
Pattern and Copattern matching

Anton Setzer

Swansea University, Swansea UK

Leeds Logic Seminar, 13 May 2015

Anton Setzer (Swansea) Pattern and Copattern matching 1/ 46

Iteration, Recursion, Induction

Coiteration, Corecursion

Bisimilarity and Coinduction

Proofs by Coinduction of Bisimilarity in Transition Systems

Mixed Patterns and Copatterns

Unnesting of Pattern/Copattern Matching

Anton Setzer (Swansea) Pattern and Copattern matching 2/ 46

Iteration, Recursion, Induction

Iteration, Recursion, Induction

Coiteration, Corecursion

Bisimilarity and Coinduction

Proofs by Coinduction of Bisimilarity in Transition Systems

Mixed Patterns and Copatterns

Unnesting of Pattern/Copattern Matching

Anton Setzer (Swansea) Pattern and Copattern matching 3/ 46

Iteration, Recursion, Induction

N as an Initial Algebra

I N is initial algebra of the functor F(X ) = 1 + X

I

F(N) = 1 + N
0 + S

- N

F(A) = 1 + A

F(g) = 1 + g

? f ′
- A

∃! g

?

f ′ can be decomposed as f ′ = a + f

Anton Setzer (Swansea) Pattern and Copattern matching 4/ 46



Iteration, Recursion, Induction

Unique Iteration

1 + N
0 + S

- N

1 + A

1 + g

? a + f
- A

∃! g

?

Unique existence of g means unique iteration:

Given a : A and f : A→ A there exists a unique

g : N→ A
g 0 = a
g (S n) = f (g n)
i.e
g (Sn 0) = f n a

Anton Setzer (Swansea) Pattern and Copattern matching 5/ 46

Iteration, Recursion, Induction

Unique Recursion

I From the principle of unique iteration we can prove the principle of
unique (primitive) recursion:

Given a : A and f : N→ A→ A there exists a unique

g : N→ A
g 0 = a
g (S n) = f n (g n)

Anton Setzer (Swansea) Pattern and Copattern matching 6/ 46

Iteration, Recursion, Induction

Induction

I From the principle of unique iteration we can prove the principle of
induction:

Assume A : N→ Set, a : A 0 and f : (n : N)→ A n→ A (S n)

There exists a unique

g : (n : N)→ A n
g 0 = a
g (S n) = f n (g n)

I Using induction we can prove that if we have two solutions for a
iteration or recursion principle, they are pointwise equal, i.e.
uniqueness of iteration and recursion.

Anton Setzer (Swansea) Pattern and Copattern matching 7/ 46

Iteration, Recursion, Induction

Pattern Matching

I The above means that we can define

g : (n : N)→ A n
g 0 = a for some a : A
g (S n) = a′ for some a′ : A depending on n

where in the second case we can use the recursion hypothesis or
induction hypothesis g n.

I This means we can define g n by pattern matching on n : N.

Anton Setzer (Swansea) Pattern and Copattern matching 8/ 46



Iteration, Recursion, Induction

Iteration, Recursion, Induction

Theorem

Assume N : Set, 0 : N, S : N→ N.
The following are equivalent

I The principle of unique iteration.

I The principle of unique recursion.

I The principle of unique induction.

I The principle of induction.

Anton Setzer (Swansea) Pattern and Copattern matching 9/ 46

Coiteration, Corecursion

Iteration, Recursion, Induction

Coiteration, Corecursion

Bisimilarity and Coinduction

Proofs by Coinduction of Bisimilarity in Transition Systems

Mixed Patterns and Copatterns

Unnesting of Pattern/Copattern Matching

Anton Setzer (Swansea) Pattern and Copattern matching 10/ 46

Coiteration, Corecursion

Streams as a Final Coalgebra

I Dual of + is ×, so we use for clarity a functor using product rather
than disjoint union:

I Stream is the final coalgebra of F(X ) = N× X

X
f

- N× X = F(X )

Stream

∃!g

? head× tail
- N× Stream

id× g = F(g)

?
= F(Stream)

I We can decompose f as

f = f0 × f1

Anton Setzer (Swansea) Pattern and Copattern matching 11/ 46

Coiteration, Corecursion

Unique Coiteration

X
f0 × f1 - N× X

Stream

∃!g

? head× tail
- N× Stream

id× g

?

