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Iteration, Recursion, Induction

N as an Initial Algebra

I N is initial algebra of the functor F(X ) = 1 + X

I

F(N) = 1 + N
0 + S

- N

F(A) = 1 + A

F(g) = 1 + g

? f ′
- A

∃! g

?

f ′ can be decomposed as f ′ = a + f
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Iteration, Recursion, Induction

Unique Iteration

1 + N
0 + S

- N

1 + A

1 + g

? a + f
- A

∃! g

?

Unique existence of g means unique iteration:

Given a : A and f : A→ A there exists a unique

g : N→ A
g 0 = a
g (S n) = f (g n)
i.e
g (Sn 0) = f n a
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Iteration, Recursion, Induction

Unique Recursion

I From the principle of unique iteration we can prove the principle of
unique (primitive) recursion:

Given a : A and f : N→ A→ A there exists a unique

g : N→ A
g 0 = a
g (S n) = f n (g n)
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Iteration, Recursion, Induction

Induction

I From the principle of unique iteration we can prove the principle of
induction:

Assume A : N→ Set, a : A 0 and f : (n : N)→ A n→ A (S n)

There exists a unique

g : (n : N)→ A n
g 0 = a
g (S n) = f n (g n)

I Using induction we can prove that if we have two solutions for a
iteration or recursion principle, they are pointwise equal, i.e.
uniqueness of iteration and recursion.
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Iteration, Recursion, Induction

Pattern Matching

I The above means that we can define

g : (n : N)→ A n
g 0 = a for some a : A
g (S n) = a′ for some a′ : A depending on n

where in the second case we can use the recursion hypothesis or
induction hypothesis g n.

I This means we can define g n by pattern matching on n : N.
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Iteration, Recursion, Induction

Iteration, Recursion, Induction

Theorem

Assume N : Set, 0 : N, S : N→ N.
The following are equivalent

I The principle of unique iteration.

I The principle of unique recursion.

I The principle of unique induction.

I The principle of induction.
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Coiteration, Corecursion

Streams as a Final Coalgebra

I Dual of + is ×, so we use for clarity a functor using product rather
than disjoint union:

I Stream is the final coalgebra of F(X ) = N× X

X
f

- N× X = F(X )

Stream

∃!g

? head× tail
- N× Stream

id× g = F(g)

?
= F(Stream)

I We can decompose f as

f = f0 × f1
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Coiteration, Corecursion

Unique Coiteration

X
f0 × f1 - N× X

Stream

∃!g

? head× tail
- N× Stream

id× g

?

This corresponds to the principle of unique coiteration:
There exists a unique

g : A→ Stream
head (g x) = f0 x
tail (g x) = g (f1 x)
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Coiteration, Corecursion

Unique Coiteration

I We had:
head (g x)) = f0 x
tail (g x) = g (f1 x)

I By choosing f0, f1 we can define g : X → Stream s.t.

head (g x) = n for some n : N depending on x
tail (g x) = g x ′ for some x ′ : X depending on x
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Coiteration, Corecursion

Unique Corecursion

I From unique coiteration we can derive unique corecursion:
There exists a unique

g : A→ Stream
head (g x) = n for some n : N depending on x
tail (g x) = g x ′ for some x ′ : X depending on x

or
= s for some s : Stream depending on x

I This means we can define g x by copattern matching
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Coiteration, Corecursion

Examples

I We can define

cons : (N× Stream)→ Stream
head (cons(n, s)) = n
tail (cons(n, s)) = s

Note: cons not primitive but defined by corecursion

inc : N→ Stream
head (inc n) = n
tail (inc n) = inc (n + 1)
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Coiteration, Corecursion

Examples

inc′ : N→ Stream
head (inc′(n)) = n
tail (inc′(n)) = inc′′(n + 1)

inc′′ : N→ Stream
head (inc′′(n)) = n
tail (inc′′(n)) = inc′(n + 1)
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Bisimilarity and Coinduction

Bisimilarity

I Bisimilarity ∼ on Streams is an indexed final coalgebra.

