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A short introduction into Agda

Agda

I Agda is a theorem prover based on Martin-Löf’s intuitionistic type
theory.

I Based on Propositions of types
I For A a data type a : A means a is an element of A
I For A proposition a : A means a is a proof of A.

I Programs are defined recursively.
I Termination checker guarantees all program terminate.

Otherwise Agda would be inconsistent:
q : ⊥
q = q

I For historic reasons types denoted by keyword Set.
I There are as well higher type levels

Set
⊆
: Set1

⊆
: Set2

⊆
: · · ·
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A short introduction into Agda

Dependent Function Types

I Main type forming constructs in Agda are
I dependent function types,
I algebraic data types,
I record types.

I The dependent function type

(x : A) →C x

is the type of functions mapping a : A to an element of type C a.
I E.g.

matmult : ( n m k : N ) → Mat n m → Mat m k → Mat n k
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A short introduction into Agda

Algebraic data types

data N : Set where
zero : N
suc : N → N

g : N → N
g 0 = 5
g (suc 0) = 12
g (suc (suc n)) = g n * n
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A short introduction into Agda

Syntax in Agda

I Agda allows hidden arguments

cons : {X : Set} → X → List X → List X

l : List N
l = cons 0 nil

l’ : List N
l’ = cons {N} 0 nil

I Agda has mixfix symbols. Syntax example

if_then_else : {X : Set} → Bool → X → X → X
if true then x else y = x
if false then x else y = y
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Coalgebras in Agda

Solution: Coalgebras Defined by Observations

I We define coalgebras by their observations. Tentative syntax

coalg Stream : Set where
head : Stream→ N
tail : Stream→ Stream

I Stream is the largest set of terms which allow arbitrary many
applications of tail followed by head to obtain a natural numbers.

I Therefore no infinite expansion of streams:
– for each expansion of a stream one needs one application of tail.
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Coalgebras in Agda

Principle of Guarded Recursion

I Define
f : A→ Stream
head (f a) = · · · : N
tail (f a) = · · · : Stream

where

tail (f a) = f a′ for some a′ : A
or
tail (f a) = s ′ for some s ′ : Stream given before

I No function can be applied to the corecursion hypothesis.
I Using sized types one can apply size preserving or size increasing

functions to co-IH (Abel).
I Above is example of copattern matching.
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Coalgebras in Agda

Example

I Constant stream of a, a, a, . . .

const : {A : Set} → A→ Stream A
head (const a) = a
tail (const a) = const a

I The increasing stream n, n + 1, n + 2, . . .

inc : N→ Stream N
head (inc n) = n
tail (inc n) = inc (n + 1)

I Cons is defined:

cons : X → Stream X → Stream X
head (cons x l) = x
tail (cons x l) = l
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Coalgebras in Agda

Syntax in Agda

I In Agda the record type has been reused for defining coalgebras:

record Stream (A : Set) : Set where
coinductive
constructor _::_
field

head : A
tail : Stream A

const and inc can be defined with the syntax as given before
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Coalgebras in Agda

Nested Patter/Copattern Matching

I We can even define functions by a combination of pattern and
copattern matching and nest those:
The following defines the stream

stutterDown n n = n, n, n − 1, n − 1, . . . 0, 0, n, n, n − 1, n − 1, . . .

stutterDown : N → N → Stream N
head (stutterDown n m) = m
head (tail (stutterDown n m)) = m
tail (tail (stutterDown n (suc m))) = stutterDown n m
tail (tail (stutterDown n 0)) = stutterDown n n
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Objects

Object-Oriented/Based Programming

I Object-oriented (OO) programming is currently main programming
paradigm.

I Good for bundling operations into one objects, hiding implementations
and reuse of code.

I Here restriction to object-based programming.
I Only notion of an object covered.

I Ultimate goal: use objects in order to organise proofs in a better way.
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Objects

Example: cell in Java

class cell <A> {

/∗ Instance Variable ∗/
A content;

/∗ Constructor ∗/
cell (A s) { content = s; }

/∗ Method put ∗/
public void put (A s) { content = s; }

/∗ Method get ∗/
public A get () { return content; }

}
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Objects

Modelling Methods as Objects

I The Type (interface) cell modelled as a coalgebra Cell.
I A method

B m (A x)

is modelled as observation
m : Cell → A → B × Cell

I Return type void is modelled as Unit (one element type).
I A constructor with argument A modelled as a function defined by

guarded recursion
cell : A → Cell

Anton Setzer Objects in Theorem Provers 17/ 29



Objects

Object as a Coalgebra

Using coalg notation we obtain

coalg Cell (A : Set) where
put : Cell A → A → (Unit × Cell A)
get : Cell A → Unit → (A ×Cell A)

cell : {A : Set} → A → Cell A
put (cell a) b = (unit , cell b)
get (cell a) _ = (a , cell a)
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Objects

