
Coalgebraic Programming Using Copattern Matching

Anton Setzer

Swansea University, Swansea UK

Gregynog, Wales, UK, 27 June 2013

Continuity, Computability, Constructivity –
From Logic to Algorithms (CCC 2013)

Anton Setzer Coalgebraic Programming Using Copatterns 1/ 22



Axiomatising the Real Numbers in Dependent Type Theory

Formulation of Coalgebras in Dependent Type Theory

Patterns and Copatterns

Conclusion

Appendix: Definition of Example of (Co)pattern Matching in Stages

Appendix: Simulating Codata Types in Coalgebras

Anton Setzer Coalgebraic Programming Using Copatterns 2/ 22



Axiomatising the Real Numbers in Dependent Type Theory

Axiomatising the Real Numbers in Dependent Type Theory

Formulation of Coalgebras in Dependent Type Theory

Patterns and Copatterns

Conclusion

Appendix: Definition of Example of (Co)pattern Matching in Stages

Appendix: Simulating Codata Types in Coalgebras

Anton Setzer Coalgebraic Programming Using Copatterns 3/ 22



Axiomatising the Real Numbers in Dependent Type Theory

Treating Real Numbers as Acclimatised Real Numbers

I We want to formulate real numbers in dependent type theory.
I Instead of working with concrete computable real numbers we want

to work with
I axiomatized abstract real numbers,
I and a predicate for real numbers being computable.

I Then we show that functions we want to define map computable real
numbers to computable ones.

I From this we obtain an algorithm for computing the function on
suitable representations.

Anton Setzer Coalgebraic Programming Using Copatterns 4/ 22



Axiomatising the Real Numbers in Dependent Type Theory

Postulates

I The theorem prover Agda has the concept of a postulate.

I postulate a : A
means that we introduce a new constant a of type A without any
computation rules.

I As in any axiomatic approach, postulates can make Agda inconsistent:

postulate falsum : ⊥

allows us to prove everything.

I Postulates are okay, if one allows them in a restricted way.

Anton Setzer Coalgebraic Programming Using Copatterns 5/ 22



Axiomatising the Real Numbers in Dependent Type Theory

Real Number Axioms in Agda

postulate R : Set
postulate zero : R
postulate + : R→ R→ R
postulate ax+ : (r : R)→ r + 0 == r
· · ·

Anton Setzer Coalgebraic Programming Using Copatterns 6/ 22



Axiomatising the Real Numbers in Dependent Type Theory

Signed Digit Reals

Digit = {−1, 0, 1} : Set
codata SignedDigit : R→ Set where
signedDigit : (r : R)

→ (r ∈ [−1, 1])
→ (d : Digit)
→ SignedDigit (2 ∗ r − d)
→ SignedDigit r

We can extract from a proof of SignedDigit the nth Digit:

signedDigit to nthDigit : (r : R)→ (SignedDigit r)→ N→ Digit

Anton Setzer Coalgebraic Programming Using Copatterns 7/ 22



Axiomatising the Real Numbers in Dependent Type Theory

Required Property Needed

I We want that if we prove for some r

p : SignedDigit r

then
signedDigit to nthDigit r p 17

reduces to −1 or 0 or 1
and not to something like

axiom1 (axiom2 5) 6

I For this we need to make sure that from a postulated axioms we
cannot extract any computational content.

I What we want is that if we derive

a : A

where A algebraic data type, a is closed, then a is canonical,
i.e. starts with a constructor.

Anton Setzer Coalgebraic Programming Using Copatterns 8/ 22



Axiomatising the Real Numbers in Dependent Type Theory

Restrictions on Postulates (PhD thesis Chi Ming Chuang)

I Postulated functions have as result type equalities or postulated
types.

I Especially negation is not allowed as conclusion because of
¬A = A→ ⊥.

I Functions defined by case distinction on equalities have as result type
only equalities or postulated types.

I So when using postulated functions and equalities we stay within
equalities and postulated types.

Anton Setzer Coalgebraic Programming Using Copatterns 9/ 22



Axiomatising the Real Numbers in Dependent Type Theory

Equalities

I The problem with equalities was that they occur in conclusions in
Agda.

I If we had 2 equalities:
I one on postulated types,
I one on non-postulated types,

then only a restriction on the equality on postulated types is needed.

