
Programming with Objects in Theorem Provers
based on Martin Löf Type Theory

Anton Setzer

Dept of Computer Science, Swansea University, Singleton Park, Swansea, UK,
a.g.setzer@swan.ac.uk

In programming, the main programming paradigm used is object-orientation.
The reason is that it supports well the hiding of implementation details from the
outside and the change of implementations details of units without affecting the
whole code. The question is whether it is possible to apply a similar approach
in the area of proofs, and get similar benefits. Interactive proofs typically use
a huge amount of lemmas and definitions, and techniques from programming
might help to organise them in a better way.

One way of addressing this question is by looking at Martin-Löf type theory
(MLTT), where proofs and programs are the same. This allows it to transfer
concepts between programming and proving in a direct way.

As a first step we will look at how to represent the notion of an object in
MLTT, extended by coinductively defined sets [AAS16]. We follow the approach
described in [Set12,APTS13], where coinductively defined sets will be given by
their observations or elimination rules. An object is essentially determined by
its methods‘, and therefore one can represent objects as elements of coalgebras.

We will introduce a notion of extending an object. A novelty in the context
of MLTT is that we obtain indexed state-dependent coalgebras, and correspond-
ingly state dependent objects. In state dependent objects, the methods available
change after applying method calls. An example is a safe stack, for which the the
pop method is only available if the stack is non-empty. We will as well combine
objects with state-dependent interactive programs.

If time permits we will introduce related research on representing processes in
MLTT [IS16] (joint work with Bashar Igried). Processes will be again represented
coalgebraically as non-well-founded trees, with branching over the transitions a
process can make.

References

[AAS16] Andreas Abel, Stephan Adelsberger, and Anton Setzer. Interactive
programming in Agda – objects and graphical user interfaces. To
appear in Journal of Functional Programming. Preprint available at
http://www.cs.swan.ac.uk/∼csetzer/articles/ooAgda.pdf, 2016.

[APTS13] Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer. Copat-
terns: Programming infinite structures by observations. In Roberto Giacobazzi
and Radhia Cousot, editors, Proceedings of the 40th annual ACM SIGPLAN-
SIGACT Symposium on Principles of programming languages, POPL ’13,
ACM, New York, USA, 2013, pp. 27–38.



[IS16] Bashar Igried and Anton Setzer. Programming with monadic CSP-
style processes in dependent type theory. To appear in proceed-
ings of TyDe 2016, Type-driven Development, preprint available from
http://www.cs.swan.ac.uk/∼csetzer/articles/TyDe2016.pdf, 2016.

[Set12] Anton Setzer. Coalgebras as types determined by their elimination rules. In
P. Dybjer, Sten Lindström, Erik Palmgren, and G. Sundholm, editors, Episte-
mology versus Ontology, volume 27 of Logic, Epistemology, and the Unity of
Science, Springer, Dordrecht, Heidelberg, New York, London, 2012, pp. 351–
369.


