
Programming with Objects in Theorem Provers based on
Martin Löf Type Theory

Anton Setzer
Swansea University, Swansea UK

(Joint work with Andreas Abel and Stephan Adelsberger)
Talk given at Workshop on Mathematical Logic and its Application,

Kyoto University, Japan

16 September 2016

Anton Setzer Objects in Theorem Provers 1/ 29

A short introduction into Agda

Coalgebras in Agda

Objects

State Dependent Objects

Conclusion

Bibliography

Anton Setzer Objects in Theorem Provers 2/ 29

A short introduction into Agda

A short introduction into Agda

Coalgebras in Agda

Objects

State Dependent Objects

Conclusion

Bibliography

Anton Setzer Objects in Theorem Provers 3/ 29

A short introduction into Agda

Agda

I Agda is a theorem prover based on Martin-Löf’s intuitionistic type
theory.

I Based on Propositions of types
I For A a data type a : A means a is an element of A
I For A proposition a : A means a is a proof of A.

I Programs are defined recursively.
I Termination checker guarantees all program terminate.

Otherwise Agda would be inconsistent:
q : ⊥
q = q

I For historic reasons types denoted by keyword Set.
I There are as well higher type levels

Set
⊆
: Set1

⊆
: Set2

⊆
: · · ·

Anton Setzer Objects in Theorem Provers 4/ 29

A short introduction into Agda

Dependent Function Types

I Main type forming constructs in Agda are
I dependent function types,
I algebraic data types,
I record types.

I The dependent function type

(x : A) →C x

is the type of functions mapping a : A to an element of type C a.
I E.g.

matmult : (n m k : N) → Mat n m → Mat m k → Mat n k

Anton Setzer Objects in Theorem Provers 5/ 29

A short introduction into Agda

Algebraic data types

data N : Set where
zero : N
suc : N → N

g : N → N
g 0 = 5
g (suc 0) = 12
g (suc (suc n)) = g n * n

Anton Setzer Objects in Theorem Provers 6/ 29

A short introduction into Agda

Syntax in Agda

I Agda allows hidden arguments

cons : {X : Set} → X → List X → List X

l : List N
l = cons 0 nil

l’ : List N
l’ = cons {N} 0 nil

I Agda has mixfix symbols. Syntax example

if_then_else : {X : Set} → Bool → X → X → X
if true then x else y = x
if false then x else y = y

Anton Setzer Objects in Theorem Provers 7/ 29

Coalgebras in Agda

A short introduction into Agda

Coalgebras in Agda

Objects

State Dependent Objects

Conclusion

Bibliography

Anton Setzer Objects in Theorem Provers 8/ 29

Coalgebras in Agda

Solution: Coalgebras Defined by Observations

I We define coalgebras by their observations. Tentative syntax

coalg Stream : Set where
head : Stream→ N
tail : Stream→ Stream

I Stream is the largest set of terms which allow arbitrary many
applications of tail followed by head to obtain a natural numbers.

I Therefore no infinite expansion of streams:
– for each expansion of a stream one needs one application of tail.

Anton Setzer Objects in Theorem Provers 9/ 29

Coalgebras in Agda

Principle of Guarded Recursion

I Define
f : A→ Stream
head (f a) = · · · : N
tail (f a) = · · · : Stream

where

tail (f a) = f a′ for some a′ : A
or
tail (f a) = s ′ for some s ′ : Stream given before

I No function can be applied to the corecursion hypothesis.
I Using sized types one can apply size preserving or size increasing

functions to co-IH (Abel).
I Above is example of copattern matching.

Anton Setzer Objects in Theorem Provers 10/ 29

Coalgebras in Agda

Example

I Constant stream of a, a, a, . . .

const : {A : Set} → A→ Stream A
head (const a) = a
tail (const a) = const a

I The increasing stream n, n + 1, n + 2, . . .

inc : N→ Stream N
head (inc n) = n
tail (inc n) = inc (n + 1)

I Cons is defined:

cons : X → Stream X → Stream X
head (cons x l) = x
tail (cons x l) = l

Anton Setzer Objects in Theorem Provers 11/ 29

Coalgebras in Agda

Syntax in Agda

I In Agda the record type has been reused for defining coalgebras:

record Stream (A : Set) : Set where
coinductive
constructor _::_
field

head : A
tail : Stream A

const and inc can be defined with the syntax as given before

Anton Setzer Objects in Theorem Provers 12/ 29

Coalgebras in Agda

Nested Patter/Copattern Matching

I We can even define functions by a combination of pattern and
copattern matching and nest those:
The following defines the stream

stutterDown n n = n, n, n − 1, n − 1, . . . 0, 0, n, n, n − 1, n − 1, . . .