I Consider the category SetStream×Stream of binary relations

ϕ : Stream× Stream→ Set

I Let

F∼ : SetStream×Stream → SetStream×Stream

F∼(ϕ, (s, s ′)) = (head s = head s ′)× ϕ (tail s, tail s ′)
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Bisimilarity and Coinduction

Bisimilarity

I That ∼ is a F∼ coalgebra means there exist

elim∼ : (s, s ′ : Stream)
→ s ∼ s ′

→ (head s = head s ′)× (tail s ∼ tail s ′)

i.e.
s ∼ s ′ → (head s = head s ′) ∧ ((tail s) ∼ (tail s ′))

I Let elim0
∼ and elim1

∼ the two components of elim∼,

elim0
∼ : (s, s ′ : Stream)→ s ∼ s ′ → head s = head s ′

elim1
∼ : (s, s ′ : Stream)→ s ∼ s ′ → tail s ∼ tail s ′

and hide the first two arguments of elimi
∼.
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Bisimilarity and Coinduction

Bisimilarity

I That ∼ is a final F∼-coalgebra means that it is the largest such
relation:

ϕ (s, s ′)
f

- head s = head s ′ ∧ ϕ (tail s, tail s ′)

s ∼ s ′

∃!g

? elim∼- head s = head s ′ ∧ (tail s) ∼ (tail s ′)

id ∧ g

?

I This means that

∀s, s ′.ϕ (s, s ′)→ head s = head s ′ ∧ ϕ (tail s, tail s ′)

then
∀s, s ′.ϕ (s, s ′)→ s ∼ s ′
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Bisimilarity and Coinduction

Bisimilarity

I So we have

s ∼ s ′ → head s = head s ′ ∧ (tail s) ∼ (tail s ′)

and if

∀s, s ′.ϕ (s, s ′)→ head s = head s ′ ∧ ϕ (tail s, tail s ′)

then
∀s, s ′.ϕ (s, s ′)→ s ∼ s ′
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Bisimilarity and Coinduction

Corecursive Proof of Bisimilarity

I Because ∼ is a final coalgebra we can compute proofs of it by
corecursion:

I We can define

f : (s, s ′ : Stream)→ ϕ s s ′ → s ∼ s ′

elim0
∼ (f s s ′ x) = an element of head s = head s ′

elim0
∼ (f s s ′ x) = an element of (tail s) ∼ (tail s ′)

where in the last line we can use
I either a proof of tail s ∼ tail s ′ defined before
I or use the corecursion hypothesis f (tail s) (tail s ′) x ′ for some

x ′ : ϕ (tail s) (tail s ′)
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Bisimilarity and Coinduction

Coinduction

Theorem

Assume Stream : Set, head : Stream→ N, tail : Stream→ Stream.
The following are equivalent

I The principle of unique coiteration.

I The principle of unique corecursion.

I The principle of iteration together with the principle that bisimilarity
∼ implies equality

∀s, s ′ : Stream.s ∼ s ′ → s = s ′

Because of the possibility of defining elements of s ∼ s ′ the latter can be
considered as a principle of coinduction.
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Bisimilarity and Coinduction

Principle of Coinduction

I Let ϕ : Stream→ Stream→ Set.

I We can prove
∀s, s ′ : Stream.ϕ s s ′ → s = s ′

by showing

∀s, s ′ : Stream.ϕ s s ′ → head s = head s ′

∀s, s ′ : Stream.ϕ s s ′ → tail s = tail s ′

where for proving tail s = tail s ′ we can use the coinduction
hypothesis that ϕ (tail s) (tail s ′) implies tail s = tail s ′.
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Bisimilarity and Coinduction

Indexed Coinduction

I Instead of defining ϕ as a predicate Stream→ Stream→ Set we can
assume

A : Set
s, t : A→ Stream
and define
ϕ s ′ t ′ = (a : A)× (s ′ = s a)× (t ′ = t a)

I Coinduction of ϕ becomes then the principle of indexed coinduction
(see next slide)
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Bisimilarity and Coinduction

Indexed Coinduction

I Assume
A : Set
s0, s1 : A→ Stream

I We can prove
∀a : A.s0 a = s1 a

by showing
∀a : A.head (s a) = head (t a)
∀a : A.tail (s a) = tail (t a)

where for proving tail (s a) = tail (t a) we can use that
tail (s a) = s a′ and tail (t a) = t a′ and therefore by
coinduction-hypothesis s a′ = t a′.
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Bisimilarity and Coinduction

