
Algebras and Coalgebras in dependent type theory

Anton Setzer

Swansea University

12 April 2012

1/ 30



From Algebras to Indexed Inductive Definitions

Indexed Inductive-Recursive Definitions

Induction-Induction

Coalgebras

2/ 30



From the infamous “TPL Book”

Alternatively, an algebra may be displayed expansively in the following way:

algebra A

carriers . . . ,As , . . .

constant
...
a :→ As
...

operations
...
f : As(1) × · · · × As(n) → As
...

3/ 30



Notations

I We use functional notation f a1 · · · an:::::::::
instead of f (a1, . . . , an).

I A1 + · · ·+ An:::::::::::::
is the disjoint union of Ai .

If there is a natural index i for Ai (usually an operation)
let

ini::
: Ai → A1 + · · ·+ An

be the injection.

I We write a : A for a is of type A.

I Set::: denotes the type of sets,

S → Set is the type of S-indexed sets.

4/ 30



Dependent Function/Sum Type

I We define the
::::::::::::
dependent

::::::::::
function

::::::
type

(a : A)→ B[a]
::::::::::::::

of functions mapping a : A to an element of B[a].

I We define the
::::::::::::
dependent

::::::
sum

:::::
type

(a : A)× B[a]
:::::::::::::

consisting of 〈a, b〉 s.t. a : A, b : B[a].

5/ 30



From Algebras to Indexed Inductive Definitions

From Algebras to Indexed Inductive Definitions

Indexed Inductive-Recursive Definitions

Induction-Induction

Coalgebras

6/ 30



From Algebras to Indexed Inductive Definitions

Single Sorted Case (Omit S)

I Let for a :→ A, X : Set,

Fa(X )
::::::

:= {∗}

So essentially
a : Fa(A)→ A

I Let for f : An → A, X : Set

Ff (X )
::::::

:= X n

So
f : Ff (A)→ A

I Let
F (X )
:::::

:= Ff1(X ) + · · ·+ Ffl (X )

So
~f: := [f1, . . . , fn] : F (A)→ A

I (A,~f ) is an
:::::::::::
F -algebra.

7/ 30



From Algebras to Indexed Inductive Definitions

Multi Sorted Case, Restricted Version

I Let S: := {s1, . . . , sn} be the set of all sorts.

I Consider A as of type A : S → Set.
I Assume now X : S → Set

I If a :→ As , let
Fa(X )
:::::

:= {∗}

I If f : As(1) × · · · × As(n) → As , let

Fa(X )
:::::

:= Xs(1) × · · · × Xs(n)

I Let for s : S
F s(X )
:::::

:= Ffi1
(X ) + · · ·+ Ffil

(X )

where fi1 , . . . , fil are the functions with target type As .
I Define

~f: : (s : S)→ F s(A)→ As ,

~f s (ina ∗) = a ,
~f s (inf 〈x1, . . . , xn〉) = f (x1, . . . , xn)

I Then (A,~f ) is a
::::::::::
restricted

:::::::::::
F -algebra because of the type of ~f . 8/ 30



From Algebras to Indexed Inductive Definitions

Multi Sorted Case, Generalised Version

I Let S ,A,Fa,Ff as before
I Let

F (X )
:::::

:= Ff1(X ) + · · ·+ Ffn(X )

where f1, . . . , fl are all the constants and operations of A.
I Define

index::::: : F (X )→ S

where if f : As1 × · · · × Asn → As , then

index (infi 〈x1, . . . , xn〉) = s

I Define
~f: : (a : F (A))→ Aindex s ,

~f (ina ∗) = a
~f s (inf 〈x1, . . . , xn〉) = f 〈x1, . . . , xn〉

I Then (A,~f ) is a
:::::::::::::
generalised

::::::::::::
F -algebra because of the type of ~f .

9/ 30



From Algebras to Indexed Inductive Definitions

Generalisation

I Up to now F (X ) is the disjoint union of products of Xi .

