Pattern and Copattern matching

Anton Setzer

Swansea University, Swansea UK

Leeds Logic Seminar, 13 May 2015

Iteration, Recursion, Induction

Coiteration, Corecursion

Bisimilarity and Coinduction

Proofs by Coinduction of Bisimilarity in Transition Systems

Mixed Patterns and Copatterns

Unnesting of Pattern/Copattern Matching

Anton Setzer (Swansea) Iteratio	Pattern and Copattern matching n, Recursion, Induction	1/ 46	Anton Setzer (Swansea) Iteration	Pattern and Copattern matching , Recursion, Induction	2/ 46
			N as an Initial Algebra		
Iteration, Recursion, Ir	nduction				
Coiteration, Corecursio	on		 ▶ N is initial algebra 	of the functor $\operatorname{F}(X) = 1 + X$	
Bisimilarity and Coind	uction		$F(\mathbb{N}) = 1 +$	- N 0 + S	→ N
Proofs by Coinduction	of Bisimilarity in Transition Systems		$\mathrm{F}(g) = 1 + g$		∃! g

Mixed Patterns and Copatterns

Unnesting of Pattern/Copattern Matching

 $\mathrm{F}(g)=1+g$

 $F(A) = 1 + A - \frac{f'}{f'}$

f' can be decomposed as f' = a + f

Δ

Unique Iteration

Unique existence of g means **unique iteration**: Given a : A and $f : A \rightarrow A$ there exists a unique

$$g: \mathbb{N} \to A$$

$$g \ 0 = a$$

$$g \ (S \ n) = f \ (g \ n)$$

i.e

$$g \ (S^n \ 0) = f^n \ a$$

Anton Setzer (Swansea)	Pattern and Copattern matching	5/46
Iteration	, Recursion, Induction	

Induction

From the principle of unique iteration we can prove the principle of induction:

Assume $A : \mathbb{N} \to \text{Set}$, $a : A \mid 0$ and $f : (n : \mathbb{N}) \to A \mid n \to A \mid (S \mid n)$

There exists a unique

$$g: (n: \mathbb{N}) \to A n$$

$$g 0 = a$$

$$g (S n) = f n (g n)$$

 Using induction we can prove that if we have two solutions for a iteration or recursion principle, they are pointwise equal, i.e. uniqueness of iteration and recursion.

Unique Recursion

 From the principle of unique iteration we can prove the principle of unique (primitive) recursion:

Given a: A and $f: \mathbb{N} \to A \to A$ there exists a unique

$$g: \mathbb{N} \to A$$

$$g \ 0 = a$$

$$g \ (S \ n) = f \ n \ (g \ n)$$

5/46	Anton Setzer (Swansea)	Pattern and Copattern matching	6/ 46
	Iteration,	Recursion, Induction	
	Data Maral		
	Pattern Matching		

► The above means that we can define

 $g: (n: \mathbb{N}) \to A n$ $g \ 0 = a \quad \text{for some } a: A$ $g \ (S n) = a' \quad \text{for some } a': A \text{ depending on } n$

where in the second case we can use the **recursion hypothesis** or **induction hypothesis** g n.

• This means we can define g n by **pattern matching** on $n : \mathbb{N}$.

Theorem

Assume \mathbb{N} : Set, $0 : \mathbb{N}, S : \mathbb{N} \to \mathbb{N}$. The following are equivalent

- The principle of unique iteration.
- The principle of unique recursion.
- The principle of unique induction.
- The principle of induction.

