«0O0)>» «F»r «Z» « Q>

Anton Setzer
Swansea University, Swansea UK
(Joint work with Chi Ming Chuang)

April 11, 2011

it
-

1. Real Number Computations in Agda

2. Theory of Program Extraction

Extensions

Evaluation

«O» «Fr « y 4= o

» Can you extract programs from proofs in Agda.
» Obvious because of Axiom of Choice — ?
From

p:(x:A)—=3y:Blely)
we get of course

f=Mm(f x): A= B
p=Mx.mi(f x): (x: A) = o(f x)

» However what happens in the presence of axioms?

«0O0» «Fr» «=)r» « » Q>

» Situation different in presence of axioms.

» Approach of Ulrich Berger transferred to Agda:
Axiomatize the real numbers abstractly. E.g.

postulate R : Set

postulate == _:R —-R —- R
postulate _+_:R —-R — R
postulate commutative : (rs:R) - r+s==s+r

«0O0» «Fr» «=)r» «

it
v

» Formulate N, Z, Q as usual

data N : Set where

Zero N

suc N—-N
+:N—-=N—=>N
n 4+ zero = n
n + sucm

suc (n+ m)
*_:N->N-=N

data Z : Set where

data Q : Set where e -
O B33

it
-

N2R:N—+R
N2R zero Or
N2R (sucn) = N2Rn+4glp

Z2R :Z — R

Q2R: Q=R

«O0)>» «F» «=)» 4«

it
it
N)
¥l
i)

data CauchyReal (r : R) : Set where
cauchyReal : (f : N — Q)

= (p:(n:N) = |Q2R (f n) —r rlr <r 23")
— CauchyReal r

«O0)>» «F» «=)» 4« Q>

it
-

1. Real Number Computations in Agda

Signed Digit Representations

» We can consider as well the real numbers with signed digit
representations.

» Signed digit representable real numbers in [—1,1] are of the form
0.111(-1)0(-1)01(-1)---

In general
0.dod1drds5 - -
where d; € {-1,0,1}.

» Signed digit needed because even the first digit of an unsigned digit
representation can in general not be determined.

8/ 33

1. Real Number Computations in Agda

Signed Digit Representations

» Consider for easy of presentation decimal numbers.
» Assume a sequence of approximations of a real number, starting with

0.9,0.99,0.999,0.9999, - - -

it might at any time switch to

1.0000001
in which case first digits are 1.0
or to

0.9999998

in which case first digits are 0.9.
» With first digits 0.9 we can represent numbers in the interval

[0.9000000- - - ,0.9999999 - - -] = [0.9, 1.0]
» With first digits 1.0 we can represent
[1.00000000- - - ,1.09999999 - -] = [1.0,1.1]

9/ 33

1. Real Number Computations in Agda

Signed Digit Representations

» The choice between 0.9 and 1.0 is the choice
r<10vr>1.0

which is undecidable.
» With signed digits we can modify our decisions:
» With first digit 0.9 we can obtain numbers in interval

[0.9(—9)(—9)(—9)---,0.9999999 - - -] = [0.8,1.0]
» With first digit 1.0 we can obtain numbers in interval
[1.0(=9)(—9)(—9)---,1.0999999 - -] = [0.9,1.1]
» The choice between 0.9 and 1.0 is the choice
r<l10vr>09

which is decidable.

