Coalgebraic Programming Using Copattern Matching

Anton Setzer

Swansea University, Swansea UK

Gregynog, Wales, UK, 27 June 2013

Continuity, Computability, Constructivity —
From Logic to Algorithms (CCC 2013)

Anton Setzer Coalgebraic Programming Using Copatterns 1/ 22

Axiomatising the Real Numbers in Dependent Type Theory
Formulation of Coalgebras in Dependent Type Theory

Patterns and Copatterns

Conclusion

Appendix: Definition of Example of (Co)pattern Matching in Stages

Appendix: Simulating Codata Types in Coalgebras

Anton Setzer Coalgebraic Programming Using Copatterns 2/ 22

Axiomatising the Real Numbers in Dependent Type Theory

Axiomatising the Real Numbers in Dependent Type Theory

Anton Setzer Coalgebraic Programming Using Copatterns 3/ 22

Axiomatising the Real Numbers in Dependent Type Theory

Treating Real Numbers as Acclimatised Real Numbers

» We want to formulate real numbers in dependent type theory.

» Instead of working with concrete computable real numbers we want
to work with

» axiomatized abstract real numbers,
» and a predicate for real numbers being computable.

» Then we show that functions we want to define map computable real
numbers to computable ones.

» From this we obtain an algorithm for computing the function on
suitable representations.

Anton Setzer Coalgebraic Programming Using Copatterns 4/ 22

Axiomatising the Real Numbers in Dependent Type Theory

Postulates

» The theorem prover Agda has the concept of a postulate.

» postulate a: A
means that we introduce a new constant a of type A without any
computation rules.

» As in any axiomatic approach, postulates can make Agda inconsistent:
postulate falsum : L

allows us to prove everything.

» Postulates are okay, if one allows them in a restricted way.

Anton Setzer Coalgebraic Programming Using Copatterns 5/ 22

postulate
postulate
postulate
postulate

Z€ro
+
ax—+

Set

R

R—-R—->R
(riR)—=r+0==r

«O0)>» «F» «=)» 4«

it
it
N)
¥l
i)

Axiomatising the Real Numbers in Dependent Type Theory

Signed Digit Reals

Digit = {—1,0,1} : Set
codata SignedDigit : R — Set where
signedDigit : (r : R)
— (re[-1,1])
— (d : Digit)
— SignedDigit (2 % r — d)
— SignedDigit r

We can extract from a proof of SignedDigit the nth Digit:

signedDigit_to_nthDigit : (r : R) — (SignedDigit r) — N — Digit

Anton Setzer Coalgebraic Programming Using Copatterns 7/ 22

Axiomatising the Real Numbers in Dependent Type Theory

Required Property Needed

» We want that if we prove for some r
p : SignedDigit r
then
signedDigit_to_nthDigit r p 17
reduces to —1 or Q or 1
and not to something like

axioml (axiom2 5) 6

» For this we need to make sure that from a postulated axioms we
cannot extract any computational content.
» What we want is that if we derive

a:A
where A algebraic data type, a is closed, then a is canonical,

i.e. starts with a constructor.

Anton Setzer Coalgebraic Programming Using Copatterns 8/ 22

Axiomatising the Real Numbers in Dependent Type Theory

Restrictions on Postulates (PhD thesis Chi Ming Chuang)

» Postulated functions have as result type equalities or postulated

types.
» Especially negation is not allowed as conclusion because of

» Functions defined by case distinction on equalities have as result type
only equalities or postulated types.
» So when using postulated functions and equalities we stay within
equalities and postulated types.

Anton Setzer Coalgebraic Programming Using Copatterns 9/ 22

Agda.

» The problem with equalities was that they occur in conclusions in
» If we had 2 equalities:

» one on postulated types,

» one on non-postulated types,
then only a restriction on the equality on postulated types is

needed.

