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One Key Achievement of G. Jäger

I Shift in Proof Theory from Subsystems of Analysis to Kripke-Platek
set theory.

I Reason for its success:
I Allows to principles from recursion theory very well

Therefore provide an excellent layering of theories of different proof
theoretic strength.

I Sets have a natural tree like structure, which corresponds well to proofs
which are trees as well.
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a = {bi | i ∈ I}

ai = {bj | j ∈ J}
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Second Key Shift by Gerhard Jäger

I Use of Feferman’s Theory of Explicit Mathematics as a laboratory for
the formalisation and proof theoretic analysis of recursion principles.

I Feferman are very flexible for this purpose.
I One example by R. Kahle and A.S.:

Mahlo universe can be completely predicatively described in Feferman
systems (extended predicative Mahlo).

I It would be nice to try out the use of EM as a programming language.
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PX

I One implementation of Feferman Systems is the PX system.
I Hayashi, Susumu and Nakano, Hiroshi: PX: a computational logic.

MIT Press, 1988.

I My third year student Nathan Smith contacted the creator Susumu
Hayashi:

Dear Nathan,

Thank you for your mail. I stopped to maintain PX system about a
quarter century ago. I do not even keep the codes of the system.
Sorry, but I have left computer science and software engineering long
time ago.

Best regards,
Susumu Hayashi
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One more Achievement by Jäger

I Metaprediacativity
I Exploration of the limit of predicative methods in proof theory.
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From Codata to Coalgebras

Dependent Type Theory with Decidable Type Checking

I We explore the use of coalgebras in the context of dependent type
theory with decidable type checking.

I This allows to program in dependent type theory in a similar way as
when programming in other typed languages.

I No need to derive that something is a correct program.

I Type checking in dependent type theory requires checking of
(definitional) equality.

I Such an equality cannot be extensional.

I Instead, two functions f , g : A→ B are equal if they (or their
program codes) reduce to the same normal form.
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From Codata to Coalgebras

Codata Type

I Idea of Codata Types non-well-founded versions of inductive data
types:

codata Stream : Set where
cons : N→ Stream→ Stream

I Same definition as inductive data type but we are allowed to have
infinite chains of constructors

cons n0 (cons n1 (cons n2 · · · ))

I Problem 1: Non-normalisation.
I Problem 2: Equality between streams is equality between all ni , and

therefore undecidable.
I Problem 3: Underlying assumption is

∀s : Stream.∃n, s ′.s = cons n s ′

which results in undecidable equality.

Anton Setzer Pattern und Copattern Matching 10/ 38



From Codata to Coalgebras

Subject Reduction Problem

I In order to repair problem of normalisation restrictions on reductions
were introduced.

I Resulted in Coq in a long known problem of subject reduction.
I In order to avoid this, in Agda dependent elimination for coalgebras

disallowed.
I Makes it difficult to use.
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From Codata to Coalgebras

Coalgebraic Formulation of Coalgebras

I Solution is to follow the long established categorical formulation of
coalgebras.

I Final coalgebras will be replaced by weakly final coalgebras.

I Two streams will be equal if the programs producing them reduce to
the same normal form.
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Algebras and Coalgebras

Algebras and Coalgebras

Elaboration of notions of (co)iteration, (co)recursion, induction is result of
discussions with Peter Hancock.

I Algebraic data types correspond to initial algebras.
I N as an algebra can be represented as introduction rules for N:

0 : N
S : N→ N

I Coalgebra obtained by “reversing the arrows”.
I Stream as a coalgebra can be expressed as as elimination rules for it:

head : Stream→ N
tail : Stream→ Stream
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Algebras and Coalgebras

Weakly Initial Algebras and Final Coalgebras

I N as a weakly initial algebra corresponds to iteration
(elimination rule): For A : Set, a : A, f : A→ A there exists

g : N→ A
g 0 = a
g (S n) = f (g n)

(or g n = f n a).