This corresponds to the principle of unique coiteration:
There exists a unique

g : A→ Stream
head (g x) = f0 x
tail (g x) = g (f1 x)

Anton Setzer (Swansea) Pattern and Copattern matching 12/ 46



Coiteration, Corecursion

Unique Coiteration

I We had:
head (g x)) = f0 x
tail (g x) = g (f1 x)

I By choosing f0, f1 we can define g : X → Stream s.t.

head (g x) = n for some n : N depending on x
tail (g x) = g x ′ for some x ′ : X depending on x

Anton Setzer (Swansea) Pattern and Copattern matching 13/ 46

Coiteration, Corecursion

Unique Corecursion

I From unique coiteration we can derive unique corecursion:
There exists a unique

g : A→ Stream
head (g x) = n for some n : N depending on x
tail (g x) = g x ′ for some x ′ : X depending on x

or
= s for some s : Stream depending on x

I This means we can define g x by copattern matching

Anton Setzer (Swansea) Pattern and Copattern matching 14/ 46

Coiteration, Corecursion

Examples

I We can define

cons : (N× Stream)→ Stream
head (cons(n, s)) = n
tail (cons(n, s)) = s

Note: cons not primitive but defined by corecursion

inc : N→ Stream
head (inc n) = n
tail (inc n) = inc (n + 1)

Anton Setzer (Swansea) Pattern and Copattern matching 15/ 46

Coiteration, Corecursion

Examples

inc′ : N→ Stream
head (inc′(n)) = n
tail (inc′(n)) = inc′′(n + 1)

inc′′ : N→ Stream
head (inc′′(n)) = n
tail (inc′′(n)) = inc′(n + 1)

Anton Setzer (Swansea) Pattern and Copattern matching 16/ 46



Bisimilarity and Coinduction

Iteration, Recursion, Induction

Coiteration, Corecursion

Bisimilarity and Coinduction

Proofs by Coinduction of Bisimilarity in Transition Systems

Mixed Patterns and Copatterns

Unnesting of Pattern/Copattern Matching

Anton Setzer (Swansea) Pattern and Copattern matching 17/ 46

Bisimilarity and Coinduction

Bisimilarity

I Bisimilarity ∼ on Streams is an indexed final coalgebra.

I Consider the category SetStream×Stream of binary relations

ϕ : Stream× Stream→ Set

I Let

F∼ : SetStream×Stream → SetStream×Stream

F∼(ϕ, (s, s ′)) = (head s = head s ′)× ϕ (tail s, tail s ′)

Anton Setzer (Swansea) Pattern and Copattern matching 18/ 46

Bisimilarity and Coinduction

Bisimilarity

I That ∼ is a F∼ coalgebra means there exist

elim∼ : (s, s ′ : Stream)
→ s ∼ s ′

→ (head s = head s ′)× (tail s ∼ tail s ′)

i.e.
s ∼ s ′ → (head s = head s ′) ∧ ((tail s) ∼ (tail s ′))

I Let elim0
∼ and elim1

∼ the two components of elim∼,

elim0
∼ : (s, s ′ : Stream)→ s ∼ s ′ → head s = head s ′

elim1
∼ : (s, s ′ : Stream)→ s ∼ s ′ → tail s ∼ tail s ′

and hide the first two arguments of elimi
∼.

Anton Setzer (Swansea) Pattern and Copattern matching 19/ 46

Bisimilarity and Coinduction

Bisimilarity

I That ∼ is a final F∼-coalgebra means that it is the largest such
relation:

ϕ (s, s ′)
f

- head s = head s ′ ∧ ϕ (tail s, tail s ′)

s ∼ s ′

∃!g

? elim∼- head s = head s ′ ∧ (tail s) ∼ (tail s ′)

id ∧ g

?

I This means that

∀s, s ′.ϕ (s, s ′)→ head s = head s ′ ∧ ϕ (tail s, tail s ′)

then
∀s, s ′.ϕ (s, s ′)→ s ∼ s ′

Anton Setzer (Swansea) Pattern and Copattern matching 20/ 46



Bisimilarity and Coinduction

Bisimilarity

I So we have

s ∼ s ′ → head s = head s ′ ∧ (tail s) ∼ (tail s ′)

and if

∀s, s ′.ϕ (s, s ′)→ head s = head s ′ ∧ ϕ (tail s, tail s ′)

then
∀s, s ′.ϕ (s, s ′)→ s ∼ s ′

Anton Setzer (Swansea) Pattern and Copattern matching 21/ 46

Bisimilarity and Coinduction

Corecursive Proof of Bisimilarity

I Because ∼ is a final coalgebra we can compute proofs of it by
corecursion:

