ ωblml ∈ OT

and
(a1, n1, . . . , ak , nk) ≺lex (b1,m1, . . . , bl ,ml)

then
ωa1n1 + · · ·+ ωaknk ≺ ωb1m1 + · · ·+ ωblml
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Inductive-Inductive Definitions

Conway’s Surreal Numbers

I Like Dedekind cuts, but replacing rationals by previously defined
surreal numbers.

I So no need to define first natural numbers, integers, rational numbers.

I Surreal numbers contain all ordered fields.

I Definition in set theory.
I Definition of the class of surreal numbers Surreal together with an

ordering ≤:
I If XL,XR ∈ P(Surreal) such that

∀xL ∈ XL. ∀xR ∈ XR . xR 6≤ xL

then (XL,XR) ∈ Surreal
I X = (XL,XR) ≤ (YL,YR) = Y iff

I ∀xL ∈ XL. Y 6≤ xL
I ∀yR ∈ YR . yR 6≤ X
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Inductive-Inductive Definitions

Surreal Numbers as an Inductive-Inductive Definition

I Define simultaneously inductively

Surreal : Set
≤ : Surreal→ Surreal→ Set
6≤ : Surreal→ Surreal→ Set

I P(Surreal) replaced by Σa : U.T a→ Surreal for some universe U.

I We refer to this and x ∈ XL informally.
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Inductive-Inductive Definitions

Inductive-Inductive Definition of Surreal

I If XL,XR ∈ P(Surreal), and

p : ∀xL ∈ XL. ∀xR ∈ XR . xR 6≤ xL

then (XL,XR)p : Surreal.

I Assume X = (XL,XR)p,Y = (YL,YR)q : Surreal.
Assume

∀xL ∈ XL. Y 6≤ xL
∀yR ∈ YR . yR 6≤ X

then X ≤ Y .
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Inductive-Inductive Definitions

Inductive-Inductive Definition of Surreal

I Assume X = (XL,XR)p,Y = (YL,YR)q : Surreal.

I If
∃xL ∈ XL. Y ≤ xL

then X 6≤ Y .
I If

∃yR ∈ YR . yR ≤ X

then X 6≤ Y .
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Inductive-Inductive Definitions

Inductive-Inductive Definitions in Mathematics

I Inductive-inductive definitions seem to be very frequent in
mathematics.

I Usually reduced to inductive definitions by
I first defining simultaneously inductively Apre : Set, Bpre : Set by

ignoring dependencies of B on A.
I then selecting A ⊆ Apre, B ⊆ Bpre by selecting those elements which

fulfil the correct rules.

I Seems to be a general method of reducing inductive-inductive
definitions to inductive definitions (work in progress).
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Mahlo

Steps Towards Mahlo

I First step beyond standard universe
I The super universe (Palmgren).
I He introduced a universe V: ,

I together with a universe operator U: : Fam(V)→ V,

I Fam(V)
::::::

is the set of families of sets in V indexed over elements of V,

roughly speaking

{(Bx)x :B |B : V, x : B ⇒ Bx : V}

I s.t. for any family of sets A in V, U(A) is a universe containing all
elements of A.
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Mahlo

Steps Towards Mahlo

I A Universe is a family of sets closed under constructions for forming
sets.

I We can now form a universe, closed under the formation of the next
universe above a family of sets.

I (The next slide doesn’t exhaust the strength, it shows only universes
containing one set, not universes containing family of sets)
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Mahlo

Illustration of the Super Universe

V
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Illustration of the Super Universe

U0= U(empty)

V

Anton Setzer Induction, Induction, Induction 39/ 61



Mahlo

Illustration of the Super Universe

U0= U(empty)

U0x

V

Anton Setzer Induction, Induction, Induction 39/ 61



Mahlo

Illustration of the Super Universe

U0= U(empty)

U0x

U1= U(U0)

V

Anton Setzer Induction, Induction, Induction 39/ 61



Mahlo

Illustration of the Super Universe

U0= U(empty)

U0x

U1= U(U0)

x U1

V

Anton Setzer Induction, Induction, Induction 39/ 61



Mahlo

Illustration of the Super Universe

U0= U(empty)

U0x

U1= U(U0)

x U1

U2

V
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Mahlo

Illustration of the Super Universe

U0= U(empty)

U0x

U1= U(U0)

x U1

U2

U2x

V
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Mahlo

Supern-Universes

I The above can be continued: We can form a
I super2-universe V,
I closed under a super-universe operator, forming a super universe above

a family of sets in V.

I And we can iterate the above n-many times, and even go beyond.

I Up to now everything was inductive-recursive
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Mahlo

Mahlo Universe

I The Mahlo universe is
I a universe V: ,

I which has not only subuniverses corresponding to some operators, but
subuniverses corresponding to all operators it is closed under:

I for every universe operator on V,
I i.e. every f : Fam(V)→ Fam(V),

I there exists a universe Uf::
closed under f .
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Mahlo

Illustration of the Mahlo Universe
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Mahlo
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Mahlo

Illustration of the Mahlo Universe
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Mahlo

Illustration of the Mahlo Universe

f

V

U_f

f

U_f
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Mahlo

Formulation of Mahlo Universe

mutual
data V : Set where

Π̂ : (x : V)→ (TV x → V)→ V
· · ·
Û : (f : (x : V)→ (TV x → V)→ V)

→ (g : (x : V)→ (TV x → V)→ (TV (f x y)→ V)→ V)
→ V

TV : V→ Set

TV (Π̂ a b) = (x : TV a)→ TV (b x)
· · ·
TV (Û f g) = U f g
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Mahlo