I Stream as a weakly final coalgebra corresponds to coiteration or
guarded iteration (introduction rule):
For A : Set, f0 : A→ N, f1 : A→ A there exists g s.t.

g : A→ Stream
head (g a) = f0 a
tail (g a) = g (f1 a)
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Algebras and Coalgebras

Example

I Using coiteration we can define

inc : N→ Stream
head (inc n) = n
tail (inc n) = inc (n + 1)
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Algebras and Coalgebras

Recursion and Corecursion

I N as an initial algebra corresponds to uniqueness of g above.
I Allows to derive primitive recursion:

For A : Set, a : A, f : (N× A)→ A there exists

g : N→ A
g 0 = a
g (S n) = f 〈n, (g n)〉

I Stream as a final coalgebra corresponds to uniqueness of h.
I Allows to derive primitive corecursion:

For A : Set, f0 : A→ N, f1 : A→ (Stream + A) there exists

g : A→ Stream
head (g a) = f0 a
tail (g a) = s if f1 a = inl s
tail (g a) = g a′ if f1 a = inr a′
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Algebras and Coalgebras

Recursion vs Iteration

I Using recursion we can define inverse case of the constructors of N as
follows:

case : N→ (1 + N)
case 0 = inl
case (S n) = inr n

I Using iteration, we cannot make use of n and therefore case is defined
inefficiently:

case : N→ (1 + N)
case 0 = inl
case (S n) = caseaux (case n)

caseaux : (1 + N)→ (1 + N)
caseaux inl = inr 0
caseaux (inr n) = inr (S n)
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Algebras and Coalgebras

Defininition of pred

I In the talk given we defined pred in a wrong way (using iteration).
One way of defining pred by iteration is by defining first case and
then to define

predaux : (1 + N)→ N
predaux inl = 0
predaux (inr n) = n

pred : N→ N
pred n = predaux (case n)

Anton Setzer Pattern und Copattern Matching 19/ 38



Algebras and Coalgebras

Corecursion vs Coiteration

I Definition of cons (inverse of the destructors) using coiteration
inefficient:

cons : N→ Stream→ Stream
head (cons n s) = n
tail (cons n s) = cons (head s) (tail s)

I Using primitive corecursion we can define more easily

cons : N→ Stream→ Stream
head (cons n s) = n
tail (cons n s) = s

Anton Setzer Pattern und Copattern Matching 20/ 38



Algebras and Coalgebras

Induction - Coinduction?

I Induction is dependent primitive recursion:
For A : N→ Set, a : A 0, f : (n : N)→ A n→ A (S n) there exists

g : (n : N)→ A n
g 0 = a
g (S n) = f n (g n)

I Equivalent to uniqueness of arrows with respect to propositional
equality and interpreting equality on arrows extensionally.

I Uniqueness of arrows in final coalgebras expresses that equality is
bisimulation equality.

I How to dualise dependent primitive recursion?
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Algebras and Coalgebras

Weakly Final Coalgebra

I Equality for final coalgebras is undecidable:
Two streams

s = (a0 , a1 , a2 , . . .
t = (b0 , b1 , b2 , . . .

are equal iff ai = bi for all i .

I Even the weak assumption

∀s.∃n, s ′.s = cons n s ′

results in an undecidable equality.

I Weakly final coalgebras obtained by omitting uniqueness of g in
diagram for coalgebras.

I However, one can extend schema of coiteration as above, and still
preserve decidability of equality.

I Those schemata are usually not derivable in weakly final coalgebras.
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Algebras and Coalgebras

Definition of Coalgebras by Observations

I We see now that elements of coalgebras are defined by their
observations:
An element s of Stream is anything for which we can define

head s : N
tail s : Stream

I This generalises the function type.
Functions are as well determined by observations.

I An f : A→ B is any program which if applied to a : A returns some
b : B.