Anton Setzer Coalgebraic Programming Using Copatterns 10/ 22



Axiomatising the Real Numbers in Dependent Type Theory

Results of PhD Thesis Chi Ming Chuang

I Chi Ming Chuang: Extraction of Programs for Exact Real Number
Computation using Agda. PhD thesis, Dept. of Computer Science,
Swansea, March 2011

I Chi Ming Chuang
I showed that under these conditions all closed elements algebraic types

are canonical,
I introduced the signed digit real numbers and showed that they are

closed under av, ∗ and contain the rationals,
I transformed them into programs computing those operations on Reals

given by streams of signed digits,
I was able to execute the resulting programs using a compiled version of

Agda.

Anton Setzer Coalgebraic Programming Using Copatterns 11/ 22



Formulation of Coalgebras in Dependent Type Theory

Axiomatising the Real Numbers in Dependent Type Theory

Formulation of Coalgebras in Dependent Type Theory

Patterns and Copatterns

Conclusion

Appendix: Definition of Example of (Co)pattern Matching in Stages

Appendix: Simulating Codata Types in Coalgebras

Anton Setzer Coalgebraic Programming Using Copatterns 12/ 22



Formulation of Coalgebras in Dependent Type Theory

Codata in Functional Programming

I SignedDigit above was defined by a codata type.

I Consider a simpler example:

codata Stream : Set where
cons : N→ Stream→ Stream

Codata contains objects such as

cons 0 (cons 0 (cons 0 · · · ))

I We immediately get non-normalisation.
I Restrictions were applied in Coq and Agda on reductions of elements

of codata types.
I In Coq resulted in problem of subject reduction.
I In Agda restrictions make codata type not very useful.

Anton Setzer Coalgebraic Programming Using Copatterns 13/ 22



Formulation of Coalgebras in Dependent Type Theory

Coalgebras

I Solution is to use approach from category theory.
I Treat coalgebras as we treat functions in the λ-calculus:

I There functions are not a set of pairs
– and therefore an infinite object,

I but a program which applied to its arguments computes the result.

I Similarly elements of coalgebras are not per se infinite objects, but
objects which can be unfolded computationally possibly infinitely
often:

coalg Stream : Set where
head : Stream→ N
tail : Stream→ Stream

I Idea is: an element of Stream is any object, to which we can apply
head and tail and obtain natural numbers or Streams.

Anton Setzer Coalgebraic Programming Using Copatterns 14/ 22



Formulation of Coalgebras in Dependent Type Theory

Introduction Rule

coalg Stream : Set where
head : Stream→ N
tail : Stream→ Stream

I Elimination rule for Stream is given by it’s eliminators head, tail.

I Introduction rule is “derived” (not in a mathematical sense) from the
principle that elements of Stream are anything admitting head and
tail.

I Example:
inc : N→ Stream
head (inc n) = n
tail (inc n) = inc (n + 1)

Anton Setzer Coalgebraic Programming Using Copatterns 15/ 22



Formulation of Coalgebras in Dependent Type Theory

Introduction Rules for Coalgebras

I In its simple form (coiteration) elimination rules correspond exactly to
the categorical diagram of a weakly final coalgebra.

I More advanced forms (e.g. corecursion) can be derived for final
coalgebras and then used to extend weakly final coalgebras.

Anton Setzer Coalgebraic Programming Using Copatterns 16/ 22



Patterns and Copatterns

Axiomatising the Real Numbers in Dependent Type Theory

Formulation of Coalgebras in Dependent Type Theory

Patterns and Copatterns

Conclusion

Appendix: Definition of Example of (Co)pattern Matching in Stages

Appendix: Simulating Codata Types in Coalgebras

Anton Setzer Coalgebraic Programming Using Copatterns 17/ 22



Patterns and Copatterns

Patterns and Copatterns

I In our POPL 2013 paper
I Andreas Abel, Brigitte Pientka, David Thibodeau and Anton Setzer:

Copatterns: programming infinite structures by observations. POPL
2013, pp. 27 - 38

we
I showed how to mix pattern and copattern matching, and nest them as

well,
I introduced a small (non-normalising) calculus for mixed and nested

pattern and copattern matching,
I showed that this guarantees that all function definitions are coverage

complete,
I showed that the resulting calculus fulfils subject reduction.

Anton Setzer Coalgebraic Programming Using Copatterns 18/ 22



Patterns and Copatterns

Example of Patterns and Copatterns

Definition of the stream:
f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
head (f 0 ) = 0
head (tail (f 0 )) = 0
tail (tail (f 0 )) = f N
head (f (S n)) = S n
head (tail (f (S n)))= S n
tail (tail (f (S n)))= f n

I There is an easy algorithm to reduce these definitions back to case
distinction operators and full recursion.

I One can trace back the recursion and in some cases reduce it to the
primitive (co)recursion operators.

