Anton Setzer

Swansea University, Swansea UK

Leeds Logic Seminar, 13 May 2015

«O0)>» «F» «=)» 4« Q>

it
-

Iteration, Recursion, Induction

Coiteration, Corecursion

Bisimilarity and Coinduction

Proofs by Coinduction of Bisimilarity in Transition Systems
Mixed Patterns and Copatterns

Unnesting of Pattern/Copattern Matching

Anton Setzer (Swansea) Pattern and Copattern matching 2/ 46

Iteration, Recursion, Induction

Coiteration, Corecursion

Bisimilarity and Coinduction

Proofs by Coinduction of Bisimilarity in Transition Systems

Mixed Patterns and Copatterns

Unnesting of Pattern/Copattern Matching

«0>» «Fr «=>» 4 > Q>

>

» N is initial algebra of the functor F(X) =1+ X

0+S
F(N) —14N ki N
Flg)=1+g Jg
fl
F(A) =1+A A
f’ can be decomposed as f' = a+ f

it
-

«O0)>» «F» «=)» 4« Q>

0+S
14N N
1+g dlg
f
1442 4

Unique existence of g means unique iteration:

Given a: A and f : A — A there exists a unique

g:N—>A

g0 = a
g(Sn) = flgn)
i.e

g(8"0) = f"a

«O0)>» «F» «=)» 4«

it
it
N)
¥l
i)

unique (primitive) recursion:

» From the principle of unique iteration we can prove the principle of

Given a: Aand f : N — A — A there exists a unique

g:N—- A
g0 = a
g(Sn) = fn(gn)

«4O0)>» «Fr «=» « = Q>

it
-

Iteration, Recursion, Induction

Induction

» From the principle of unique iteration we can prove the principle of
induction:

Assume A: N — Set, a: AOand f: (n:N) - An— A(Sn)

There exists a unique

g:(n:N)—An
g0 = a
g(Sn) = fnlgn)

» Using induction we can prove that if we have two solutions for a
iteration or recursion principle, they are pointwise equal, i.e.
uniqueness of iteration and recursion.

Anton Setzer (Swansea) Pattern and Copattern matching 7/ 46

Iteration, Recursion, Induction

Pattern Matching

» The above means that we can define

g:(n:N)—An
g0 = a forsomea:A
g (Sn) = 4 forsome a : Adepending on n

where in the second case we can use the recursion hypothesis or
induction hypothesis g n.

» This means we can define g n by pattern matching on n: N.

Anton Setzer (Swansea) Pattern and Copattern matching 8/ 46

Assume N : Set, 0: N, S: N — N.
The following are equivalent

» The principle of unique iteration.

v

The principle of unique recursion.

v

The principle of unique induction.

v

The principle of induction.

«40>» «F»r « =) «

it
it
N)
¥l
i)

Iteration, Recursion, Induction

Coiteration, Corecursion

Bisimilarity and Coinduction

Proofs by Coinduction of Bisimilarity in Transition Systems

Mixed Patterns and Copatterns

Unnesting of Pattern/Copattern Matching

«0>» «Fr «=>» 4 > Q>

Coiteration, Corecursion

Streams as a Final Coalgebra

» Dual of + is X, so we use for clarity a functor using product rather
than disjoint union:

» Stream is the final coalgebra of F(X) =N x X

f’
X NxX =F(X)

dig id x g = F(g)

head x tail

Stream N x Stream = F(Stream)

» We can decompose f as

f = fxh

Anton Setzer (Swansea) Pattern and Copattern matching 11/ 46

fo X fi
X 0XnN

N x X
dlg

idx g
head x tail
Stream

N x Stream
This corresponds to the principle of unique coiteration:
There exists a unique

g : A — Stream

head (g x) fo x
tail (g x) =

= g(hix)
«O0)>» «F» «=)» 4« Q>
~ Anton Setzer (Swansea) Pattern and Copattern matching ~~ 12/46

it
-

» We had:

head (g x)) = fox
tail (gx) = g(hx)
» By choosing fy, fi we can define g : X — Stream s.t.
head (gx) = n
tail