«O0>» «Fr» «=» <« = Q>

it
-

Axiomatising the Real Numbers in Dependent Type Theory

Results of PhD Thesis Chi Ming Chuang

» Chi Ming Chuang: Extraction of Programs for Exact Real Number
Computation using Agda. PhD thesis, Dept. of Computer Science,
Swansea, March 2011

» Chi Ming Chuang

» showed that under these conditions all closed elements algebraic types
are canonical,

» introduced the signed digit real numbers and showed that they are
closed under av, * and contain the rationals,

» transformed them into programs computing those operations on Reals
given by streams of signed digits,

» was able to execute the resulting programs using a compiled version of
Agda.

Anton Setzer Coalgebraic Programming Using Copatterns 11/ 22

Formulation of Coalgebras in Dependent Type Theory

Formulation of Coalgebras in Dependent Type Theory

Anton Setzer Coalgebraic Programming Using Copatterns 12/ 22

Formulation of Coalgebras in Dependent Type Theory

Codata in Functional Programming

» SignedDigit above was defined by a codata type.

» Consider a simpler example:

codata Stream : Set where
cons : N — Stream — Stream

Codata contains objects such as
cons 0 (cons 0 (cons 0 ---))

» We immediately get non-normalisation.

» Restrictions were applied in Coq and Agda on reductions of elements
of codata types.

» In Coq resulted in problem of subject reduction.
» In Agda restrictions make codata type not very useful.

Anton Setzer Coalgebraic Programming Using Copatterns 13/ 22

Formulation of Coalgebras in Dependent Type Theory

Coalgebras

» Solution is to use approach from category theory.
» Treat coalgebras as we treat functions in the A-calculus:
» There functions are not a set of pairs
— and therefore an infinite object,
» but a program which applied to its arguments computes the result.
» Similarly elements of coalgebras are not per se infinite objects, but
objects which can be unfolded computationally possibly infinitely
often:
coalg Stream : Set where
head : Stream — N
tail : Stream — Stream

> Idea is: an element of Stream is any object, to which we can apply
head and tail and obtain natural numbers or Streams.

Anton Setzer Coalgebraic Programming Using Copatterns 14/ 22

Formulation of Coalgebras in Dependent Type Theory

Introduction Rule

coalg Stream : Set where
head : Stream — N
tail : Stream — Stream

» Elimination rule for Stream is given by it's eliminators head, tail.

» Introduction rule is “derived” (not in a mathematical sense) from the
principle that elements of Stream are anything admitting head and

tail.
» Example:
inc : N — Stream
head (incn) = n
tail (incn) = inc(n+1)

Anton Setzer Coalgebraic Programming Using Copatterns 15/ 22

Formulation of Coalgebras in Dependent Type Theory

Introduction Rules for Coalgebras

» In its simple form (coiteration) elimination rules correspond exactly to
the categorical diagram of a weakly final coalgebra.

» More advanced forms (e.g. corecursion) can be derived for final
coalgebras and then used to extend weakly final coalgebras.

Anton Setzer Coalgebraic Programming Using Copatterns 16/ 22

Axiomatising the Real Numbers in Dependent Type Theory

Formulation of Coalgebras in Dependent Type Theory

Patterns and Copatterns

Conclusion

Appendix: Definition of Example of (Co)pattern Matching in Stages

Appendix: Simulating Codata Types in Coalgebras

«0>» «Fr «=>» 4 Q>

it
-

Patterns and Copatterns

Patterns and Copatterns

» In our POPL 2013 paper

» Andreas Abel, Brigitte Pientka, David Thibodeau and Anton Setzer:
Copatterns: programming infinite structures by observations. POPL
2013, pp. 27 - 38

we

» showed how to mix pattern and copattern matching, and nest them as
well,

» introduced a small (non-normalising) calculus for mixed and nested
pattern and copattern matching,

» showed that this guarantees that all function definitions are coverage
complete,

» showed that the resulting calculus fulfils subject reduction.