stutterDown : N → N → Stream N
head (stutterDown n m) = m
head (tail (stutterDown n m)) = m
tail (tail (stutterDown n (suc m))) = stutterDown n m
tail (tail (stutterDown n 0)) = stutterDown n n

Anton Setzer Objects in Theorem Provers 13/ 29

Objects

A short introduction into Agda

Coalgebras in Agda

Objects

State Dependent Objects

Conclusion

Bibliography

Anton Setzer Objects in Theorem Provers 14/ 29

Objects

Object-Oriented/Based Programming

I Object-oriented (OO) programming is currently main programming
paradigm.

I Good for bundling operations into one objects, hiding implementations
and reuse of code.

I Here restriction to object-based programming.
I Only notion of an object covered.

I Ultimate goal: use objects in order to organise proofs in a better way.

Anton Setzer Objects in Theorem Provers 15/ 29

Objects

Example: cell in Java

class cell <A> {

/∗ Instance Variable ∗/
A content;

/∗ Constructor ∗/
cell (A s) { content = s; }

/∗ Method put ∗/
public void put (A s) { content = s; }

/∗ Method get ∗/
public A get () { return content; }

}

Anton Setzer Objects in Theorem Provers 16/ 29

Objects

Modelling Methods as Objects

I The Type (interface) cell modelled as a coalgebra Cell.
I A method

B m (A x)

is modelled as observation
m : Cell → A → B × Cell

I Return type void is modelled as Unit (one element type).
I A constructor with argument A modelled as a function defined by

guarded recursion
cell : A → Cell

Anton Setzer Objects in Theorem Provers 17/ 29

Objects

Object as a Coalgebra

Using coalg notation we obtain

coalg Cell (A : Set) where
put : Cell A → A → (Unit × Cell A)
get : Cell A → Unit → (A ×Cell A)

cell : {A : Set} → A → Cell A
put (cell a) b = (unit , cell b)
get (cell a) _ = (a , cell a)

Anton Setzer Objects in Theorem Provers 18/ 29

Objects

Official Agda Code

record Cell (X : Set) : Set where
coinductive
field

put : X → Unit × Cell X
get : Unit → X × Cell X

cell : {X : Set} → X → Cell X
put (cell x) y = (unit , cell y)
get (cell x) _ = (x , cell x)

Anton Setzer Objects in Theorem Provers 19/ 29

Objects

Generic Version

An interface for an object consist of methods and the result type:

record Interface : Set1 where
field Method : Set

Result : Method → Set

An Object of an interface I has a method which for every method returns
an element of the result type and the updated object:

record Object (I : Interface) : Set where
coinductive
field objectMethod : (m : Method I) → Result I m × Object I

Anton Setzer Objects in Theorem Provers 20/ 29

State Dependent Objects

A short introduction into Agda

Coalgebras in Agda

Objects

State Dependent Objects

Conclusion

Bibliography

Anton Setzer Objects in Theorem Provers 21/ 29

State Dependent Objects

State Dependent Interface

record Interfaces : Set1 where
field

States : Set
Methods : States → Set
Results : (s : States) → (m : Methods s) → Set
nexts : (s : States) → (m : Methods s) → Results s m

→ States

Anton Setzer Objects in Theorem Provers 22/ 29

State Dependent Objects

State Dependent Object

Assuming I : Interfaces we define the set of state dependent objects:

record Objects (I : Interfaces) (s : States I) : Set where
coinductive
field

objectMethod : (m : Methods I s)
→ Σ[r ∈ Results I s m] Objects I (nexts I s m r)

Anton Setzer Objects in Theorem Provers 23/ 29

State Dependent Objects

Example Safe Stack

StackStates = N

data StackMethods (A : Set) : StackStates → Set where
push : {n : StackStates} → A → StackMethods A n
pop : {n : StackStates} → StackMethods A (suc n)

StackResults : (A : Set) → (s : StackStates) → StackMethods A s
→ Set

StackResults A .n (push { n } x1) = Unit
StackResults A (suc .n) (pop {n}) = A

ns : (A : Set) → (s : StackStates) → (m : StackMethods A s)
→ (r : StackResults A s m) → StackStates

ns A .n (push { n } x) r = suc n
ns A (suc .n) (pop { n }) r = n
Anton Setzer Objects in Theorem Provers 24/ 29