10/ 33

data Digit : Set where
—14 04 14 : Digit

data SignedDigit : R — Set where
signedDigit : (r : R)
= (re[-1,1])
— (d : Digit)
— 00 (SignedDigit (2g *g r — digit2R d))
— SignedDigit r

«O0)>» «F» «=)» 4«

4 = 9DAC¢

1. Real Number Computations in Agda

Conversion Functions

cauchy2SignedDigit : (r : R) — r € [-1,1] — CauchyReal r
— SignedDigit r

signedDigit2Cauchy : (r : R) — SignedDigit r — CauchyReal r
signedDigit2Stream : (r : R) — SignedDigit r — Stream Digit

streamToSignedDigit : Stream Digit — 3 [r : R] (SignedDigit r)
— — Requires completeness axiom for R

12/ 33

streamToList : {A: Set} — Stream A — N — List A
— — determine first n elements

it
-

«0O0)>» «F»r «Z» « Q>

1. Real Number Computations in Agda

Generating Real Numbers

Prove:
Q2Cauchy : (g : Q) — CauchyReal (Q2R q)

closure+ : (r s : R) — CauchyReal r — CauchyReal s
— CauchyReal (r + s)

closurex : (r s : R) — CauchyReal r — CauchyReal s
— CauchyReal (r * s)

cauchyComplete : (f : N — R)
(p:(n: N) — CauchyReal (f n))
(q:(nm:N)=(n>m) = |f n—rf mg <r25")

= 3[r:R(n:N)=|fn—rrlr <r 25")

14/ 33

1. Real Number Computations in Agda

Extraction of Programs

Plugging these functions we can now obtain

» Obtain a singed digit representation of rational numbers.

1:(n:N) — List Digit
1 n = Q2ListDigit (+1/3) pn

so 110 evaluates to
g —1galgn —1galgn =110 =190 190 —1g

» Determine addition (move precisely average), multiplication for signed
digit streams.

T

> Determine from a Cauchy Sequence for e.g. {5 its signed digit
representation (not done yet).

15/ 33

1. Real Number Computations in Agda

2. Theory of Program Extraction

Extensions

Evaluation

«O» «Fr « y 4= o

2. Theory of Program Extraction

Problem of Program Extraction

» Because of postulates it is not guaranteed that each program reduces
to canonical head normal form.

» Example 1

postulate decide, : m <g 3.14V 3.14 <p 7
lem: (rs:R)— (r<gsVs<gr)— Bool
lem r s (inl _) = true

lem r s (inr _) = false

lem 7 3.14 decide, is non-canonical element in NF

17/ 33

» Example 2 (something like this actually occurred)
postulate lem, : —1gp <g 7/10 A7/10 <g 1

p : CauchyReal 7/10

cauchy2SignedDigit : (r : R) - —1 <g r — r <g 1 — CauchyReal r
— SignedDigit r
cauchy2SignedDigit rpq g’ = ---

cauchy2SignedDigit’ : (r : R) = (=1 <g r A r <g 1) — CauchyReal r
— SignedDigit r
cauchy2SignedDigit’ r (and p q) ¢’ = cauchy2SignedDigit r p q ¢’

g : List Digit

q = signedDigitToList 10 7/10
(cauchy2SignedDigit’ 7 /10 lem, p)

— — g doesn't reduce to dy :: dy :: - -

2. Theory of Program Extraction

Problem of Program Extraction

» Example 3 (something like this actually occurred)

postulate lem : (r : R) — r == r +r Og

transfer : (r s : R) — r == s — CauchyReal r — CauchyReal s
transfer r rrefl p=p

1IsCauchy : CauchyReal 1r
1IsCauchy = - - -

transfer 1g (r +r Or) lem 1IsCauchy : CauchyReal (r +r Or)
— — doesn't reduce to canonical normal form

» Can be avoided by proving transfer by guarded recursion into
CauchyReal s

19/ 33

2. Theory of Program Extraction

Theorem

» Assume some healthy conditions (e.g. strong normalisation,
confluence, elements starting with different constructors are different).

» Assume no record types or indexed inductive definitions are used
(probably can be removed).

» Assume result type of axioms is always a postulated type.

» Then every closed term which is an element of an algebraic data type
is in canonical normal form (starts with a constructor).

20/ 33

2. Theory of Program Extraction

Proof Assuming Simple Pattern Matching

v

Assume t : A, t closed and in NF, A algebraic.

v

Show by induction on length of t that t starts with a constructor.

v

Then t =f t;--- ty, f function symbol or constructor.