(gx) =

for some n : N depending on x
g x' for some x’' : X depending on x

«4O0)>» «Fr «=» « 3 = Q>

Coiteration, Corecursion

Unique Corecursion

» From unique coiteration we can derive unigque corecursion:
There exists a unique

g : A — Stream

head (gx) = n for some n : N depending on x
tail (gx) = gx’ forsome x': X depending on x
or
= s for some s : Stream depending on x

» This means we can define g x by copattern matching

Anton Setzer (Swansea) Pattern and Copattern matching 14/ 46

» We can define

cons : (N x Stream) — Stream
head (cons(n,s)) = n
tail ~ (cons(n,s)) = s

Note: cons not primitive but defined by corecursion

inc : N — Stream
head (inc n) = n
tail (inc n) = inc(n+1)

«O0)>» «F» «=)» 4«

it
it
N)
¥l
i)

inc’

head (ind/(n))

tail

inc”

(inc’(n))

head (inc”(n))

tail

(inc”(n))

N — Stream
n
inc’(n+1)

N — Stream

n
inc’(n+1)

«O0)>» «F» «=)» 4«

it
it
N)
¥l
i)

Iteration, Recursion, Induction

Coiteration, Corecursion

Bisimilarity and Coinduction

Proofs by Coinduction of Bisimilarity in Transition Systems

Mixed Patterns and Copatterns

Unnesting of Pattern/Copattern Matching

«0>» «Fr «=>» 4 > Q>

tStream X Stream

» Bisimilarity ~ on Streams is an indexed final coalgebra.
» Consider the category Se

of binary relations

@ : Stream x Stream — Set
> Let

F~ - S etStream X Stream — Set Stream X Stream

F~ (¢, (s,5")) = (head s = head s’) x ¢ (tail s, tail)

«0O0» «Fr» «=)r» « Q>

it
-

Bisimilarity and Coinduction

Bisimilarity

» That ~ is a F™ coalgebra means there exist

elim., : (s,s" : Stream)
— s~
— (head s = head s’) x (tail s ~ tail s’)

s ~ s — (head s = head s') A ((tail 5) ~ (tail s))
» Let elim® and elim! the two components of elim.,

elim (s,s' : Stream) — s ~ s’ — head s = head s’

0
elim®

(s,s' : Stream) — s ~ s’ — tail s ~ tail s/
and hide the first two arguments of elim’_.

Anton Setzer (Swansea) Pattern and Copattern matching

19/ 46

relation:

» That ~ is a final F~-coalgebra means that it is the largest such

¢ (s,5') —— head s = head s’ A ¢ (tail s, tail s’)
Jlg

idAag
elim.,

s ~ s’ —— head s = head s’ A (tail s) ~ (tail s')
» This means that

Vs,s'.p (s,5') — head s = head s’ A ¢ (tail s, tail s')
then

Vs,s'.p (s,8') = s~
«0O0» «F»r « =) « > P NEd
~ Anton Setzer (Swansea) Pattern and Copattern matching 20/ 46

» So we have

s ~ s — head s = head s' A (tail s) ~ (tail s')
and if

Vs,s'.p (s,s') — head s = head s’ A ¢ (tail s, tail s')
then

Vs,s'.p (s,8') > s~

«O0>» «Fr «=» « =) = Q>

Bisimilarity and Coinduction

Corecursive Proof of Bisimilarity

» Because ~ is a final coalgebra we can compute proofs of it by
corecursion:

» We can define

f:(s,s: Stream) —pss os~¢
elim? (f ss' x) = an element of head s = head s’
elim? (f ss' x) = an element of (tail s) ~ (tail s’)

where in the last line we can use
» either a proof of tail s ~ tail s’ defined before
» or use the corecursion hypothesis f (tail s) (tail s’) x” for some
x' o (tail s) (tail ')

Anton Setzer (Swansea) Pattern and Copattern matching 22/ 46

Bisimilarity and Coinduction

Coinduction

Theorem

Assume Stream : Set, head : Stream — N, tail : Stream — Stream.
The following are equivalent

» The principle of unique coiteration.