I We can define

f : (s, s ′ : Stream)→ ϕ s s ′ → s ∼ s ′

elim0
∼ (f s s ′ x) = an element of head s = head s ′

elim0
∼ (f s s ′ x) = an element of (tail s) ∼ (tail s ′)

where in the last line we can use
I either a proof of tail s ∼ tail s ′ defined before
I or use the corecursion hypothesis f (tail s) (tail s ′) x ′ for some

x ′ : ϕ (tail s) (tail s ′)

Anton Setzer (Swansea) Pattern and Copattern matching 22/ 46

Bisimilarity and Coinduction

Coinduction

Theorem

Assume Stream : Set, head : Stream→ N, tail : Stream→ Stream.
The following are equivalent

I The principle of unique coiteration.

I The principle of unique corecursion.

I The principle of iteration together with the principle that bisimilarity
∼ implies equality

∀s, s ′ : Stream.s ∼ s ′ → s = s ′

Because of the possibility of defining elements of s ∼ s ′ the latter can be
considered as a principle of coinduction.

Anton Setzer (Swansea) Pattern and Copattern matching 23/ 46

Bisimilarity and Coinduction

Principle of Coinduction

I Let ϕ : Stream→ Stream→ Set.

I We can prove
∀s, s ′ : Stream.ϕ s s ′ → s = s ′

by showing

∀s, s ′ : Stream.ϕ s s ′ → head s = head s ′

∀s, s ′ : Stream.ϕ s s ′ → tail s = tail s ′

where for proving tail s = tail s ′ we can use the coinduction
hypothesis that ϕ (tail s) (tail s ′) implies tail s = tail s ′.

Anton Setzer (Swansea) Pattern and Copattern matching 24/ 46



Bisimilarity and Coinduction

Indexed Coinduction

I Instead of defining ϕ as a predicate Stream→ Stream→ Set we can
assume

A : Set
s, t : A→ Stream
and define
ϕ s ′ t ′ = (a : A)× (s ′ = s a)× (t ′ = t a)

I Coinduction of ϕ becomes then the principle of indexed coinduction
(see next slide)

Anton Setzer (Swansea) Pattern and Copattern matching 25/ 46

Bisimilarity and Coinduction

Indexed Coinduction

I Assume
A : Set
s0, s1 : A→ Stream

I We can prove
∀a : A.s0 a = s1 a

by showing
∀a : A.head (s a) = head (t a)
∀a : A.tail (s a) = tail (t a)

where for proving tail (s a) = tail (t a) we can use that
tail (s a) = s a′ and tail (t a) = t a′ and therefore by
coinduction-hypothesis s a′ = t a′.

Anton Setzer (Swansea) Pattern and Copattern matching 26/ 46

Bisimilarity and Coinduction

Example Proof by Coinduction

I Remember
inc : N→ Stream
head(inc n) = n
tail (inc n) = inc (n + 1)

inc′ : N→ Stream
head(inc′(n)) = n
tail (inc′(n)) = inc′′(n + 1)

inc′′ : N→ Stream
head(inc′′(n)) = n
tail (inc′′(n)) = inc′(n + 1)

Anton Setzer (Swansea) Pattern and Copattern matching 27/ 46

Bisimilarity and Coinduction

Example Proof by Coinduction

I We show
∀n ∈ N.inc′ n = inc n ∧ inc′′ n = inc n

I Formally we would use in the above

A = N + N
s (inl n)= inc′ n
s (inr n)= inc′′ n
t (inl n) = inc n
t (inr n)= inc n
and show
∀a : A.s a = t a

Anton Setzer (Swansea) Pattern and Copattern matching 28/ 46



Bisimilarity and Coinduction

Example Proof by Coinduction

I Proof of
∀n ∈ N.inc′ n = inc n ∧ inc′′ n = inc n

I Assume n : N.

head (inc′ n) = n = head (inc n)
head (inc′′ n) = n = head (inc n)

tail (inc′ n) = inc′′ (n + 1)
co−IH

= inc (n + 1) = tail (inc n)

tail (inc′′ n) = inc′ (n + 1)
co−IH

= inc (n + 1) = tail (inc n)