I We can throw in as basic sets as well some B : Set defined before.
These will be called “

::::::::::::::::
non-inductive

:::::::::::::
arguments”.

I Used when forming algebras referring to other algebras.

I We can refer to many arguments of Xs simultaneously.
So we have arguments of type

(b : B)→ Xs(b)

where B : Set, s : B → S .
These arguments are called “

::::::::::
inductive

:::::::::::::
arguments”.

10/ 30



From Algebras to Indexed Inductive Definitions

Generalisation

I We can allow the type of later arguments depend on previous
non-inductive arguments.

I We replace
Ff1(X ) + · · ·+ Ffn(X )

by
(f : {f1, . . . , fn})× Ff (X )

so we need no disjoint union.

I We define polynomial functors for the general case, the restricted
version is a special case of this.

11/ 30



From Algebras to Indexed Inductive Definitions

Polynomial Functors

I The
:::
set

:::
of

::::::::::::::
polynomial

::::::::::
functors F : (S → Set)→ Set together

with index : F X )→ S is given by
I Base Case:

The following is polynomial (s : S):

F X = {∗}
index ∗ = s

I Non-inductive Argument:
Assume B : Set and that for b : B we have (Fb, indexb) is polynomial.
The following is polynomial:

F X = (b : B)× Fb X
index 〈b, x〉 = indexb x

12/ 30



From Algebras to Indexed Inductive Definitions

Polynomial Functors

I Inductive Argument:
Assume B : Set, s : B → S , (F ′, index′) is polynomial.
The following is polynomial:

F X = ((b : B)→ Xs(b))× F ′ X
index 〈x , y〉 = index′ y

13/ 30



From Algebras to Indexed Inductive Definitions

Restricted/Generalised Indexed Inductive Definitions

I Restricted indexed inductive definitions are initial algebras for
polynomial functors

Fs : (S → Set)→ Set ,
indexs x = s

and the introduction rule has the form

intro : (s : S)→ Fs A→ As

I Generalised indexed inductive definitions are initial algebras for a
polynomial functor

F : (S → Set)→ Set ,
index : F X → S

and the introduction rule has the form

intro : (x : F A)→ Aindex x

14/ 30



Indexed Inductive-Recursive Definitions

From Algebras to Indexed Inductive Definitions

Indexed Inductive-Recursive Definitions

Induction-Induction

Coalgebras

15/ 30



Indexed Inductive-Recursive Definitions

Asymmetry of Indexed Inductive Definitions

I Asymmetry of arguments:
I Only dependency on non-inductive arguments not on inductive

arguments.
I Direct dependency not possible, since we don’t know what X is.

I Solution: instead of defining just X : S → Set define
I X : S → Set inductively together with
I T : (s : S)→ Xs → D[s] recursively for some type D[s].
I Later arguments can depend on T applied to inductive arguments.

16/ 30



Indexed Inductive-Recursive Definitions

Generalised Indexed Inductive Definitions

I Let FamS(D) := (X : S → Set)× ((s : S)→ X s → D[s]).

I So define
F : FamS(D)→ Set
index : F X → S
toD : (x : F X )→ D[index x ]

I The formation and introduction rules are now

A : S → Set
T : (s : S)→ A s → D[s]

intro : (a : F 〈A,T 〉)→ Aindex a

T (index a) (intro a) = toD a

17/ 30



Indexed Inductive-Recursive Definitions

Polynomial Functors

I The
:::
set

:::
of

::::::::::::::
polynomial

::::::::::
functors with related functions

F : FamS(D)→ Set
index : F X → S
toD : (x : F X )→ D[index x ]

is defined as follows:
I Base Case:

Let s : S , d : D[s].
The following is polynomial:

F X = {∗}
index ∗ = s
toD ∗ = d

18/ 30



Indexed Inductive-Recursive Definitions

Polynomial Functors

I Non-inductive Argument:
Assume B : Set and for b : B we have (Fb, indexb) is polynomial.
The following is polynomial:

F X = (b : B)× Fb X ,
index 〈b, x〉 = indexb x ,
toD 〈b, x〉 = toDb x .