» The principle of unique corecursion.

» The principle of iteration together with the principle that bisimilarity
~ Implies equality

Vs,s' : Stream.s ~ s — s=5

Because of the possibility of defining elements of s ~ s’ the latter can be
considered as a principle of coinduction.

Anton Setzer (Swansea) Pattern and Copattern matching 23/ 46

Bisimilarity and Coinduction

Principle of Coinduction

» Let ¢ : Stream — Stream — Set.

» We can prove
Vs,s' : Stream.p ss’ —s=¢

by showing

Vs, s’ : Stream.p s s’ — head s = head s’
Vs,s' : Stream.p s s — tail s = tail &’

where for proving tail s = tail s’ we can use the coinduction
hypothesis that ¢ (tail s) (tail s’) implies tail s = tail s’.

Anton Setzer (Swansea) Pattern and Copattern matching

24/ 46

» Instead of defining ¢ as a predicate Stream — Stream — Set we can
assume

A : Set

s,t: A — Stream
and define

pst=(a:A)x(s=sa)x (' =ta)

» Coinduction of ¢ becomes then the principle of indexed coinduction
(see next slide)

«0O0» «Fr» «=)r» «

Bisimilarity and Coinduction

Indexed Coinduction

» Assume
A : Set
s9, 51 : A — Stream

» We can prove
Va: Aspa=s; a

by showing
Va: A.head (s a) = head (t a)
Va: Atail (s a) = tail (¢t a)

where for proving tail (s a) = tail (t a) we can use that
tail (s @) = s @’ and tail (t a) = t &’ and therefore by
coinduction-hypothesis s 2 =t 4'.

Anton Setzer (Swansea) Pattern and Copattern matching 26/ 46

» Remember

inc
head(inc n)
tail (inc n)
inc/
head(inc’(n))
tail (inc’(n))
inc”
head(inc”(n))
tail (inc”(n))

N — Stream
n
inc (n+ 1)

N — Stream
n
inc’(n+1)

N — Stream

n
inc’(n+1)

«O0)>» «F» «=)» 4«

4 = 9DAC¢

» We show

V¥n € Ninc n=inc nAinc” n=inc n

» Formally we would use in the above

A=N+N

s (inl n)= ind n
s (inr n)= inc” n
t(inl n)= incn
t (inr n)= incn
and show

Va:Asa=ta

«O)>» «F»r «

» Proof of

Vn e N.incd n=1inc nAinc’ n=inc n

» Assume n: N.

head (in¢’ n) = n = head (inc n)
head (inc” n) = n = head (inc n)
tail (inc’ n) = inc” (n+ 1) =M ine (n+ 1) = tail (inc n)

tail (inc” n) = inc’ (n+ 1) =M ine (n+ 1) = tail (inc n)

«0O0» «Fr» «=)r» «

> = 9DAC¢

Iteration, Recursion, Induction

Coiteration, Corecursion

Bisimilarity and Coinduction

Proofs by Coinduction of Bisimilarity in Transition Systems
Mixed Patterns and Copatterns

Unnesting of Pattern/Copattern Matching

a
o
v
a
v
a
it
v
a
it
-
it

DA

» Consider the following (unlabelled) transition system

» a PR K
Q 7

» Bisimilarity is the final coalgebra
p~q— (Vp'.p—p

—>Elq'.q—>ql/\Pqul)
A - - - symmetric case-~~}

«O0)>» «F» «=)» 4« Q>

it
-

Proofs by Coinduction of Bisimilarity in Transition Systems

Proof using the Definition of ~

2 3 R K
7 7

» We show p ~ g A p ~ r by coinduction:
» Coinduction step for p ~ g:
» Assume p — p’. Then p’ = p.
We have g —> r and by co-IH p ~ r.
» Assume g — q'. Then g’ = r.
We have p — p and by co-IH p ~ r.
» Coinduction step for p ~ r:
» Assume p — p’. Then p’ = p.
We have r — g and by co-IH p ~ q.
» Assume r — r’. Then r' = q.
We have p — p and by co-IH p ~ g.