Mahlo Universe in Agda

data U (f : (x : V)→ (TV x → V)→ V)
(g : (x : V)→ (TV x → V)→ (TV (f x y)→ V)→ V)
: Set where

Π̂ : (x : Uf ,g )→ (Tf ,g x → Uf ,g )→ Uf ,g

· · ·
f̂ : (x : Uf ,g )→ (Tf ,g x → Uf ,g )→ Uf ,g

ĝ : (x : Uf ,g )
→ (y : Tf ,g x → Uf ,g )

→ TV (f (T̂f ,g x) (T̂f ,g ◦ y))
→ Uf ,g
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Mahlo

Mahlo Universe in Agda

T̂ (f : (x : V)→ (TV x → V)→ V)
(g : (x : V)→ (TV x → V)→ (TV (f x y)→ V)→ V)
: Uf ,g → V

T̂f ,g (Π̂ a b) = Π̂ (T̂f ,g a) (T̂f ,g ◦ b)
· · ·
T̂f ,g (̂f a b) = f (T̂f ,g a) (T̂f ,g ◦ b)

T̂f ,g (ĝ a b c) = g (T̂f ,g a) (T̂f ,g ◦ b) c
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Extended Predicative Mahlo

Problems of Mahlo Universe

I This section is joint work with R. Kahle.

I Elements of V are constructed, depending on total functions

f : Fam(V)→ Fam(V)

I However, for defining Uf , only the restriction of f to Fam(Uf ) is
needed to be total.

I Problem: In Martin-Löf Type Theory all functions are total.

I In Feferman’s explicit mathematics possible.
I We will use syntax borrowed from type theory,

I but a ∈ B instead of a : B.
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Extended Predicative Mahlo

Extended Predicative Mahlo (in Explicit. Mathematics)

I Explicit mathematics more Russell-style, therefore we can have
V ∈ Set, V ⊂ Set.

I We can encode Fam(V) into V, therefore need only to consider
functions f : V→ V.

I Define V to be closed under universe constructions for explicit
mathematics.

I Define for f , X ∈ Set, X ⊆ Set

Pre f X ∈ Set Pre f X ⊆ X
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Extended Predicative Mahlo

Closure of Pre f X

I Pre f X is closed under universe constructions, if result is in X .

I Closure under join (similar introduction rule as Π):

∀a ∈ Pre f X . ∀b ∈ a→ Pre f X . j a b ∈ X → j a b ∈ Pre f X

I Pre f X is closed under f , if result is in X :

∀a ∈ Pre f X . f a ∈ X → f a ∈ Pre f X
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Extended Predicative Mahlo

Pre f X

    

c

f c

f b

b

X

Pre f X
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Extended Predicative Mahlo

Independence of Pre f X

I If, whenever a universe construction or f is applied to elements of
Pre f X we get elements in X , then Pre f X is independent of future
extensions of X .

Indep(f ,Pre f X ,X ) := (∀a ∈ Pre f X . ∀b ∈ a→ Pre f X . j a b ∈ X )
∧ · · ·
∧ ∀a ∈ Pre f X . f a ∈ X
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Extended Predicative Mahlo

Indpt

    

f

b

f b

X

u := Pre f X

Indep(f , u,X )
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Extended Predicative Mahlo

Introduction Rule for V

I ∀f . Indep(f ,Pre f V,V)→ (U f ∈ Set
∧ U f =ext Pre f V
∧ U f ∈ V)

.
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Extended Predicative Mahlo

Introduction Rule for V

    

f

b

f b

U f

Pre f M
Indep(f ,Pre f V,V)

V

Anton Setzer Induction, Induction, Induction 54/ 61



Extended Predicative Mahlo

Interpretation of Axiomatic Mahlo

I One can show:

∀f ∈ V→ V. Indep(f ,Pre f V,V)

therefore

∀f ∈ V→ V. U f ∈ V ∧ Univ(f ) ∧ f ∈ U f → U f

I So V closed under axiomatic Mahlo constructions.

I Therefore extended predicative Mahlo has at least strength of
axiomatic Mahlo.
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Coalgebras

Coalgebras

I Restriction to the simplest non-indexed case.

I Algebras are functions
f : F A→ A

Simplest example Lists:

[nil, cons] : ({∗}+ A× List A)→ List A

I
:::::::::::::
Coalgebras are functions

f : A→ F A

I Colists are sets coList A : Set together with

case : coList A→ ({∗}+ A× List A)
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Coalgebras

Misconception

I Often people think colists consist of

cons a1 (cons a2 · · · (cons an nil) · · · )

or infinite streams
cons a1 (cons a2 · · · )

I In our setting colists are not infinite, but can be unfolded potentially
infinitely many.

I Example: the increasing colist is given by

inc : N→ coList
case (inc n) = inr 〈n, inc (n + 1)〉
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Coalgebras

Theory of Coalgebras

I Can be developed for indexed coalgebras with dependencies.

I Extensions to induction-recursion don’t make sense yet.
I In type theory

I Algebras are determined by their introduction rules,
the elimination rules are “derived”.

I Coalgebras are determined by their elimination rules,
the introduction rules are “derived”.
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Coalgebras

Conclusion

I Examples of extensions/variants of inductive Definitions:
I universes,
I inductive-recursive definitions,
I inductive-inductive definitions,
I Mahlo universe,
I extended predicative Mahlo universe,
I coalgebras.
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Coalgebras

Conclusion

I Extensions allow to define data structures as first class citizens (no
encoding).

I useful in interactive theorem proving.

I Useful as well as data structures in programming.
I Not necessarily limited to the context of type theory/explicit

mathematics.
I Could allow to more easily understand constructions in mathematics

(e.g. Conway’s surreal numbers).
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