Example Proof by Coinduction

I Remember
inc : N→ Stream
head(inc n) = n
tail (inc n) = inc (n + 1)

inc′ : N→ Stream
head(inc′(n)) = n
tail (inc′(n)) = inc′′(n + 1)

inc′′ : N→ Stream
head(inc′′(n)) = n
tail (inc′′(n)) = inc′(n + 1)
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Bisimilarity and Coinduction

Example Proof by Coinduction

I We show
∀n ∈ N.inc′ n = inc n ∧ inc′′ n = inc n

I Formally we would use in the above

A = N + N
s (inl n)= inc′ n
s (inr n)= inc′′ n
t (inl n) = inc n
t (inr n)= inc n
and show
∀a : A.s a = t a
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Bisimilarity and Coinduction

Example Proof by Coinduction

I Proof of
∀n ∈ N.inc′ n = inc n ∧ inc′′ n = inc n

I Assume n : N.

head (inc′ n) = n = head (inc n)
head (inc′′ n) = n = head (inc n)

tail (inc′ n) = inc′′ (n + 1)
co−IH

= inc (n + 1) = tail (inc n)

tail (inc′′ n) = inc′ (n + 1)
co−IH

= inc (n + 1) = tail (inc n)
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Proofs by Coinduction of Bisimilarity in Transition Systems

Bisimilarity

I Consider the following (unlabelled) transition system:

x x x

p q r

I Bisimilarity is the final coalgebra

p ∼ q → (∀p′.p −→ p′

→ ∃q′.q −→ q′ ∧ p′ ∼ q′)
∧ · · · symmetric case · · · }
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Proofs by Coinduction of Bisimilarity in Transition Systems

Proof using the Definition of ∼

x x x

p q r

I We show p ∼ q ∧ p ∼ r by coinduction:
I Coinduction step for p ∼ q:

I Assume p −→ p′. Then p′ = p.
We have q −→ r and by co-IH p ∼ r .

I Assume q −→ q′. Then q′ = r .
We have p −→ p and by co-IH p ∼ r .

I Coinduction step for p ∼ r :
I Assume p −→ p′. Then p′ = p.

We have r −→ q and by co-IH p ∼ q.
I Assume r −→ r ′. Then r ′ = q.

We have p −→ p and by co-IH p ∼ q.
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Proofs by Coinduction of Bisimilarity in Transition Systems

Traditional Argument of Proving Bisimiliarity

I The standard argument for showing p ∼ q ∧ p ∼ r is as follows:
Define a relation ϕ on states by

ϕ(p′, q′)⇔ p′ = p ∧ (q′ = q ∨ q′ = r)

Show ϕ is a simulation:

∀p, p′, q.ϕ(p, q) ∧ p −→ p′ ⇒ ∃q′.q −→ q′ ∧ ϕ(p′, q′)
∀p, q, q′.ϕ(p, q) ∧ q −→ q′ ⇒ ∃p′.p −→ p′ ∧ ϕ(p′, q′)

Anton Setzer (Swansea) Pattern and Copattern matching 33/ 46

Proofs by Coinduction of Bisimilarity in Transition Systems

Comparison with Proofs by Induction

I We can compare both proofs to proofs by induction on natural
number. Consider a proof of

∀n,m, k .n + (m + k) = (n + m) + k

I The traditional proof would corresponds to defining a relation

R(k)⇔ ∀n,m.n + (m + k) = (n + m) + k

and showing
R(0) ∧ ∀n.R(n)→ R(S(n))

I Although this argument and the standard inductive proof using the
induction hypothesis are equivalent, the standard inductive proof is
more convenient and easier to follow.

I We hope that proofs by coinduction will similarly be easier if we do it
by referring to the coinduction hypothesis.
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Mixed Patterns and Copatterns

Nested Pattern Matching

I Course of Value primitive recursion allows deep pattern matching.
E.g. we can define the Fibonaccie numbers

fib : N→ N
fib 0 = 1
fib (S 0) = 1
fib (S (S n)) = fib n + fib (S n)

I We can now even mix pattern and copattern matching.
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Mixed Patterns and Copatterns

Example Mixed Pattern/Copattern Matching

I We can define now functions by patterns and copatterns.