I Inductive data types are defined by construction
coalgebraic data types and functions by observations.
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Algebras and Coalgebras

Relationship to Objects in Object-Oriented Programming

I Objects in Object-Oriented Programming are types which are defined
by their observations.

I Therefore objects are coalgebraic types by nature.
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Patterns and Copatterns

Patterns and Copatterns

I We can define now functions by patterns and copatterns.

I Example define stream:
f n =
n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,
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Patterns and Copatterns

Patterns and Copatterns

f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
f = ?
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Patterns and Copatterns
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f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
f n = ?

Solve first case, copattern match on second case:

f : N→ Stream
head (f n) = n
head (tail (f n)) = ?
tail (tail (f n)) = ?
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f : N→ Stream
f n = ?

Solve second line, pattern match on n

f : N→ Stream
head (f n) = n
head (tail (f n)) = n
tail (tail (f 0)) = ?
tail (tail (f (S n))) = ?

Anton Setzer Pattern und Copattern Matching 27/ 38



Patterns and Copatterns

Patterns and Copatterns

f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
f n = ?

Solve remaining cases

f : N→ Stream
head (f n) = n
head (tail (f n)) = n
tail (tail (f 0)) = f N
tail (tail (f (S n))) = f n
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Patterns and Copatterns

Results of paper in POPL (2013)

I Development of a recursive simply typed calculus (no termination
check).

I Allows to derive schemata for pattern/copattern matching.

I Proof that subject reduction holds.

t : A, t −→ t ′ implies t ′ : A
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Codata types and Decidable Equality

Result

I We show that a decidable equality on Stream is incompatible with
the assumption

∀s.∃n, s ′.s == cons n s ′
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Codata types and Decidable Equality

Theorem Regarding Undecidability of Equality

Theorem

Assume the following:

I There exists a subset Stream ⊆ N,

I computable functions
head : Stream→ N, tail : Stream→ Stream,

I a decidable binary relation == on Stream which is an equivalence
relation,

I the possibility to define elements of Stream by primitive corecursion
based on primitive recursive functions f , g : N→ N, such that the
equalities related to guarded recursion hold.

I All operation above respect equality == .

Then the following does not hold:

∀s, s ′ ∈ Stream.head s == head s ′∧tail s == tail s ′ → s == s ′ (∗)
Anton Setzer Pattern und Copattern Matching 31/ 38



Codata types and Decidable Equality

Consequences for Codata Approach

Remark

Condition (∗) is fulfilled if we have an operation
cons : N→ Stream→ Stream preserving equalities s.t.

∀s : Stream.s == cons (head s) (tail s)

So we cannot have a type theory with streams, decidable type checking
and decidable equality on streams such that

∀s.∃n, s ′.s == cons n s ′

as assumed by the codata approach.
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Codata types and Decidable Equality

Proof of Theorem

I Assume we had the above.

I By
s ≈ n0 :: n1 :: n2 :: · · · nk :: s ′

we mean the equations using head, tail expressing that s behaves as
the stream indicated on the right hand side.

I Define by guarded recursion l : Stream

l ≈ 1 :: 1 :: 1 :: · · ·
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Codata types and Decidable Equality

Proof of Theorem

I For e code for a Turing machine define by guarded recursion based on
primitive recursion functions f , g s.t. if e terminates after n steps and
returns result k then

f e ≈ 0 :: 0 :: 0 :: · · · :: 0︸ ︷︷ ︸
n times

:: l

g e ≈


0 :: 0 :: 0 :: · · · :: 0︸ ︷︷ ︸

n times

:: l if k = 0

0 :: 0 :: 0 :: · · · :: 0︸ ︷︷ ︸
n+1 times

:: l if k > 0
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Codata types and Decidable Equality

Proof of Theorem

f e ≈ 0 :: 0 :: 0 :: · · · :: 0︸ ︷︷ ︸
n times

:: l

g e ≈


0 :: 0 :: 0 :: · · · :: 0︸ ︷︷ ︸

n times

:: l if k = 0

0 :: 0 :: 0 :: · · · :: 0︸ ︷︷ ︸
n+1 times

:: l if k > 0

I If e terminates after n steps with result 0 then

f e == g e

I If e terminates after n steps with result > 0 then

¬(f e == g e)

Anton Setzer Pattern und Copattern Matching 35/ 38



Codata types and Decidable Equality

Proof of Theorem

I So
λe.(f e == g e)

separates the TM with result 0 from those with result > 0.

