
Extraction of Programs from Proofs using Postulated
Axioms

Anton Setzer
Swansea University, Swansea UK

(Joint work with Chi Ming Chuang)

April 11, 2011

1/ 33

1. Real Number Computations in Agda

1. Real Number Computations in Agda

2. Theory of Program Extraction

Extensions

Evaluation

2/ 33

1. Real Number Computations in Agda

Question by Ulrich Berger

I Can you extract programs from proofs in Agda.

I Obvious because of Axiom of Choice – ?
From

p : (x : A)→ ∃ [y : B] ϕ(y)

we get of course

f = λx .π0(f x) : A→ B
p = λx .π1(f x) : (x : A)→ ϕ(f x)

I However what happens in the presence of axioms?

3/ 33

1. Real Number Computations in Agda

Abstract Real Numbers

I Situation different in presence of axioms.

I Approach of Ulrich Berger transferred to Agda:
Axiomatize the real numbers abstractly. E.g.

postulate R : Set
postulate == : R→ R→ R
postulate + : R→ R→ R
postulate commutative : (r s : R)→ r + s == s + r
· · ·

4/ 33

1. Real Number Computations in Agda

Computational Numbers

I Formulate N, Z, Q as usual

data N : Set where
zero : N
suc : N→ N

+ : N→ N→ N
n + zero = n
n + suc m = suc (n + m)

∗ : N→ N→ N
· · ·

data Z : Set where
· · ·

data Q : Set where
· · · 5/ 33

1. Real Number Computations in Agda

Embedding of N, Z, Q into R

N2R : N→ R
N2R zero = 0R
N2R (suc n) = N2R n +R 1R

Z2R : Z→ R
· · ·

Q2R : Q→ R
· · ·

6/ 33

1. Real Number Computations in Agda

Cauchy Reals

data CauchyReal (r : R) : Set where
cauchyReal : (f : N→ Q)

→ (p : (n : N)→ |Q2R (f n)−R r |R <R 2−nR)
→ CauchyReal r

7/ 33

1. Real Number Computations in Agda

Signed Digit Representations

I We can consider as well the real numbers with signed digit
representations.

I Signed digit representable real numbers in [−1, 1] are of the form

0.111(−1)0(−1)01(−1) · · ·

In general
0.d0d1d2d3 · · ·

where di ∈ {−1, 0, 1}.
I Signed digit needed because even the first digit of an unsigned digit

representation can in general not be determined.

8/ 33

1. Real Number Computations in Agda

Signed Digit Representations

I Consider for easy of presentation decimal numbers.
I Assume a sequence of approximations of a real number, starting with

0.9, 0.99, 0.999, 0.9999, · · ·
it might at any time switch to

1.0000001

in which case first digits are 1.0
or to

0.9999998

in which case first digits are 0.9.
I With first digits 0.9 we can represent numbers in the interval

[0.9000000 · · · , 0.9999999 · · ·] = [0.9, 1.0]

I With first digits 1.0 we can represent

[1.00000000 · · · , 1.09999999 · · ·] = [1.0, 1.1]
9/ 33

1. Real Number Computations in Agda

Signed Digit Representations

I The choice between 0.9 and 1.0 is the choice

r ≤ 1.0 ∨ r ≥ 1.0

which is undecidable.
I With signed digits we can modify our decisions:
I With first digit 0.9 we can obtain numbers in interval

[0.9(−9)(−9)(−9) · · · , 0.9999999 · · ·] = [0.8, 1.0]

I With first digit 1.0 we can obtain numbers in interval

[1.0(−9)(−9)(−9) · · · , 1.0999999 · · ·] = [0.9, 1.1]

I The choice between 0.9 and 1.0 is the choice

r ≤ 1.0 ∨ r ≥ 0.9

which is decidable.