Anton Setzer Coalgebraic Programming Using Copatterns 18/ 22

Patterns and Copatterns

Example of Patterns and Copatterns

Definition of the stream:
fn=nnn-1n-1,...000NNNN-1, N-1,...0,0, NN N-1, N—1,

f : N — Stream

head (fo) =0
head (tail (fO)) = 0
tail (tail (fO)) = fN
head (f(Sn))= Sn
head (tail (f (Sn)))= Sn
tail (tail (f (Sn)))= fn

» There is an easy algorithm to reduce these definitions back to case
distinction operators and full recursion.

» One can trace back the recursion and in some cases reduce it to the
primitive (co)recursion operators.

Anton Setzer Coalgebraic Programming Using Copatterns 19/ 22

Patterns and Copatterns

Berger's Data Type of Continuous Functions

Let I denote [—1,1].
Let I' be I — I for a postulated I or postulated type with suitable axioms.

coalg Cont (f : I') : Set where
elim : (f : I') — Cont f — Contaux f

data Contaux (f : I') : Set where

consume : (f:I') — ((d : Digit) — Contaux(f o ey)) — Contaux f
produce : (f:I') — (d : Digit) — Cont(e,* o f) — Contaux f

Anton Setzer Coalgebraic Programming Using Copatterns 20/ 22

Axiomatising the Real Numbers in Dependent Type Theory

Formulation of Coalgebras in Dependent Type Theory

Patterns and Copatterns

Conclusion

Appendix: Definition of Example of (Co)pattern Matching in Stages

Appendix: Simulating Codata Types in Coalgebras

«0>» «Fr «=>» 4 Q>

it
v

Conclusion

Conclusion

v

Use of postulated Real numbers very good approach to treating real
numbers in type theory.

v

Restrictions on postulates guarantee that program extraction works.

v

Copattern matching is the correct dual of pattern matching.

v

Definition of functions on data and codata types by
pattern/copattern matching works well.

Anton Setzer Coalgebraic Programming Using Copatterns 22/ 22

Axiomatising the Real Numbers in Dependent Type Theory

Formulation of Coalgebras in Dependent Type Theory

Patterns and Copatterns

Conclusion

Appendix: Definition of Example of (Co)pattern Matching in Stages

Appendix: Simulating Codata Types in Coalgebras

«0>» «Fr «=>» 4 QR

it
-

» We demonstrate this by an example:

» Example define stream:
fn=

nonn—1,n-1,...0,0,N,N,N—1,N—1,...0,0,N,N,N—1,N—1,

«0O0)>» «F»r «Z» « > Q>

fn=nnn-1n-1,...000NNN-1, N-1,...0,0, NN, N—-1, N—1,

f : N — Stream
f =7

«O0)>» «F» «=)» 4« Q>

it
-

fn=nnn-1n-1,...000N,NN-1, N-1,...0,0, NN, N—-1, N—1,

f : N — Stream
f o=

?
Pattern match on f : N — Stream:

f : N — Stream
fn =27

«O0)>» «F» «=)» 4« Q>

it
-

fn=nnn-1n-1...000N,NN-1T, N-1,...0,0, NN, N—-1, N—1,

f : N — Stream
fn =7
Copattern matching on f n: Stream:

f : N — Stream
head (f n)
tail (f n)

?
= 7

«4O0)>» «Fr «=» « = Q>

it
-

fn=nnn-1n-1,...000 NN N-1, N-1,...0,0, NN, N—-1, N—1,

f : N — Stream
head (f n) = 7
tail (fn) = ?

Pattern matching on the first n: N:
f: N — Stream
head (f 0) =

?
head (f (Sn)) = ?
tail (f n) =

«O0)>» «F» «=)» 4«

it
it
N)
¥l
i)

fn=nnn-1n-1,...0,0,N,N, N-1,N—1,...0,0, N, N, N—1, N—1,

f : N — Stream
head (f 0) =
head (f (Sn)) = 7
tail (f n) = 7

Pattern matching on second n: N:

f : N — Stream

head (f 0) =
head (f (S n)) =
tail (£ 0) =
tail (f (Sn)) =

«O0> «F>» «=)r» «=)» = Q>

fn=nnn-1n-1,...000 NN N-1, N-1,...0,0, N\,N, N—-1, N—1,

f : N — Stream

head (f 0) =
head (f (S n)) =
tail (f 0) =
tail (f (Sn)) =

Copattern matching on tail (f 0) : Stream

f : N — Stream

head (fo)= 7
head (f(S n)= 7
head (tail (O))= 7
tail (tail (FO)= 7?
tail (fF(Sn)= 7
«O» «Fr «E>» «E>» = Al