Iteration, Recursion, Induction

Coiteration, Corecursion

Bisimilarity and Coinduction

Proofs by Coinduction of Bisimilarity in Transition Systems

Mixed Patterns and Copatterns

Unnesting of Pattern/Copattern Matching

Anton Setzer (Swansea)	zer (Swansea) Pattern and Copattern matching	
Coiteration, Corecursion		
С		
Streams as a Fina	al Coalgebra	

- Dual of + is ×, so we use for clarity a functor using product rather than disjoint union:
- Stream is the final coalgebra of $F(X) = \mathbb{N} \times X$

$$\begin{array}{c|c} X & \xrightarrow{f} & \mathbb{N} \times X & = \mathrm{F}(X) \\ \exists !g & & & & \\ \exists !g & & & \\ & & & & \\ \mathrm{Stream} & \xrightarrow{\mathrm{head} \times \mathrm{tail}} & \mathbb{N} \times \mathrm{Stream} & = \mathrm{F}(\mathrm{Stream}) \end{array}$$

► We can decompose *f* as

$$f = f_0 \times f_1$$

Anton Setzer (Swansea)	Pattern and Copattern matching	10/46
c	oiteration, Corecursion	
Unique Coiteratio	า	

This corresponds to the principle of unique coiteration: There exists a unique

$$g : A \rightarrow \text{Stream}$$

head $(g x) = f_0 x$
tail $(g x) = g(f_1 x)$

Anton Setzer (Swansea)

Pattern and Copattern matching

Unique Corecursion

► We had:

$$\begin{array}{rcl} \mathrm{head}\;(g\;x)) &=& f_0\;x\\ \mathrm{tail}\;\;(g\;x) &=& g\;(f_1\;x) \end{array}$$

• By choosing f_0 , f_1 we can define $g: X \to \text{Stream s.t.}$

head (g x) = n for some $n : \mathbb{N}$ depending on x tail (g x) = g x' for some x' : X depending on x From unique coiteration we can derive unique corecursion: There exists a unique

$$g: A \to \text{Stream}$$

head $(g x) = n$ for some $n : \mathbb{N}$ depending on x
tail $(g x) = g x'$ for some $x' : X$ depending on x
or
 $= s$ for some $s : \text{Stream}$ depending on x

► This means we can define *g* × by **copattern matching**

Anton Setzer (Swansea)	Pattern and Copattern matching	13/ 46	Anton Setzer (Swansea)	Pattern and Copattern matching	14/46
c	Coiteration, Corecursion		Co	oiteration, Corecursion	
Examples			Examples		

► We can define

Note: cons not primitive but **defined** by corecursion

inc		:	$\mathbb{N} \to \text{Stream}$
head	(inc <i>n</i>)	=	п
tail	(inc <i>n</i>)	=	inc $(n+1)$

inc'	(inc'(n)) $(inc'(n))$:	$\mathbb{N} \to \text{Stream}$
head		=	n
tail		=	inc''(n+1)
inc" head	$(\operatorname{inc}''(n))$:	$\mathbb{N} \to \text{Stream}$

Iteration, Recursion, Induction

Coiteration, Corecursion

Bisimilarity and Coinduction

Proofs by Coinduction of Bisimilarity in Transition Systems

Mixed Patterns and Copatterns

Unnesting of Pattern/Copattern Matching

Bisimilarity

- ▶ Bisimilarity ~ on Streams is an **indexed final coalgebra**.
- \blacktriangleright Consider the category $\mathrm{Set}^{\mathrm{Stream} \times \mathrm{Stream}}$ of binary relations

 $\varphi: \operatorname{Stream} \times \operatorname{Stream} \to \operatorname{Set}$

Let

$$\begin{array}{l} \mathrm{F}^{\sim} : \; \mathrm{Set}^{\mathrm{Stream} \times \mathrm{Stream}} \to \mathrm{Set}^{\mathrm{Stream} \times \mathrm{Stream}} \\ \mathrm{F}^{\sim}(\varphi, (\boldsymbol{s}, \boldsymbol{s}')) = (\mathrm{head} \; \boldsymbol{s} = \mathrm{head} \; \boldsymbol{s}') \times \varphi \; (\mathrm{tail} \; \boldsymbol{s}, \mathrm{tail} \; \boldsymbol{s}') \end{array}$$

• That \sim is a final F^{\sim} -coalgebra means that it is the largest such

 $\begin{array}{c|c} \varphi(s,s') & \xrightarrow{f} & \text{head } s = \text{head } s' \land \varphi \text{ (tail } s, \text{tail } s') \\ \exists !g & & \text{id} \land g \end{array}$