Official Agda Code

record Cell (X : Set) : Set where
coinductive
field

put : X → Unit × Cell X
get : Unit → X × Cell X

cell : {X : Set} → X → Cell X
put (cell x) y = (unit , cell y)
get (cell x) _ = (x , cell x)

Anton Setzer Objects in Theorem Provers 19/ 29



Objects

Generic Version

An interface for an object consist of methods and the result type:

record Interface : Set1 where
field Method : Set

Result : Method → Set

An Object of an interface I has a method which for every method returns
an element of the result type and the updated object:

record Object (I : Interface) : Set where
coinductive
field objectMethod : (m : Method I) → Result I m × Object I
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State Dependent Objects

State Dependent Interface

record Interfaces : Set1 where
field

States : Set
Methods : States → Set
Results : (s : States) → (m : Methods s) → Set
nexts : (s : States) → (m : Methods s) → Results s m

→ States
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State Dependent Objects

State Dependent Object

Assuming I : Interfaces we define the set of state dependent objects:

record Objects (I : Interfaces) (s : States I) : Set where
coinductive
field

objectMethod : (m : Methods I s)
→ Σ[ r ∈ Results I s m ] Objects I (nexts I s m r)
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State Dependent Objects

Example Safe Stack

StackStates = N

data StackMethods (A : Set) : StackStates → Set where
push : {n : StackStates} → A → StackMethods A n
pop : {n : StackStates} → StackMethods A (suc n)

StackResults : (A : Set) → (s : StackStates) → StackMethods A s
→ Set

StackResults A .n (push { n } x1) = Unit
StackResults A (suc .n) (pop {n} ) = A

ns : (A : Set) → (s : StackStates) → (m : StackMethods A s)
→ (r : StackResults A s m) → StackStates

ns A .n (push { n } x) r = suc n
ns A (suc .n) (pop { n }) r = n
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State Dependent Objects

Safe Stack

StackInterfaces : (A : Set) → Interfaces

States (StackInterfaces A) = StackStates

Methods (StackInterfaces A) = StackMethods A
Results (StackInterfaces A) = StackResults A
nexts (StackInterfaces A) = ns A

stackO : ∀{E : Set} {n : N} (v : Vec E n)
→ Objects (StackInterfaces E) n

objectMethod (stackO es) (push e) = (_ , stackO (e :: es))
objectMethod (stackO (e :: es)) pop = (e , stackO es)
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State Dependent Objects

Example Fibonacci Stack

data FibState : Set where
fib : N → FibState
val : N → FibState

data FibStackEl : Set where
_+· : N → FibStackEl
·+fib_ : N → FibStackEl

FibStack : N → Set
FibStack = Objects (StackInterfaces FibStackEl)

emptyFibStack : FibStack 0
emptyFibStack = stackO []

Stackmachine : Set
Stackmachine = Σ[ n ∈ N ] (FibState × FibStack n)
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State Dependent Objects

Reduce

reduce : Stackmachine → Stackmachine ] N
reduce (n , fib 0 , stack) = inj1 (n , val 1 , stack)
reduce (n , fib 1 , stack) = inj1 (n , val 1 , stack)
reduce (n , fib (suc (suc m)) , stack) =

objectMethod stack (push (·+fib m)) B ń { (_ , stack1) →
inj1 ( suc n , fib (suc m) , stack1) }

reduce (0 , val m , stack) = inj2 m
reduce (suc n , val m , stack) =

objectMethod stack pop B ń { (k +· , stack1) →
inj1 (n , val (k + m) , stack1) ;

(·+fib k , stack1) →
objectMethod stack1 (push (m +·)) B ń {(_ , stack2) →
inj1 (suc n , fib k , stack2) } }

Anton Setzer Objects in Theorem Provers 27/ 29



State Dependent Objects

Fibonacci Function

{-# NON_TERMINATING #-}
iter : Stackmachine → N
iter stack with reduce stack
... | inj1 s’ = iter s’
... | inj2 m = m

fibUsingStack : N → N
fibUsingStack n = iter (0 , fib n , emptyFibStack)
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Conclusion

Conclusion

I Definition of coinductive data types (coalgebras) by their observations.

I Use of copattern matching

I Objects as examples of coalgebras.
I State dependent objects.
I Future work

I Define Gray codes using objects
I Asymmetry between constructors and observations.

I Use of objects in organising proofs.

I Use of coalgebras for defining processes: See talk by Bashar Igried at
TyDe’2016 in Nara.
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