Anton Setzer (Swansea) Pattern and Copattern matching 29/ 46

Proofs by Coinduction of Bisimilarity in Transition Systems

Iteration, Recursion, Induction

Coiteration, Corecursion

Bisimilarity and Coinduction

Proofs by Coinduction of Bisimilarity in Transition Systems

Mixed Patterns and Copatterns

Unnesting of Pattern/Copattern Matching

Anton Setzer (Swansea) Pattern and Copattern matching 30/ 46

Proofs by Coinduction of Bisimilarity in Transition Systems

Bisimilarity

I Consider the following (unlabelled) transition system:

x x x

p q r

I Bisimilarity is the final coalgebra

p ∼ q → (∀p′.p −→ p′

→ ∃q′.q −→ q′ ∧ p′ ∼ q′)
∧ · · · symmetric case · · · }

Anton Setzer (Swansea) Pattern and Copattern matching 31/ 46

Proofs by Coinduction of Bisimilarity in Transition Systems

Proof using the Definition of ∼

x x x

p q r

I We show p ∼ q ∧ p ∼ r by coinduction:
I Coinduction step for p ∼ q:

I Assume p −→ p′. Then p′ = p.
We have q −→ r and by co-IH p ∼ r .

I Assume q −→ q′. Then q′ = r .
We have p −→ p and by co-IH p ∼ r .

I Coinduction step for p ∼ r :
I Assume p −→ p′. Then p′ = p.

We have r −→ q and by co-IH p ∼ q.
I Assume r −→ r ′. Then r ′ = q.

We have p −→ p and by co-IH p ∼ q.

Anton Setzer (Swansea) Pattern and Copattern matching 32/ 46



Proofs by Coinduction of Bisimilarity in Transition Systems

Traditional Argument of Proving Bisimiliarity

I The standard argument for showing p ∼ q ∧ p ∼ r is as follows:
Define a relation ϕ on states by

ϕ(p′, q′)⇔ p′ = p ∧ (q′ = q ∨ q′ = r)

Show ϕ is a simulation:

∀p, p′, q.ϕ(p, q) ∧ p −→ p′ ⇒ ∃q′.q −→ q′ ∧ ϕ(p′, q′)
∀p, q, q′.ϕ(p, q) ∧ q −→ q′ ⇒ ∃p′.p −→ p′ ∧ ϕ(p′, q′)

Anton Setzer (Swansea) Pattern and Copattern matching 33/ 46

Proofs by Coinduction of Bisimilarity in Transition Systems

Comparison with Proofs by Induction

I We can compare both proofs to proofs by induction on natural
number. Consider a proof of

∀n,m, k .n + (m + k) = (n + m) + k

I The traditional proof would corresponds to defining a relation

R(k)⇔ ∀n,m.n + (m + k) = (n + m) + k

and showing
R(0) ∧ ∀n.R(n)→ R(S(n))

I Although this argument and the standard inductive proof using the
induction hypothesis are equivalent, the standard inductive proof is
more convenient and easier to follow.

I We hope that proofs by coinduction will similarly be easier if we do it
by referring to the coinduction hypothesis.

Anton Setzer (Swansea) Pattern and Copattern matching 34/ 46

Mixed Patterns and Copatterns

Iteration, Recursion, Induction

Coiteration, Corecursion

Bisimilarity and Coinduction

Proofs by Coinduction of Bisimilarity in Transition Systems

Mixed Patterns and Copatterns

Unnesting of Pattern/Copattern Matching

Anton Setzer (Swansea) Pattern and Copattern matching 35/ 46

Mixed Patterns and Copatterns

Nested Pattern Matching

I Course of Value primitive recursion allows deep pattern matching.
E.g. we can define the Fibonaccie numbers

fib : N→ N
fib 0 = 1
fib (S 0) = 1
fib (S (S n)) = fib n + fib (S n)

I We can now even mix pattern and copattern matching.

Anton Setzer (Swansea) Pattern and Copattern matching 36/ 46



Mixed Patterns and Copatterns

Example Mixed Pattern/Copattern Matching

I We can define now functions by patterns and copatterns.

I Example define stream:
f n =
n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

Anton Setzer (Swansea) Pattern and Copattern matching 37/ 46

Mixed Patterns and Copatterns

Example Mixed Pattern/Copattern Matching

f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
f = ?

f : N→ Stream
f = ?

Copattern matching on f : N→ Stream:

f : N→ Stream
f n = ?

f : N→ Stream
f n = ?

Copattern matching on f n : Stream:

f : N→ Stream
head (f n) = ?
tail (f n) = ?

f : N→ Stream
f n = ?