 $s \sim s' \xrightarrow{\text{elim}_{\sim}} \text{head } s = \text{head } s' \land (\text{tail } s) \sim (\text{tail } s')$

 $\forall s, s'. \varphi(s, s') \rightarrow \text{head } s = \text{head } s' \land \varphi \text{ (tail } s, \text{tail } s')$

 $\forall s, s'. \varphi (s, s') \rightarrow s \sim s'$

Anton Setzer (Swansea)	Pattern and Copattern matching	17/46	Anton Setzer (Swansea)	Pattern and Copattern matching	18/46
Bisimila	rity and Coinduction		Bisi	imilarity and Coinduction	
Bisimilarity			Bisimilarity		

 \blacktriangleright That \sim is a F^{\sim} coalgebra means there exist

$$\begin{array}{l} \operatorname{elim}_{\sim} : (s, s' : \operatorname{Stream}) \\ \to s \sim s' \\ \to (\operatorname{head} s = \operatorname{head} s') \times (\operatorname{tail} s \sim \operatorname{tail} s') \end{array}$$

i.e.

$$s \sim s'
ightarrow (ext{head} \; s = ext{head} \; s') \wedge ((ext{tail} \; s) \sim (ext{tail} \; s'))$$

 \blacktriangleright Let $\operatorname{elim}^0_\sim$ and $\operatorname{elim}^1_\sim$ the two components of elim_\sim ,

$$\begin{array}{rl} \operatorname{elim}^{0}_{\sim} & : & (s,s':\operatorname{Stream}) \to s \sim s' \to \operatorname{head} s = \operatorname{head} s' \\ \operatorname{elim}^{1}_{\sim} & : & (s,s':\operatorname{Stream}) \to s \sim s' \to \operatorname{tail} s \sim \operatorname{tail} s' \end{array}$$

and hide the first two arguments of $\operatorname{elim}_{\sim}^{i}$.

Anton	Setzer	(Swansea)	
		()	

then

► This means that

relation:

Bisimilarity

Corecursive Proof of Bisimilarity

So we have

$$s \sim s' \rightarrow \text{head } s = \text{head } s' \wedge (ext{tail } s) \sim (ext{tail } s')$$

and if

$$\forall s, s'. \varphi(s, s') \rightarrow \text{head } s = \text{head } s' \wedge \varphi(\text{tail } s, \text{tail } s')$$

then

$$\forall s, s'. \varphi(s, s') \rightarrow s \sim s'$$

- Because ~ is a final coalgebra we can compute proofs of it by corecursion:
- ► We can define

 $f: (s, s': \text{Stream}) \to \varphi \ s \ s' \to s \sim s'$ elim⁰_~ (f s s' x) = an element of head s = head s' elim⁰_~ (f s s' x) = an element of (tail s) ~ (tail s')

where in the last line we can use

- either a proof of tail $s \sim \operatorname{tail} s'$ defined before
- or use the corecursion hypothesis f (tail s) (tail s') x' for some x' : φ (tail s) (tail s')

Anton Setzer (Swansea)	Pattern and Copattern matching	21/ 46	Anton Setzer (Swansea)	Pattern and Copattern matching	22/46
Bisim	ilarity and Coinduction		Bisim	nilarity and Coinduction	
Coinduction			Principle of Coind	uction	

Theorem

Assume Stream : Set, head : Stream $\rightarrow \mathbb{N}$, tail : Stream \rightarrow Stream. The following are equivalent

- The principle of unique coiteration.
- The principle of unique corecursion.
- The principle of iteration together with the principle that bisimilarity

 implies equality

$$\forall s, s' : \text{Stream.} s \sim s' \rightarrow s = s'$$

Because of the possibility of defining elements of $s \sim s'$ the latter can be considered as a **principle of coinduction**.