10/ 33

1. Real Number Computations in Agda

Coinductive Definition of Binary Signed Digit Real
Numbers

data Digit : Set where
−1d 0d 1d : Digit

data SignedDigit : R→ Set where
signedDigit : (r : R)

→ (r ∈ [−1, 1])
→ (d : Digit)
→∞ (SignedDigit (2R ∗R r − digit2R d))
→ SignedDigit r

11/ 33

1. Real Number Computations in Agda

Conversion Functions

cauchy2SignedDigit : (r : R)→ r ∈ [−1, 1]→ CauchyReal r
→ SignedDigit r

· · ·

signedDigit2Cauchy : (r : R)→ SignedDigit r → CauchyReal r
· · ·

signedDigit2Stream : (r : R)→ SignedDigit r → Stream Digit
· · ·

streamToSignedDigit : Stream Digit→ ∃ [r : R] (SignedDigit r)
· · ·
− − Requires completeness axiom for R

12/ 33

1. Real Number Computations in Agda

Conversion Functions

streamToList : {A : Set} → Stream A→ N→ List A
−− determine first n elements
· · ·

13/ 33

1. Real Number Computations in Agda

Generating Real Numbers

Prove:

Q2Cauchy : (q : Q)→ CauchyReal (Q2R q)
· · ·
closure+ : (r s : R)→ CauchyReal r → CauchyReal s

→ CauchyReal (r + s)
· · ·
closure∗ : (r s : R)→ CauchyReal r → CauchyReal s

→ CauchyReal (r ∗ s)
· · ·
cauchyComplete : (f : N→ R)

(p : (n : N)→ CauchyReal (f n))
(q : (n m : N)→ (n ≥ m)→ |f n −R f m|R <R 2−nR)
→ ∃ [r : R] ((n : N)→ |f n −R r |R ≤R 2−nR)

14/ 33

1. Real Number Computations in Agda

Extraction of Programs

Plugging these functions we can now obtain

I Obtain a singed digit representation of rational numbers.

l : (n : N)→ List Digit
l n = Q2ListDigit (+ 1 / 3) p n

so l 10 evaluates to

1d :: −1d :: 1d :: −1d :: 1d :: −1d :: 1d :: −1d :: 1d :: −1d

I Determine addition (move precisely average), multiplication for signed
digit streams.

I Determine from a Cauchy Sequence for e.g. π
10 its signed digit

representation (not done yet).

15/ 33

2. Theory of Program Extraction

1. Real Number Computations in Agda

2. Theory of Program Extraction

Extensions

Evaluation

16/ 33

2. Theory of Program Extraction

Problem of Program Extraction

I Because of postulates it is not guaranteed that each program reduces
to canonical head normal form.

I Example 1

postulate decideπ : π ≤R 3.14 ∨ 3.14 ≤R π

lem : (r s : R)→ (r ≤R s ∨ s ≤R r)→ Bool
lem r s (inl) = true
lem r s (inr) = false

lem π 3.14 decideπ is non-canonical element in NF

17/ 33

I Example 2 (something like this actually occurred)

postulate lemπ : −1R ≤R π/10 ∧ π/10 ≤R 1

p : CauchyReal π/10
p = · · ·

cauchy2SignedDigit : (r : R)→ −1 ≤R r → r ≤R 1→ CauchyReal r
→ SignedDigit r

cauchy2SignedDigit r p q q′ = · · ·

cauchy2SignedDigit′ : (r : R)→ (−1 ≤R r ∧ r ≤R 1)→ CauchyReal r
→ SignedDigit r

cauchy2SignedDigit′ r (and p q) q′ = cauchy2SignedDigit r p q q′

q : List Digit
q = signedDigitToList 10 π/10

(cauchy2SignedDigit′ π/10 lemπ p)
−− q doesn’t reduce to d0 :: d1 :: · · ·

2. Theory of Program Extraction

Problem of Program Extraction

I Example 3 (something like this actually occurred)

postulate lem : (r : R)→ r == r +R 0R

transfer : (r s : R)→ r == s → CauchyReal r → CauchyReal s
transfer r r refl p = p

1IsCauchy : CauchyReal 1R
1IsCauchy = · · ·

transfer 1R (r +R 0R) lem 1IsCauchy : CauchyReal (r +R 0R)
−− doesn’t reduce to canonical normal form

I Can be avoided by proving transfer by guarded recursion into
CauchyReal s

19/ 33

2. Theory of Program Extraction

Theorem

I Assume some healthy conditions (e.g. strong normalisation,
confluence, elements starting with different constructors are different).

I Assume no record types or indexed inductive definitions are used
(probably can be removed).

I Assume result type of axioms is always a postulated type.