I But these two sets are inseparable.
(See e.g. Odifreddi, 1999, p. 148, Theorem II.2.5.)
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Conclusion

Conclusion

I Symmetry between
I algebras and coalgebras,
I iteration and coiteration,
I recursion and corecursion,
I patterns and copatterns.

I Final algebras are defined by construction,
coalgebras and function types by observation.

I Codata types make the implicit assumption

∀s : Stream.∃n, s ′.s = cons n s ′

which cannot be combined with a decidable equality.
I Weakly final coalgebras solve this problem.

I Wheras in attempts to use codata types sophisticated reduction rules
were used which depend on context, in the coalgebra approach we have
recursion rules which can always be applied independent of context.
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Appendix: Example of Objects as Coalgebras

Example

class Angle
{ int angle;

Angle(int myangle) {angle = myangle mod 360;};

void set(int myangle){angle = myangle mod 360; return;};

int get(){return angle;};
}

Interface of Angle (which is the true type) can be given as

coalg Angle where
set : Angle→ N→ Angle
get : Angle→ N
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Appendix: Example of Objects as Coalgebras

Example

class Angle
{ int angle;

Angle(int myangle){angle = myangle mod 360;};

void set(int myangle){angle = myangle mod 360; return;};

int get(){return angle;};
}

Implementation of the methods can be given as
(argument N corresponds to the instance variable):

angleImpl : N→ Angle
set (angleImpl n) m = angleImpl (m mod 360)
get (angleImpl n) = n
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Appendix: Example of Objects as Coalgebras

Example

class Angle
{ int angle;

Angle(int myangle){angle = myangle mod 360;};

void set(int myangle){angle = myangle mod 360; return;};

int get(){return angle;};

}

}

Implementation of the constructor can be given as

createAngle : N→ Angle
createAngle n = angleImpl n
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Appendix: Reduction of Mixed Pattern/Copattern Matching to
Operators

Operators for Primitive (Co)Recursion

PN,A : A→ (N→ A→ A)→ N→ A
PN,A step0 stepS 0 = step0
PN,A step0 stepS (S n) = stepS n (PN,A step0 stepS n)

coPStream,A : (A→ N)→ (A→ (Stream + A))→ A→ Stream
head (coPStream,A stephead steptail a) = stephead a
tail (coPStream,A stephead steptail a) =

caseStream,A,Stream id (coPStream,A stephead steptail) (steptail a)
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Appendix: Reduction of Mixed Pattern/Copattern Matching to
Operators

Operators for full/primitive (co)recursion

RN,A : ((N→ A)→ A)→ ((N→ A)→ N→ A)→ N→ A
RN,A step0 stepS 0 = step0 (RN,A step0 stepS)
RN,A step0 stepS (S n) = stepS (RN,A step0 stepS) n

coRStream,A : ((A→ Stream)→ A→ N)
→ ((A→ Stream)→ A→ Stream)
→ Stream

head (coRStream,A stephead steptail a) = stephead
(coRStream,A stephead steptail) a

tail (coRStream,A stephead steptail a) = steptail
(coRStream,A stephead steptail) a
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Appendix: Reduction of Mixed Pattern/Copattern Matching to
Operators

Consider Example from above

f : N→ Stream
head (f n) = n
head (tail (f n)) = n
tail (tail (f 0)) = f N
tail (tail (f (S n))) = f n