► We can prove

$$\forall s, s' : \text{Stream}. \varphi \ s \ s' \rightarrow s = s'$$

by showing

$$\begin{aligned} \forall s, s' : \text{Stream}. \varphi \ s \ s' \to \text{head} \ s = \text{head} \ s' \\ \forall s, s' : \text{Stream}. \varphi \ s \ s' \to \text{tail} \ s = \text{tail} \ s' \end{aligned}$$

where for proving tail s = tail s' we can use the coinduction hypothesis that φ (tail s) (tail s') implies tail s = tail s'.

 $s, t : A \rightarrow \text{Stream}$

A: Set

and define

• Instead of defining φ as a predicate Stream \rightarrow Stream \rightarrow Set we can

 $\varphi s' t' = (a:A) \times (s' = s a) \times (t' = t a)$

• Coinduction of φ becomes then the principle of indexed coinduction

assume

(see next slide)

Indexed Coinduction

Assume

 $\begin{array}{rll} A & : & \operatorname{Set} \\ s_0, s_1 & : & A \to \operatorname{Stream} \end{array}$

► We can prove

$$\forall a : A.s_0 a = s_1 a$$

by showing

$$\forall a : A.head (s a) = head (t a)$$

$$\forall a : A.tail (s a) = tail (t a)$$

where for proving tail (s a) = tail (t a) we can use that tail (s a) = s a' and tail (t a) = t a' and therefore by **coinduction-hypothesis** s a' = t a'.

Anton Setzer (Swansea) Bisimilar	Pattern and Copattern matching rity and Coinduction	25/46	Anton Setzer (Swansea) Bisimik	Pattern and Copattern matching arity and Coinduction	26/46
Example Proof by (Coinduction		Example Proof by	Coinduction	

► Remember

inc	:	$\mathbb{N} \to \text{Stream}$
head(inc <i>n</i>)	=	n
tail (inc n)	=	inc $(n+1)$
inc'	:	$\mathbb{N} \to \operatorname{Stream}$
head(inc'(n))	=	п
tail $(inc'(n))$	=	$\operatorname{inc}''(n+1)$
inc''	:	$\mathbb{N} \to \mathrm{Stream}$
head(inc''(n))	=	n
tail $(inc''(n))$	=	$\operatorname{inc}'(n+1)$

We show

 $\forall n \in \mathbb{N}.inc' \ n = inc \ n \wedge inc'' \ n = inc \ n$

► Formally we would use in the above

$$A = \mathbb{N} + \mathbb{N}$$

$$s (inl n) = inc' n$$

$$s (inr n) = inc n$$

$$t (inl n) = inc n$$

$$t (inr n) = inc n$$

and show

$$\forall a : A.s a = t a$$

Example Proof by Coinduction

Proof of

 $\forall n \in \mathbb{N}.inc' \ n = inc \ n \wedge inc'' \ n = inc \ n$

• Assume $n : \mathbb{N}$.

head (inc' n) = n = head (inc n) head (inc" n) = n = head (inc n) tail (inc' n) = inc" (n + 1) $\stackrel{\text{co-IH}}{=}$ inc (n + 1) = tail (inc n) tail (inc" n) = inc' (n + 1) $\stackrel{\text{co-IH}}{=}$ inc (n + 1) = tail (inc n) Iteration, Recursion, Induction

Coiteration, Corecursion

Bisimilarity and Coinduction

Proofs by Coinduction of Bisimilarity in Transition Systems

Mixed Patterns and Copatterns

Unnesting of Pattern/Copattern Matching

Anton Setzer (Swansea)	Pattern and Copattern matching	29/46	Anton Setzer (Swansea)	Pattern and Copattern matching	30/ 4
Proofs by Coinduction of Bisimilarity in Transition Systems			Proofs by Coinduction of Bisimilarity	in Transition Systems	
Bisimilarity			Proof using the D	efinition of \sim	

• Consider the following (unlabelled) transition system:

Bisimilarity is the final coalgebra

$$p \sim q
ightarrow (orall p'.p \longrightarrow p') \
ightarrow \exists q'.q \longrightarrow q' \wedge p' \sim q') \ \wedge \cdots ext{symmetric case} \cdots \}$$