Solve first case, copattern match on second case:

f : N→ Stream
head (f n) = n
head (tail (f n)) = ?
tail (tail (f n)) = ?

f : N→ Stream
f n = ?

Solve second line, pattern match on n

f : N→ Stream
head (f n) = n
head (tail (f n)) = n
tail (tail (f 0)) = ?
tail (tail (f (S n))) = ?

f : N→ Stream
f n = ?

Solve remaining cases

f : N→ Stream
head (f n) = n
head (tail (f n)) = n
tail (tail (f 0)) = f N
tail (tail (f (S n))) = f n

Anton Setzer (Swansea) Pattern and Copattern matching 38/ 46

Mixed Patterns and Copatterns

Results of paper in POPL (2013)

I Development of a recursive simply typed calculus (no termination
check).

I Allows to derive schemata for pattern/copattern matching.

I Proof that subject reduction holds.

t : A, t −→ t ′ implies t ′ : A

I Subject reduction fails when using codata types in combination with
the equality type (e.g. in Coq and early versions of Agda).

Anton Setzer (Swansea) Pattern and Copattern matching 39/ 46

Unnesting of Pattern/Copattern Matching

Iteration, Recursion, Induction

Coiteration, Corecursion

Bisimilarity and Coinduction

Proofs by Coinduction of Bisimilarity in Transition Systems

Mixed Patterns and Copatterns

Unnesting of Pattern/Copattern Matching

Anton Setzer (Swansea) Pattern and Copattern matching 40/ 46



Unnesting of Pattern/Copattern Matching

Consider Example from above

f : N→ Stream
head (f n) = n
head (tail (f n)) = n
tail (tail (f 0)) = f N
tail (tail (f (S n))) = f n

We show how this example can be reduced to unnested (co)pattern
matching.
In a second step (not shown today) one can reduce it to primitive
(co)recursion operators.

Anton Setzer (Swansea) Pattern and Copattern matching 41/ 46

Unnesting of Pattern/Copattern Matching

Unnesting of Nested (Co)Pattern Matching

We follow the steps in the pattern matching:
We start with

f : N→ Stream
head (f n) = n
tail (f n) = ?

Anton Setzer (Swansea) Pattern and Copattern matching 42/ 46

Copattern matching on tail (f n):

f : N→ Stream
head (f n) = n
head (tail (f n) = n
tail (tail (f n) = ?

corresponds to

f : N→ Stream
head (f n) = n
tail (f n) = g n

g : N→ Stream
(head (tail (f n)) =) head (g n) = n
(tail (tail (f n)) =) tail (g n) = ?

Pattern matching on tail (tail (f n)):

f : N→ Stream
head (f n) = n
head (tail (f n) = n
tail (tail (f 0) = f N
tail (tail (f (S n)) = f n

corresponds to

f : N→ Stream
head (f n) = n
tail (f n) = g n

g : N→ Stream
(head (tail (f n)) =) head (g n) = n
(tail (tail (f n)) =) tail (g n) = k n

k : N→ Stream
(tail (tail (f 0)) =) k 0 = f N
(tail (tail (f (S n))) =) k (S n) = f n



Unnesting of Pattern/Copattern Matching

Conclusion

I Principle of induction is well established and makes proofs much
easier.

I In theoretical computer science coinductive principles occur
frequently.

I Main reason: interactive programs running continuously in various
frameworks (imperative, object-oriented, process-calculi)

I Coalgebras as being defined by their eliminators rather than infinite
applications of constructors makes clear when recursive calls are
allowed.

I Proofs by coinduction in the above situation can be carried out
similarly as proofs by induction.

I Main difficulty: when are we allowed to apply co-IH?
I In the corecursion step we have a proof obligation, and can use the

co-IH to prove it.

Anton Setzer (Swansea) Pattern and Copattern matching 45/ 46

Unnesting of Pattern/Copattern Matching

Conclusion

I Copattern matching as the dual of pattern matching.
I Pattern matching is an elimination principle for inductive types (initial

algebras).
I Copattern matching is an introduction principle for coinductive types

(final coalgebras).

I Mixed pattern and copattern matching can be reduced to simple
pattern and copattern matching.

Anton Setzer (Swansea) Pattern and Copattern matching 46/ 46


	Iteration, Recursion, Induction
	Coiteration, Corecursion
	Bisimilarity and Coinduction
	Proofs by Coinduction of Bisimilarity in Transition Systems
	Mixed Patterns and Copatterns
	Unnesting of Pattern/Copattern Matching