Anton Setzer Coalgebraic Programming Using Copatterns 19/ 22



Patterns and Copatterns

Berger’s Data Type of Continuous Functions

Let I denote [−1, 1].
Let II be I→ I for a postulated I or postulated type with suitable axioms.

coalg Cont (f : II) : Set where
elim : (f : II)→ Cont f → Contaux f

data Contaux (f : II) : Set where
consume : (f : II)→ ((d : Digit)→ Contaux(f ◦ ed))→ Contaux f

produce : (f : II)→ (d : Digit)→ Cont(e−1d ◦ f )→ Contaux f

Anton Setzer Coalgebraic Programming Using Copatterns 20/ 22



Conclusion

Axiomatising the Real Numbers in Dependent Type Theory

Formulation of Coalgebras in Dependent Type Theory

Patterns and Copatterns

Conclusion

Appendix: Definition of Example of (Co)pattern Matching in Stages

Appendix: Simulating Codata Types in Coalgebras

Anton Setzer Coalgebraic Programming Using Copatterns 21/ 22



Conclusion

Conclusion

I Use of postulated Real numbers very good approach to treating real
numbers in type theory.

I Restrictions on postulates guarantee that program extraction works.

I Copattern matching is the correct dual of pattern matching.

I Definition of functions on data and codata types by
pattern/copattern matching works well.

Anton Setzer Coalgebraic Programming Using Copatterns 22/ 22



Appendix: Definition of Example of (Co)pattern Matching in
Stages

Axiomatising the Real Numbers in Dependent Type Theory

Formulation of Coalgebras in Dependent Type Theory

Patterns and Copatterns

Conclusion

Appendix: Definition of Example of (Co)pattern Matching in Stages

Appendix: Simulating Codata Types in Coalgebras

Anton Setzer Coalgebraic Programming Using Copatterns 23/ 22



Appendix: Definition of Example of (Co)pattern Matching in
Stages

Patterns and Copatterns

I We demonstrate this by an example:

I Example define stream:
f n =
n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

Anton Setzer Coalgebraic Programming Using Copatterns 24/ 22



Appendix: Definition of Example of (Co)pattern Matching in
Stages

Patterns and Copatterns

f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
f = ?

Anton Setzer Coalgebraic Programming Using Copatterns 25/ 22



Appendix: Definition of Example of (Co)pattern Matching in
Stages

Patterns and Copatterns

f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
f = ?

Pattern match on f : N→ Stream:

f : N→ Stream
f n = ?

Anton Setzer Coalgebraic Programming Using Copatterns 25/ 22



Appendix: Definition of Example of (Co)pattern Matching in
Stages

Patterns and Copatterns

f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
f n = ?

Copattern matching on f n : Stream:

f : N→ Stream
head (f n) = ?
tail (f n) = ?

Anton Setzer Coalgebraic Programming Using Copatterns 25/ 22



Appendix: Definition of Example of (Co)pattern Matching in
Stages

Patterns and Copatterns

f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
head (f n) = ?
tail (f n) = ?

Pattern matching on the first n : N:

f : N→ Stream
head (f 0) = ?
head (f (S n)) = ?
tail (f n) = ?

Anton Setzer Coalgebraic Programming Using Copatterns 25/ 22



Appendix: Definition of Example of (Co)pattern Matching in
Stages

Patterns and Copatterns

f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
head (f 0) = ?
head (f (S n)) = ?
tail (f n) = ?

Pattern matching on second n : N:

f : N→ Stream
head (f 0) = ?
head (f (S n)) = ?
tail (f 0) = ?
tail (f (S n)) = ?

Anton Setzer Coalgebraic Programming Using Copatterns 25/ 22



Appendix: Definition of Example of (Co)pattern Matching in
Stages

Patterns and Copatterns

f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
head (f 0) = ?
head (f (S n)) = ?
tail (f 0) = ?
tail (f (S n)) = ?

Copattern matching on tail (f 0) : Stream

f : N→ Stream
head (f 0 ) = ?
head (f (S n))= ?
head (tail (f 0 ))= ?
tail (tail (f 0 ))= ?
tail (f (S n ))= ?

Anton Setzer Coalgebraic Programming Using Copatterns 25/ 22



Appendix: Definition of Example of (Co)pattern Matching in
Stages

Patterns and Copatterns

f : N→ Stream
head (f 0 ) = ?
head (f (S n))= ?
head (tail (f 0 ))= ?
tail (tail (f 0 ))= ?
tail (f (S n ))= ?