Anton Setzer (Swansea) Pattern and Copattern matching

32/ 46

Proofs by Coinduction of Bisimilarity in Transition Systems

Traditional Argument of Proving Bisimiliarity

» The standard argument for showing p ~ g A p ~ r is as follows:

Define a relation ¢ on states by
p(p,d)ep =pr(d=qVvd=r)

Show ¢ is a simulation:

Vo, P q.0(p,q) Ap— p' = 39.9g — qd Np(p',q')
Vp,q,q4 - o(p,q) Ng — ¢ = 3p'.p — p' ANo(p',q')

Anton Setzer (Swansea) Pattern and Copattern matching

33/ 46

Proofs by Coinduction of Bisimilarity in Transition Systems

Comparison with Proofs by Induction

» We can compare both proofs to proofs by induction on natural
number. Consider a proof of

Vn,m, k.n+ (m+ k)= (n+m)+k
» The traditional proof would corresponds to defining a relation
R(k) < Vn,m.n+ (m+ k)= (n+m)+k
and showing
R(0) AVn.R(n) — R(S(n))

» Although this argument and the standard inductive proof using the
induction hypothesis are equivalent, the standard inductive proof is
more convenient and easier to follow.

» We hope that proofs by coinduction will similarly be easier if we do it
by referring to the coinduction hypothesis.

Anton Setzer (Swansea) Pattern and Copattern matching 34/ 46

Iteration, Recursion, Induction

Coiteration, Corecursion

Bisimilarity and Coinduction

Proofs by Coinduction of Bisimilarity in Transition Systems

Mixed Patterns and Copatterns

Unnesting of Pattern/Copattern Matching

«0>» «Fr «=>» 4 > Q>

Mixed Patterns and Copatterns

Nested Pattern Matching

» Course of Value primitive recursion allows deep pattern matching.
E.g. we can define the Fibonaccie numbers

fib: N — N
fib 0 ~ 1
fib(S0) = 1

fib (S(Sn)) = fibn+fib(Sn)

» We can now even mix pattern and copattern matching.

Anton Setzer (Swansea) Pattern and Copattern matching 36/ 46

» We can define now functions by patterns and copatterns.
» Example define stream:
fn=

nnn—1n-1...0,00 N NN-1 N—-1,...0,0, NN N—-1,N—1,

«0O0» «Fr» «=)r» « » Q>

fn=nnn-1n-1,...000N,NN-1, N-1,...0,0,N,N, N—-1, N—1,

f : N — Stream

f —

«Or «Fr «=>» QA

7

fn=nnn-1,n-1,...0,0,N,N,N—1,N—1,...0,0,N,N,N—1,N—1,

f : N — Stream
f = 7

Copattern matching on f : N — Stream:

f : N — Stream
fn =7

«O0)>» «F» «=)» 4« Q>

it
-

fn=nnn-1n-1...000N,NN-1, N-1,...0,0, NN, N—1, N—1,

f : N — Stream
fn =27
Copattern matching on f n: Stream:

f : N — Stream
head (f n)
tail (f n)

«0O0)>» «F»r «Z» « Q>

?
?

it
-

fn=nnn-1n-1,...0,0,N,N,N-1,N—1,...0,0, N, N, N—1, N—1,

f : N — Stream
fn =7

Solve first case, copattern match on second case:

f : N — Stream

head (fn) =
head (tail (f n)) =
tail (tail (f n)) = 7

~ 3

«0O0» «Fr» «=)r» «

it
it
N)
¥l
i)

fn=nnn-1n-1...000N,NN-1T, N-1,...0,0, NN, N—-1, N—1,

f : N — Stream
fn =7

Solve second line, pattern match on n

f : N — Stream

head (f n) = n
head (tail (f n)) = n
tail (tail (F0)) = ?
tail (tail (f (Sn))) = 7
«O0>» «(Fr «Z>» «E)» = A

fn=nnn-1n-1,...0,0,N,N,N-1,N—-1,...0,0, N, N, N—1, N—1,

f : N — Stream
fn =7

Solve remaining cases

f : N — Stream

head (f n) = n
head (tail (f n)) = n
tail (tail (f 0)) = fN
tail (tail (f (Sn))) = fn
«O> «Fr «=>» «E» E DACG

Mixed Patterns and Copatterns

Results of paper in POPL (2013)

v

Development of a recursive simply typed calculus (no termination
check).