I Then every closed term which is an element of an algebraic data type
is in canonical normal form (starts with a constructor).

20/ 33

2. Theory of Program Extraction

Proof Assuming Simple Pattern Matching

I Assume t : A, t closed and in NF, A algebraic.

I Show by induction on length of t that t starts with a constructor.

I Then t = f t1 · · · tn, f function symbol or constructor.

I f cannot be postulated or directly defined.
I If f is defined by pattern matching on say ti .

I By IH ti starts with a constructor.
I t has a reduction, wasn’t in NF

I So f is a constructor.

21/ 33

2. Theory of Program Extraction

Reduction of Nested Pattern Matching to Simple Pattern
Matching

Difficult proof in the thesis of Chi Ming Chuang.

22/ 33

Extensions

1. Real Number Computations in Agda

2. Theory of Program Extraction

Extensions

Evaluation

23/ 33

Extensions

Extensions

I Negated axioms such as ¬(0R == 1R) are currently forbidden
I Have form 0R == 1R → ⊥ where ⊥ is algebraic data type.
I Causes problems since they are needed (e.g. when using the reciprocal

function).
I Without negated axioms the theory was trivially consistent (interpret

all postulate sets as one element sets).
I With negated axioms it could be inconsistent

I E.g. take axioms which have consequences 0R == 1R and
¬(0R == 1R).)

I Then we get a proof p : ⊥ and therefore

efq p : N

is noncanonical in NF.

24/ 33

Extensions

Theorem (Negated Axioms)

I Assume conditions as before.

I Assume result type of axioms is always a postulated type or a negated
postulated type.

I Assume the Agda code doesn’t prove ⊥.

I Then every closed term which is an element of an algebraic data type
is in canonical normal form (starts with a constructor).

25/ 33

Extensions

More Extensions

I We could separate our algebraic data types into those for which we
want to use their computational content and those for which we don’t
use their content.

I Assume we never derive using case distinction on a non-computational
data type an element of a computational data type.

I Then axioms with result type non-computational data types could be
allowed, e.g.

tertiumNonDatur : A ∨non−computational ¬A

26/ 33

Evaluation

1. Real Number Computations in Agda

2. Theory of Program Extraction

Extensions

Evaluation

27/ 33

Evaluation

Easy Proofs

I Axiomatized theory allows to proof easily big theorems, if one is only
interested in the computational content.

I In an experiment we introduced axioms such as

ax : (r : R)→ (q : Q)→ |Q2R q −R r | <R 2−2R → q ≤Q 1/4Q
→ r ≤R 1/2R

I In fact the more is postulated the faster the program (and the easier
one can see what is computed).

28/ 33

Evaluation

Separation of Logic and Computation

I Postulates allow us to have a two-layered theory with
I computational part (using non-postulated types)
I an a logic part (using postulated types).

29/ 33

Evaluation

Useful for Programming with Dependent Types

I This could be very useful for programming with dependent types.
I Postuluate axioms with no computational content.
I Possibly prove them using automated theorem provers (approach by

Bove,Dybjer et. al.).
I Concentrate in programming on computational part.

30/ 33

Evaluation

Experiments carried out

I In about 6 hours I developed a framework using Cauchy Reals, Signed
Digit Reals, conversion into streams and lists form scratch.

I Allowed the compuation of the first 10 digits of rational numbers in
[−1, 1].

I Framework is easy to use since most proofs are replaced by postulates.

I Chi Ming Chuang showed closure of signed digit reals under average
and multiplication using more efficient direct calculations and full
proofs of most theorems needed.

I Was able to calculated fast the first 1000 digits of rational numbers.

31/ 33

Evaluation

Extraction of the Actual Algorithm

I In most cases the algorithm is not visible.

I Can be made explicit if functions defined by pattern matching are
given by their recursion operators.

I Maybe reflection could offer a possibility to get around this restriction.

32/ 33

Evaluation

Conclusion

I Framework which allows to reduce the burden of proofs while
programming.

I Allows the integration of advanced ATP tools for proving
non-computational theorems.

I Axiomatic treatment of R seems to be appropriate.

I Algorithm not yet visible when case distinction is used.

33/ 33

	1. Real Number Computations in Agda
	2. Theory of Program Extraction
	Extensions
	Evaluation