Copattern matching on tail (f (S n)) : Stream:

f : N→ Stream
head (f 0 ) = ?
head (f (S n)) = ?
head (tail (f 0 )) = ?
tail (tail (f 0 )) = ?
head (tail (f (S n)))= ?
tail (tail (f (S n)))= ?

Anton Setzer Coalgebraic Programming Using Copatterns 25/ 22



Appendix: Definition of Example of (Co)pattern Matching in
Stages

Patterns and Copatterns

We resolve the goals:

f : N→ Stream
head (f 0 ) = 0
head (tail (f 0 )) = 0
tail (tail (f 0 )) = f N
head (f (S n)) = S n
head (tail (f (S n)))= S n
tail (tail (f (S n)))= f n

I There is an easy algorithm to reduce these definitions back to case
distinction operators and full recursion.

I One can trace back the recursion and in some cases reduce it to the
primitive (co)recursion operators.

Anton Setzer Coalgebraic Programming Using Copatterns 25/ 22



Appendix: Simulating Codata Types in Coalgebras

Axiomatising the Real Numbers in Dependent Type Theory

Formulation of Coalgebras in Dependent Type Theory

Patterns and Copatterns

Conclusion

Appendix: Definition of Example of (Co)pattern Matching in Stages

Appendix: Simulating Codata Types in Coalgebras

Anton Setzer Coalgebraic Programming Using Copatterns 26/ 22



Appendix: Simulating Codata Types in Coalgebras

Multiple Constructors in Algebras and Coalgebras

I Having more than one constructor in algebras correspond to disjoint
union:

data N : Set where
0 : N
S : N→ N

corresponds to
data N : Set where
intro : (1 + N)→ N

Anton Setzer Coalgebraic Programming Using Copatterns 27/ 22



Appendix: Simulating Codata Types in Coalgebras

Multiple Constructors in Algebras and Coalgebras

I Dual of disjoint union is products, and therefore multiple destructors
correspond to product:

coalg Stream : Set where
head : Stream→ N
tail : Stream→ Stream

corresponds to

coalg Stream : Set where
case : Stream→ (N× Stream)

Anton Setzer Coalgebraic Programming Using Copatterns 28/ 22



Appendix: Simulating Codata Types in Coalgebras

Codata Types Correspond to Disjoint Union

I Consider
codata coList : Set where

nil : coList
cons : N→ coList→ coList

I Cannot be simulated by using several destructors.

Anton Setzer Coalgebraic Programming Using Copatterns 29/ 22



Appendix: Simulating Codata Types in Coalgebras

Simulating Codata Types by Simultaneous
Algebras/Coalgebras

I Represent Codata as follows

mutual
coalg coList : Set where
unfold : coList→ coListShape

data coListShape : Set where
nil : coListShape
cons : N→ coList→ coListShape

Anton Setzer Coalgebraic Programming Using Copatterns 30/ 22



Appendix: Simulating Codata Types in Coalgebras

Definition of Append

append : coList→ coList→ coList
append l l ′ =?

Anton Setzer Coalgebraic Programming Using Copatterns 31/ 22



Appendix: Simulating Codata Types in Coalgebras

Definition of Append

append : coList→ coList→ coList
append l l ′ =?

We copattern match on append l l ′ : coList:

append : coList→ coList→ coList
unfold (append l l ′) =?

Anton Setzer Coalgebraic Programming Using Copatterns 31/ 22



Appendix: Simulating Codata Types in Coalgebras

Definition of Append

append : coList→ coList→ coList
unfold (append l l ′) =?

We cannot pattern match on l .
But we can do so on (unfold l):

append : coList→ coList→ coList
unfold (append l l ′) =
case (unfold l) of
nil → ?
(cons n l) → ?

Anton Setzer Coalgebraic Programming Using Copatterns 31/ 22



Appendix: Simulating Codata Types in Coalgebras

Definition of Append

append : coList→ coList→ coList
unfold (append l l ′) =
case (unfold l) of
nil → ?
(cons n l) → ?

We resolve the goals:

append : coList→ coList→ coList
unfold (append l l ′) =
case (unfold l) of
nil → unfold l ′

(cons n l) → cons n (append l l ′)

Anton Setzer Coalgebraic Programming Using Copatterns 31/ 22


	Axiomatising the Real Numbers in Dependent Type Theory
	Formulation of Coalgebras in Dependent Type Theory
	Patterns and Copatterns
	Conclusion
	Appendix: Definition of Example of (Co)pattern Matching in Stages
	Appendix: Simulating Codata Types in Coalgebras