\4

f cannot be postulated or directly defined.
If £ is defined by pattern matching on say t;.

» By IH t; starts with a constructor.
» t has a reduction, wasn't in NF

v

\4

So f is a constructor.

21/ 33

Difficult proof in the thesis of Chi Ming Chuang.

«Or «Fr «=>» = = 9HAr

1. Real Number Computations in Agda

2. Theory of Program Extraction

Extensions

Evaluation

«O» «Fr « > «E» o

Extensions

Extensions

» Negated axioms such as =(Or == 1g) are currently forbidden
» Have form Og == 1gp — L where L is algebraic data type.
» Causes problems since they are needed (e.g. when using the reciprocal
function).
» Without negated axioms the theory was trivially consistent (interpret

all postulate sets as one element sets).
» With negated axioms it could be inconsistent

» E.g. take axioms which have consequences O == 1g and
—(0r == 1r).)
» Then we get a proof p: | and therefore
efqp: N

is noncanonical in NF.

24/ 33

Extensions

Theorem (Negated Axioms)

» Assume conditions as before.

v

Assume result type of axioms is always a postulated type or a negated
postulated type.

v

Assume the Agda code doesn’t prove L.

v

Then every closed term which is an element of an algebraic data type
is in canonical normal form (starts with a constructor).

25/ 33

Extensions

More Extensions

» We could separate our algebraic data types into those for which we
want to use their computational content and those for which we don’t
use their content.

» Assume we never derive using case distinction on a non-computational
data type an element of a computational data type.

» Then axioms with result type non-computational data types could be
allowed, e.g.

tertiumNonDatur : A Vyon—computational 7A

26/ 33

1. Real Number Computations in Agda

2. Theory of Program Extraction

Extensions

Evaluation

«O» «Fr « > «E» o

Evaluation

Easy Proofs

» Axiomatized theory allows to proof easily big theorems, if one is only
interested in the computational content.

» In an experiment we introduced axioms such as

ax: (r:R) = (q:Q) — |Q2R q — r| <g 25> — q <@ 1/40
—r<p 1/2R

» In fact the more is postulated the faster the program (and the easier
one can see what is computed).

28/ 33

» Postulates allow us to have a two-layered theory with

» computational part (using non-postulated types)
» an a logic part (using postulated types).

«O0)>» «F» «=)» 4« Q>

Evaluation

Useful for Programming with Dependent Types

» This could be very useful for programming with dependent types.

» Postuluate axioms with no computational content.
» Possibly prove them using automated theorem provers (approach by

Bove,Dybjer et. al.).
» Concentrate in programming on computational part.

30/ 33

Evaluation

Experiments carried out

» In about 6 hours | developed a framework using Cauchy Reals, Signed
Digit Reals, conversion into streams and lists form scratch.

» Allowed the compuation of the first 10 digits of rational numbers in
[-1,1].

» Framework is easy to use since most proofs are replaced by postulates.

» Chi Ming Chuang showed closure of signed digit reals under average
and multiplication using more efficient direct calculations and full
proofs of most theorems needed.

» Was able to calculated fast the first 1000 digits of rational numbers.

31/ 33

» In most cases the algorithm is not visible.

» Can be made explicit if functions defined by pattern matching are
given by their recursion operators.

» Maybe reflection could offer a possibility to get around this restriction.

«O0> «F>» «=)r» «=)»

Evaluation

Conclusion

Framework which allows to reduce the burden of proofs while
programming.

Allows the integration of advanced ATP tools for proving
non-computational theorems.

v

v

Axiomatic treatment of R seems to be appropriate.

v

v

Algorithm not yet visible when case distinction is used.

33/ 33

	1. Real Number Computations in Agda
	2. Theory of Program Extraction
	Extensions
	Evaluation