Allows to derive schemata for pattern/copattern matching.

v

v

Proof that subject reduction holds.

t:A t—t impliest : A

v

Subject reduction fails when using codata types in combination with
the equality type (e.g. in Coq and early versions of Agda).

Anton Setzer (Swansea) Pattern and Copattern matching 39/ 46

Iteration, Recursion, Induction

Coiteration, Corecursion

Bisimilarity and Coinduction

Proofs by Coinduction of Bisimilarity in Transition Systems

Mixed Patterns and Copatterns

Unnesting of Pattern/Copattern Matching

a
o
v
a
v
a
it
v
a
it
-
it

DA

Unnesting of Pattern/Copattern Matching

Consider Example from above

f : N — Stream

head (f n) = n
head (tail (f n)) = n
tail (tail (f 0)) = fN

tail (tail (f (S n))) fn

We show how this example can be reduced to unnested (co)pattern
matching.

In a second step (not shown today) one can reduce it to primitive
(co)recursion operators.

Anton Setzer (Swansea) Pattern and Copattern matching 41/ 46

We follow the steps in the pattern matching:
We start with

f : N — Stream
head (f n) =

n
tail (fn) = 7

«0O0)>» «F»r «Z» « > Q>

Copattern matching on tail (f n):

f : N — Stream

head (fn) = n
head (tail (f n)
tail (tail (f n) = 7

I
S|

corresponds to

f : N — Stream
head (fn) = n
tail (fn) = gn

g : N — Stream
(head (tail (f n)) =) head (gn) = n
(tail (tail (f n)) =) tail (gn) = 7

Pattern matching on tail (tail (f n)):

f : N — Stream

head (f n) = n
head (tail (f n) = n
tail (tail (f 0) = fN
tail (tail (f (Sn)) = fn
corresponds to
f : N — Stream
head (f n) =
tail (fn) =
g : N — Stream
(head (tail (f n)) =) head (gn) =
(tail (tail (f n)) =) tail (gn) =

(tail (tail (f 0)) =)
(tail (tail (f (S n))) =)

k : N — Stream
k 0 =
k (Sn) =

fN
fn

Unnesting of Pattern/Copattern Matching

Conclusion

» Principle of induction is well established and makes proofs much
easier.

» In theoretical computer science coinductive principles occur
frequently.

» Main reason: interactive programs running continuously in various
frameworks (imperative, object-oriented, process-calculi)

» Coalgebras as being defined by their eliminators rather than infinite
applications of constructors makes clear when recursive calls are
allowed.

» Proofs by coinduction in the above situation can be carried out
similarly as proofs by induction.

» Main difficulty: when are we allowed to apply co-IH?

» In the corecursion step we have a proof obligation, and can use the
co-IH to prove it.

Anton Setzer (Swansea) Pattern and Copattern matching 45/ 46

Unnesting of Pattern/Copattern Matching

Conclusion

» Copattern matching as the dual of pattern matching.
» Pattern matching is an elimination principle for inductive types (initial
algebras).
» Copattern matching is an introduction principle for coinductive types
(final coalgebras).
» Mixed pattern and copattern matching can be reduced to simple
pattern and copattern matching.

Anton Setzer (Swansea) Pattern and Copattern matching 46/ 46

	Iteration, Recursion, Induction
	Coiteration, Corecursion
	Bisimilarity and Coinduction
	Proofs by Coinduction of Bisimilarity in Transition Systems
	Mixed Patterns and Copatterns
	Unnesting of Pattern/Copattern Matching