I Example define stream:
f n =
n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,
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Mixed Patterns and Copatterns

Example Mixed Pattern/Copattern Matching

f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
f = ?

f : N→ Stream
f = ?

Copattern matching on f : N→ Stream:

f : N→ Stream
f n = ?

f : N→ Stream
f n = ?

Copattern matching on f n : Stream:

f : N→ Stream
head (f n) = ?
tail (f n) = ?

f : N→ Stream
f n = ?

Solve first case, copattern match on second case:

f : N→ Stream
head (f n) = n
head (tail (f n)) = ?
tail (tail (f n)) = ?

f : N→ Stream
f n = ?

Solve second line, pattern match on n

f : N→ Stream
head (f n) = n
head (tail (f n)) = n
tail (tail (f 0)) = ?
tail (tail (f (S n))) = ?

f : N→ Stream
f n = ?

Solve remaining cases

f : N→ Stream
head (f n) = n
head (tail (f n)) = n
tail (tail (f 0)) = f N
tail (tail (f (S n))) = f n
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Mixed Patterns and Copatterns

Results of paper in POPL (2013)

I Development of a recursive simply typed calculus (no termination
check).

I Allows to derive schemata for pattern/copattern matching.

I Proof that subject reduction holds.

t : A, t −→ t ′ implies t ′ : A

I Subject reduction fails when using codata types in combination with
the equality type (e.g. in Coq and early versions of Agda).
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Unnesting of Pattern/Copattern Matching

Consider Example from above

f : N→ Stream
head (f n) = n
head (tail (f n)) = n
tail (tail (f 0)) = f N
tail (tail (f (S n))) = f n

We show how this example can be reduced to unnested (co)pattern
matching.
In a second step (not shown today) one can reduce it to primitive
(co)recursion operators.
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Unnesting of Pattern/Copattern Matching

Unnesting of Nested (Co)Pattern Matching

We follow the steps in the pattern matching:
We start with

f : N→ Stream
head (f n) = n
tail (f n) = ?
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Copattern matching on tail (f n):

f : N→ Stream
head (f n) = n
head (tail (f n) = n
tail (tail (f n) = ?

corresponds to

f : N→ Stream
head (f n) = n
tail (f n) = g n

g : N→ Stream
(head (tail (f n)) =) head (g n) = n
(tail (tail (f n)) =) tail (g n) = ?

Pattern matching on tail (tail (f n)):

f : N→ Stream
head (f n) = n
head (tail (f n) = n
tail (tail (f 0) = f N
tail (tail (f (S n)) = f n

corresponds to

f : N→ Stream
head (f n) = n
tail (f n) = g n

g : N→ Stream
(head (tail (f n)) =) head (g n) = n
(tail (tail (f n)) =) tail (g n) = k n

k : N→ Stream
(tail (tail (f 0)) =) k 0 = f N
(tail (tail (f (S n))) =) k (S n) = f n



Unnesting of Pattern/Copattern Matching

Conclusion

I Principle of induction is well established and makes proofs much
easier.

I In theoretical computer science coinductive principles occur
frequently.

I Main reason: interactive programs running continuously in various
frameworks (imperative, object-oriented, process-calculi)

I Coalgebras as being defined by their eliminators rather than infinite
applications of constructors makes clear when recursive calls are
allowed.

I Proofs by coinduction in the above situation can be carried out
similarly as proofs by induction.

I Main difficulty: when are we allowed to apply co-IH?
I In the corecursion step we have a proof obligation, and can use the

co-IH to prove it.
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Unnesting of Pattern/Copattern Matching

Conclusion

I Copattern matching as the dual of pattern matching.
I Pattern matching is an elimination principle for inductive types (initial

algebras).
I Copattern matching is an introduction principle for coinductive types

(final coalgebras).

I Mixed pattern and copattern matching can be reduced to simple
pattern and copattern matching.
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