This example can be reduced to primitive (co)recursion.
Step 1: Following the development of the (co)pattern matching definition,
unfold it into simultaneous non-nested (co)pattern matching definitions.
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Appendix: Reduction of Mixed Pattern/Copattern Matching to
Operators

Step 1: Unnesting of Nested (Co)Pattern Matching

We follow the steps in the pattern matching:
We start with

f : N→ Stream
head (f n) = n
tail (f n) = ?
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Copattern matching on tail (f n):

f : N→ Stream
head (f n) = n
head (tail (f n) = n
tail (tail (f n) = ?

corresponds to

f : N→ Stream
head (f n) = n
tail (f n) = g n

g : N→ Stream
(head (tail (f n)) =) head (g n) = n
(tail (tail (f n)) =) tail (g n) = ?



Pattern matching on tail (tail (f n)):

f : N→ Stream
head (f n) = n
head (tail (f n) = n
tail (tail (f 0) = f N
tail (tail (f (S n)) = f n

corresponds to

f : N→ Stream
head (f n) = n
tail (f n) = g n

g : N→ Stream
(head (tail (f n)) =) head (g n) = n
(tail (tail (f n)) =) tail (g n) = k n

k : N→ Stream
(tail (tail (f 0)) =) k 0 = f N
(tail (tail (f (S n))) =) k (S n) = f n



Appendix: Reduction of Mixed Pattern/Copattern Matching to
Operators

Step 2: Reduction to Primitive (Co)recursion

I This can now easily be reduced to full (co)recursion.

I In this example we can reduce it to primitive (co)recursion.

I First combine f , g into one function f + g .

Anton Setzer Pattern und Copattern Matching 50/ 38



f : N→ Stream
f n = (f + g) (f n)

(f + g) : (f(N) + g(N))→ Stream

head ((f + g) (f n)) = n
head ((f + g) (g n)) = n

tail ((f + g) (f n)) = (f + g) (g n)

tail ((f + g) (f n)) = k n

k : N→ Stream
k 0 = (f + g) (f N)
k (S n) = (f + g) (f n)



Appendix: Reduction of Mixed Pattern/Copattern Matching to
Operators

Unfolding of the Pattern Matchings

I The call of k has result always of the form (f + g)( fbf n)).
So we can replace the recursive call k n by (f + g)(f (k ′ n)).
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f : N→ Stream
f n = (f + g) (f n)

(f + g) : (f(N) + g(N))→ Stream

head ((f + g) (f n)) = n
head ((f + g) (g n)) = n

tail ((f + g) (f n)) = (f + g) (g n)

tail ((f + g) (f n)) = (f + g) (f (k ′ n))

k ′ : N→ N
k 0 = N
k (S n) = n



Appendix: Reduction of Mixed Pattern/Copattern Matching to
Operators

Unfolding of the Pattern Matchings

I (f + g) can be defined by primitive corecursion.

I k ′ can be defined by primitive recursion.
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f : N→ Stream
f n = (f + g) (f n)

(f + g) : (f(N) + g(N))→ Stream

(f + g) =
coPStream,(f(N)+g(N) (λx .caser (x) of

(f n) −→ n
(g n) −→ n)

(λx .caser (x) of
(f n) −→ g n

(g n) −→ f (k ′ n))

k ′ : N→ N
k ′ = PN,N N (λn, ih.n)



Appendix: Reduction of Mixed Pattern/Copattern Matching to
Operators

Reduction to Primitive (Co)Recursion

I The case distinction can be trivially replaced by the case distinction
operator.
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f : N→ Stream
f n = (f + g) (f n)

(f + g) : (f(N) + g(N))→ Stream

(f + g) =
coPStream,f(N)+g(N) (casef(N)+g(N) id id)

(casef(N)+g(N) g (f ◦ k ′))

k ′ : N→ N
k ′ = PN,N N (λn, ih.n)
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