2 R W A

Stages

Patterns and Copatterns

f : N — Stream

head (fo)= 7
head (F(S n)= 7
head (tail (O))= 7
tail (tail (FO)= ?
tail (f(Sn))= 7

Copattern matching on tail (f (S n)) : Stream:

f : N — Stream
head (0)
head (f (S n))
head (tail (0)) =
tail (tail (O)) =
head (tail (f (S n)))=
tail (tail (f (S n)))=

Anton Setzer Coalgebraic Programming Using Copatterns 25/ 22

. . N A

~ Stages

Patterns and Copatterns

We resolve the goals:

f : N — Stream
head (fo

head (tail
tail (tail

(
(
head (
(
(

f(Sn
head (tail (f (S n)))=
tail (tail (f (S n)))=

0
0
fN
Sn
Sn
fn

» There is an easy algorithm to reduce these definitions back to case

distinction operators and full recursion.

» One can trace back the recursion and in some cases reduce it to the

primitive (co)recursion operators.

Anton Setzer

Coalgebraic Programming Using Copatterns

25/ 22

Axiomatising the Real Numbers in Dependent Type Theory

Formulation of Coalgebras in Dependent Type Theory

Patterns and Copatterns

Conclusion

Appendix: Definition of Example of (Co)pattern Matching in Stages

Appendix: Simulating Codata Types in Coalgebras

«0>» «Fr «=>» 4 QR

it
-

union:

» Having more than one constructor in algebras correspond to disjoint

data N : Set where

0 N
S N—-N

corresponds to

data N : Set where
intro (1+N) >N

«0O0» «F»r « =) « P NEd

it
-

Appendix: Simulating Codata Types in Coalgebras

Multiple Constructors in Algebras and Coalgebras

» Dual of disjoint union is products, and therefore multiple destructors
correspond to product:

coalg Stream : Set where
head : Stream — N
tail : Stream — Stream

corresponds to

coalg Stream : Set where
case : Stream — (N x Stream)

Anton Setzer Coalgebraic Programming Using Copatterns 28/ 22

» Consider

codata coList : Set where
nil

coList
cons

N — coList — coList
» Cannot be simulated by using several destructors.

«0O0» «Fr» «=)r» « Q>

it
-

» Represent Codata as follows

mutual

coalg coList : Set where

unfold : coList — coListShape

nil

data coListShape : Set where
i coListShape
cons

N — coList — coListShape

«40» «F»r « =)

< > A

append : coList — coList — coList
append | I' =7

«Or «Fr «=>» QA

append : coList — coList — coList
append | I/ =7

We copattern match on append / I’ : coList:

append : colList — coList — coList
unfold (append / I') =7

«O0)>» «F» «=)» 4« Q>

it
-

append : coList — coList — coList
unfold (append / I') =7
We cannot pattern match on /.

But we can do so on (unfold /):

append : colList — coList — coList
unfold (append / I') =
case (unfold /) of
nil — 7
(consnl) — 7

«0O0» «Fr» «=)r» « Q>

it
-

append : colList — coList — coList
unfold (append / I') =
case (unfold /) of
nil - 7
(consnl) — 7
We resolve the goals:

append : coList — coList — coList
unfold (append / I)

case (unfold /) of
nil

— unfold //
(cons nl) — cons n (append / I')

«0O0» «Fr» «=)r» « » Q>

	Axiomatising the Real Numbers in Dependent Type Theory
	Formulation of Coalgebras in Dependent Type Theory
	Patterns and Copatterns
	Conclusion
	Appendix: Definition of Example of (Co)pattern Matching in Stages
	Appendix: Simulating Codata Types in Coalgebras