19/ 30



Indexed Inductive-Recursive Definitions

Polynomial Functors

I Inductive Argument:
Assume B : Set, s : B → S .
Assume for t : (b : B)→ D[s b] we have

(Ft , indext , toDt)

are polynomial.
The following is polynomial

F 〈X ,T 〉 = (f : (b : B)→ Xs b)× Ft◦f 〈X , t〉 ,
index 〈f ,X 〉 = indext◦f x ,
toD 〈f ,X 〉 = toDt◦f x .

20/ 30



Induction-Induction

From Algebras to Indexed Inductive Definitions

Indexed Inductive-Recursive Definitions

Induction-Induction

Coalgebras

21/ 30



Induction-Induction

Induction-Induction

I PhD Project of Fredrik Forsberg.
I In single sorted Induction Recursion we defined

I A : Set inductively, while defining
I T : A→ D recursively.

I In Induction Induction we define
I A : Set inductively, while defining
I B : A→ Set inductively.

22/ 30



Induction-Induction

Example Surreal Numbers

I We define the surreal numbers

Surreal : Set

together with relations

x ≤ y : Set
x 6≤ y : Set

for x , y : Surreal inductive-inductively.
(Size problems required modifications, see paper).

23/ 30



Induction-Induction

Example Surreal Numbers

I Assume
XL,XR : P(Surreal)
∀x ∈ XL.∀y ∈ XR.x 6≤ y

Then
(XL,XR) : Surreal

I Assume
X = (XL,XR) : Surreal
Y = (YL,YR) : Surreal

Assume
I ∀x ∈ XL.Y 6≤ x .
I ∀y ∈ YR.y 6≤ X .

Then X ≤ Y .

24/ 30



Induction-Induction

Example Surreal Numbers

I Assume
X = (XL,XR) : Surreal
Y = (YL,YR) : Surreal

Assume
I ∃x ∈ XL.Y ≤ x or
I ∃y ∈ YR.y ≤ X .

Then X 6≤ Y .

25/ 30



Coalgebras

From Algebras to Indexed Inductive Definitions

Indexed Inductive-Recursive Definitions

Induction-Induction

Coalgebras

26/ 30



Coalgebras

Coalgebras

I Restriction to the simplest non-indexed case.

I Algebras are functions
f : F A→ A

Simplest example Lists:

[nil, cons] : ({∗}+ A× List A)→ List A

I
:::::::::::::
Coalgebras are functions

f : A→ F A

I Colists are sets coList A : Set together with

case : coList A→ ({∗}+ A× List A)

27/ 30



Coalgebras

Misconception

I Often people think colists consist of

cons a1 (cons a2 · · · (cons an nil) · · · )

or infinite streams
cons a1 (cons a2 · · · )

I In our setting colists are not infinite, but can be unfolded potentially
infinitely many.

I Example: the increasing colist is given by

inc : N→ coList
case (inc n) = inr 〈n, inc (n + 1)〉

28/ 30



Coalgebras

Theory of Coalgebras

I Can be developed for indexed coalgebras with dependencies.

I Extensions to induction-recursion don’t make sense yet.
I In type theory

I Algebras are determined by their introduction rules,
the elimination rules are “derived”.

I Coalgebras are determined by their elimination rules,
the introduction rules are “derived”.

29/ 30



Coalgebras

Conclusion

I From algebra as in computer science to an abstract notion of algebras.

I Non-indexed, indexed inductive definitions.

I Induction recursion more symmetric.

I Induction induction seems to occur often in mathematics.

I Coalgebras as sets defined by their elimination rules.

30/ 30


	From Algebras to Indexed Inductive Definitions
	Indexed Inductive-Recursive Definitions
	Induction-Induction
	Coalgebras