State Dependent Objects

Safe Stack

StackInterfaces : (A : Set) → Interfaces

States (StackInterfaces A) = StackStates

Methods (StackInterfaces A) = StackMethods A
Results (StackInterfaces A) = StackResults A
nexts (StackInterfaces A) = ns A

stackO : ∀{E : Set} {n : N} (v : Vec E n)
→ Objects (StackInterfaces E) n

objectMethod (stackO es) (push e) = (_ , stackO (e :: es))
objectMethod (stackO (e :: es)) pop = (e , stackO es)

Anton Setzer Objects in Theorem Provers 25/ 29

State Dependent Objects

Example Fibonacci Stack

data FibState : Set where
fib : N → FibState
val : N → FibState

data FibStackEl : Set where
_+· : N → FibStackEl
·+fib_ : N → FibStackEl

FibStack : N → Set
FibStack = Objects (StackInterfaces FibStackEl)

emptyFibStack : FibStack 0
emptyFibStack = stackO []

Stackmachine : Set
Stackmachine = Σ[n ∈ N] (FibState × FibStack n)
Anton Setzer Objects in Theorem Provers 26/ 29

State Dependent Objects

Reduce

reduce : Stackmachine → Stackmachine] N
reduce (n , fib 0 , stack) = inj1 (n , val 1 , stack)
reduce (n , fib 1 , stack) = inj1 (n , val 1 , stack)
reduce (n , fib (suc (suc m)) , stack) =

objectMethod stack (push (·+fib m)) B ń { (_ , stack1) →
inj1 (suc n , fib (suc m) , stack1) }

reduce (0 , val m , stack) = inj2 m
reduce (suc n , val m , stack) =

objectMethod stack pop B ń { (k +· , stack1) →
inj1 (n , val (k + m) , stack1) ;

(·+fib k , stack1) →
objectMethod stack1 (push (m +·)) B ń {(_ , stack2) →
inj1 (suc n , fib k , stack2) } }

Anton Setzer Objects in Theorem Provers 27/ 29

State Dependent Objects

Fibonacci Function

{-# NON_TERMINATING #-}
iter : Stackmachine → N
iter stack with reduce stack
... | inj1 s’ = iter s’
... | inj2 m = m

fibUsingStack : N → N
fibUsingStack n = iter (0 , fib n , emptyFibStack)

Anton Setzer Objects in Theorem Provers 28/ 29

Conclusion

Conclusion

I Definition of coinductive data types (coalgebras) by their observations.

I Use of copattern matching

I Objects as examples of coalgebras.
I State dependent objects.
I Future work

I Define Gray codes using objects
I Asymmetry between constructors and observations.

I Use of objects in organising proofs.

I Use of coalgebras for defining processes: See talk by Bashar Igried at
TyDe’2016 in Nara.

Anton Setzer Objects in Theorem Provers 29/ 29

Bibliography

Bibliography I

Andreas Abel, Stephan Adelsberger, and Anton Setzer.
Interactive programming in Agda – objects and graphical user
interfaces.
To appear in Journal of Functional Programming. Preprint available at
http://www.cs.swan.ac.uk/∼csetzer/articles/ooAgda.pdf, 2016.

Bashar Igried and Anton Setzer.
Programming with monadic CSP-style processes in dependent type
theory.
To appear in proceedings of TyDe 2016, Type-driven Development,
preprint available from
http://www.cs.swan.ac.uk/∼csetzer/articles/TyDe2016.pdf, 2016.

Anton Setzer Objects in Theorem Provers 30/ 29

Bibliography

Bibliography II

Anton Setzer.
Object-oriented programming in dependent type theory.
In Conference Proceedings of TFP 2006, 2006.
Available from
http://www.cs.nott.ac.uk/∼nhn/TFP2006/TFP2006-Programme.html
and http://www.cs.swan.ac.uk/∼csetzer/index.html.

Anto Setzer.
How to reason coinductively informally.
In Reinhard Kahle, Thomas Strahm, and Thomas Studer, editors,
Advances in Proof Theory, pages 377–408. Springer, 2016.

Anton Setzer Objects in Theorem Provers 31/ 29

	A short introduction into Agda
	Coalgebras in Agda
	Objects
	State Dependent Objects
	Conclusion
	Bibliography