- We show $p \sim q \wedge p \sim r$ by coinduction:
- Coinduction step for $p \sim q$:
 - Assume $p \longrightarrow p'$. Then p' = p. We have $q \longrightarrow r$ and by co-IH $p \sim r$.
 - Assume $q \longrightarrow q'$. Then q' = r. We have $p \longrightarrow p$ and by co-IH $p \sim r$.
- Coinduction step for $p \sim r$:
 - Assume $p \longrightarrow p'$. Then p' = p. We have $r \longrightarrow q$ and by co-IH $p \sim q$.
 - Assume $r \longrightarrow r'$. Then r' = q. We have $p \longrightarrow p$ and by co-IH $p \sim q$.

Proofs by Coinduction of Bisimilarity in Transition Systems

Traditional Argument of Proving Bisimiliarity

The standard argument for showing p ~ q ∧ p ~ r is as follows: Define a relation φ on states by

$$arphi(p',q') \Leftrightarrow p' = p \land (q' = q \lor q' = r)$$

Show φ is a simulation:

$$\begin{array}{c} \forall p, p', q.\varphi(p,q) \land p \longrightarrow p' \Rightarrow \exists q'.q \longrightarrow q' \land \varphi(p',q') \\ \forall p, q, q'.\varphi(p,q) \land q \longrightarrow q' \Rightarrow \exists p'.p \longrightarrow p' \land \varphi(p',q') \end{array}$$

Anton Setzer (Swansea) Mixed Pat	Pattern and Copattern matching	33/ 46
Wixed Fat		
Iteration, Recursion, Inc	duction	
Coiteration, Corecursior	١	
Bisimilarity and Coindu	ction	
Disininanty and Conduc		
Proofs by Coinduction of	of Bisimilarity in Transition S	ystems

Mixed Patterns and Copatterns

Unnesting of Pattern/Copattern Matching

Proofs by Coinduction of Bisimilarity in Transition Systems

Comparison with Proofs by Induction

 We can compare both proofs to proofs by induction on natural number. Consider a proof of

$$\forall n, m, k.n + (m+k) = (n+m) + k$$

► The traditional proof would corresponds to defining a relation

$$R(k) \Leftrightarrow \forall n, m.n + (m+k) = (n+m) + k$$

and showing

$$R(0) \wedge orall n. R(n)
ightarrow R(\mathrm{S}(n))$$

- Although this argument and the standard inductive proof using the induction hypothesis are equivalent, the standard inductive proof is more convenient and easier to follow.
- We hope that proofs by coinduction will similarly be easier if we do it by referring to the coinduction hypothesis.

Anton Setzer (Swansea)	Pattern and Copattern matching	34/46
Mixed Pat	terns and Copatterns	
Nested Pattern Ma	atching	

Course of Value primitive recursion allows deep pattern matching.
 E.g. we can define the Fibonaccie numbers

$$\begin{array}{ll} \mathrm{fib}:\mathbb{N}\to\mathbb{N}\\ \mathrm{fib}\;0&=&1\\ \mathrm{fib}\;(\mathrm{S}\;0)&=&1\\ \mathrm{fib}\;(\mathrm{S}\;(\mathrm{S}\;n))&=&\mathrm{fib}\;n+\mathrm{fib}\;(\mathrm{S}\;n) \end{array}$$

▶ We can now even mix pattern and copattern matching.

Mixed Patterns and Copatterns

► Example define stream:

f n =

Example Mixed Pattern/Copattern Matching

• We can define now functions by patterns and copatterns.

Mixed Patterns and Copatterns

Example Mixed Pattern/Copattern Matching

 $f n = n, n, n-1, n-1, \dots, 0, 0, N, N, N-1, N-1, \dots, 0, 0, N, N, N-1, N-1,$

 $f: \mathbb{N} \to \text{Stream}$ f = ? $f: \mathbb{N} \to \text{Stream}$ f = ?Copattern matching on $f: \mathbb{N} \to \text{Stream}$ $f: \mathbb{N} \to \text{Stream}$ head (f n) = ?

Anton Setzer (Swansea)	Pattern and Copattern matching	37/46	Anton Setzer (Swansea)	Pattern and Copattern matching	38/ 46
Mixed Patterns and Copatterns		Unnesting of Pattern	Copattern Matching		
Results of paper in	POPL (2013)				

- Development of a recursive simply typed calculus (no termination check).
- Allows to derive schemata for pattern/copattern matching.
- Proof that subject reduction holds.

 $t: A, \quad t \longrightarrow t' \text{ implies } t': A$

 Subject reduction fails when using codata types in combination with the equality type (e.g. in Coq and early versions of Agda). Iteration, Recursion, Induction Coiteration, Corecursion Bisimilarity and Coinduction Proofs by Coinduction of Bisimilarity in Transition Systems Mixed Patterns and Copatterns Unnesting of Pattern/Copattern Matching

Unnesting of Nested (Co)Pattern Matching

 $f: \mathbb{N} \to \text{Stream}$ head (f n) = nhead (tail (f n)) = ntail (tail (f 0)) = f Ntail (tail (f (S n))) = f n

We show how this example can be reduced to unnested (co)pattern matching.

In a second step (not shown today) one can reduce it to primitive (co)recursion operators.

We follow the steps in the pattern matching: We start with

 $f : \mathbb{N} \to \text{Stream}$ head (f n) = ntail (f n) = ?

Anton Setzer (Sv	ransea) Pattern and Copattern matching	41/46 Anton Setzer (Swansea) Pattern and Copattern matching	42/46
		Pattern matching on tail (tail (f n)):	
Copattern m	atching on tail (f n):	$f:\mathbb{N} o\operatorname{Stream}$	
		head $(f n) = n$	
	$f:\mathbb{N} ightarrow ext{Stream}$	head $(tail (f n)) = n$	
	head $(f n) = n$	tail $(tail (f 0)) = f N$	
	head $(tail (f n) = n$	tail $(tail (f(S n))) = f n$	
	tail $(tail (f n)) = ?$		
		corresponds to	
corresponds t	0	$f:\mathbb{N} ightarrow ext{Stream}$	
		head $(f n) - n$	
	$f:\mathbb{N}\to\operatorname{Stream}$	$\frac{1}{1} \frac{1}{1} \frac{1}$	
	head $(f n) = n$	$\tan (I n) = g n$	
	tail $(f n) = g n$		
		$g:\mathbb{N} ightarrow ext{Stream}$	
	$\varphi:\mathbb{N}\to\operatorname{Stream}$	(head (tail (f n))) =) head (g n) = n	
	(head (tail $(f n)$) =) head $(g n) = n$	(ail (ail (f n)) =) ail (g n) = k n	
	$(\text{tail} (\text{tail} (f n)) -) \text{ tail} (\sigma n) - ?$		
	$(\operatorname{tan}(\operatorname{tan}(\operatorname{tn}))) =) \operatorname{tan}(\operatorname{gn}) = :$	$k:\mathbb{N} ightarrow ext{Stream}$	
		(tail (tail (f 0)) =) k 0 = f N	
		(tail (tail (f (S'n)))) = k (S n) = f n	

Conclusion

- Principle of induction is well established and makes proofs much easier.
- In theoretical computer science coinductive principles occur frequently.
 - Main reason: interactive programs running continuously in various frameworks (imperative, object-oriented, process-calculi)
- Coalgebras as being defined by their eliminators rather than infinite applications of constructors makes clear when recursive calls are allowed.
- Proofs by coinduction in the above situation can be carried out similarly as proofs by induction.
- ▶ Main difficulty: when are we allowed to apply co-IH?
 - In the corecursion step we have a proof obligation, and can use the co-IH to prove it.

Pattern and Copattern matching

45/46

Unnesting of Pattern/Copattern Matching

Conclusion

- Copattern matching as the dual of pattern matching.
 - Pattern matching is an elimination principle for inductive types (initial algebras).
 - Copattern matching is an introduction principle for coinductive types (final coalgebras).
- Mixed pattern and copattern matching can be reduced to simple pattern and copattern matching.

Pattern and Copattern matching